p_dict = {} p_dict['g'] = 9.81 p_dict['m'] = 3.0 p_dict['b'] = 1.5 tao_perm = 29.0 avg_hgt = 10.0 #m mei = 0.05 kn = 1.0 s = 0.012 rho = 1000.0 gamma = p_dict['g'] * rho p_dict['y'] = tao_perm / (gamma * s) rh = cp.r_trap(p_dict) tao = gamma * rh * s print tao u_c_star = 0.028 + 6.33 * mei**2 if u_c_star > 0.23 * mei**0.106: u_c_start = 0.23 * mei**0.106 k = avg_hgt * 0.14 * (((mei / tao)**0.25) / avg_hgt)**1.59 u_star = (p_dict['g'] * rh * s)**0.5 ratio = u_star / u_c_star if ratio <= 1.0: a, b = 0.15, 1.85 elif ratio > 1.0 and ratio <= 1.5: a, b = 0.2, 2.7 elif ratio > 1.5 and ratio <= 2.5:
s = 0.004 rho = 1000.0 gamma = p_dict['g'] * rho u_c_star = 0.028 + 6.33*mei**2 if u_c_star > 0.23*mei**0.106: u_c_start = 0.23*mei**0.106 Y = np.arange(0.001,10.0,0.001) r = 1.0e+20 correct_y1 = -999 correct_n = -999 correct_tao = -999 for y in Y: p_dict['y'] = y rh = cp.r_trap(p_dict) tao = gamma * y * s u_star = (p_dict['g'] * rh * s)**0.5 ratio = u_star/u_c_star if ratio <= 1.0: a,b = 0.15,1.85 elif ratio > 1.0 and ratio <= 1.5: a,b = 0.2,2.7 elif ratio > 1.5 and ratio <=2.5: a,b = 0.28,3.08 else: a,b = 0.29,3.5 k = avg_hgt * 0.14 * (((mei/tao)**0.25)/avg_hgt)**1.59 n_term1 = kn /((8.0*p_dict['g'])**0.5) n_term2 = ((rh/k)**(1.0/6.0)/(a + (b * math.log10(rh/k))))