def _visit_call(self, tree: Call, *args):
        def aux(t: Union[AbstractExpression, str]):
            if isinstance(t, str):
                return t
            return self.visit(tree, *args)

        d = {aux(key): aux(value) for (key, value) in tree.options}
        f = self.visit(tree.fun, *args)
        if isinstance(tree,
                      Prod) or tree.fun == GenericConstantFunction("Prod"):
            l = []
            u = False
            for e in tree.args:
                if isinstance(e, Prod) or (isinstance(e, Call) and e.fun
                                           == GenericConstantFunction("Prod")):
                    u = True
                    for a in e.args:
                        l.append(a)
                elif e != Int(1):
                    l.append(self.visit(e, *args))
            call = Call(f, l, d)
            if u:
                return self.visit(call, *args)
            elif len(l) == 1:
                return self.visit(l[0], *args)
            return call
        return Call(f, [self.visit(e, *args) for e in tree.args], d)
Esempio n. 2
0
def p_postfix_expression_binary(p):
    """postfix_expression_binary : BINARY LBRACE argument_list RBRACE LBRACE argument_list RBRACE"""
    #  0                           1      2      3             4      5      6             7
    if p[1] == '\\frac':
        p[0] = Prod([p[3][0][0], Pow([p[6][0][0], Int(-1)], {})], {})
    elif p[1] == '\\binom':
        p[0] = C([p[3][0][0], p[6][0][0]], {})
def p_postfix_expression(p):
    """postfix_expression : postfix_expression list_apostrophe LPAREN        argument_list RPAREN
                          | postfix_expression LPAREN          argument_list RPAREN
                          | postfix_expression LPAREN          RPAREN
                          | postfix_expression EXCL
                          | primary_expression """
    #  0                    1                  2               3             4             5
    if len(p) == 2:
        p[0] = p[1]
    elif len(p) == 3:
        p[0] = Fact([p[1]], {})
    else:
        if len(p) == 6:
            args, opts, lists = p[4]
            call = translate_call(p[1], args, opts, lists)
            fun = call.get_fun()
            args = call.get_args()
            opts = call.get_options()
            dummy = Id(dummy_gen.get_dummy())
            lambda_fn = Fun(dummy, Call(fun, [dummy], opts))
            diff_fn = Diff([lambda_fn, Int(p[2])], {})
            p[0] = Call(diff_fn, args, opts)
        else:
            if len(p) == 5:
                args, opts, lists = p[3]
            else:
                args, opts, lists = [], {}, []
            p[0] = translate_call(p[1], args, opts, lists)
def p_additive_expression(p):
    """additive_expression : additive_expression       PLUS  multiplicative_expression
                           | additive_expression       MINUS multiplicative_expression
                           | multiplicative_expression """
    if len(p) == 2:
        p[0] = p[1]
    else:
        if p[2] == '+':
            p[0] = Sum([p[1], p[3]], {})
        elif p[2] == '-':
            p[0] = Sum([p[1], Prod([Int(-1), p[3]], {})], {})
Esempio n. 5
0
def p_expr_unary(p):
    """unary_expression : MINUS          unary_expression %prec NEG
                        | PLUS           unary_expression %prec NEG
                        | pow_expression """
    if len(p) == 2:
        p[0] = p[1]
    else:
        if p[1] == '-':
            p[0] = Prod([Int(-1), p[2]], {})
        else:
            p[0] = p[2]
Esempio n. 6
0
def p_multiplicative_expression(p):
    """multiplicative_expression : multiplicative_expression TIMES  unary_expression
                                 | multiplicative_expression DIVIDE unary_expression
                                 | unary_expression """
    if len(p) == 2:
        p[0] = p[1]
    else:
        if p[2] == '*':
            p[0] = Prod([p[1], p[3]], {})
        elif p[2] == '/':
            p[0] = Prod([p[1], Pow([p[3], Int(-1)], {})], {})
Esempio n. 7
0
    def test(self):
        test_list = [(Id('x'),
                      "x"),
                     (Call(Id('f'), [Int(4)], {}),
                      "f(Int(4))"),
                     (Fun(Id('x'), Sum([Float(1), Id('x')], {})),
                      "x -> Sum(Float(1), x)"),
                     ]

        for (tree, string) in test_list:
            printer = DefaultPrinter()
            self.assertEqual(printer.to_str(tree), string)
Esempio n. 8
0
def p_multiplicative_expression(p):
    """multiplicative_expression : multiplicative_expression TIMES  unary_expression
                                 | multiplicative_expression DIVIDE unary_expression
                                 | multiplicative_expression MOD    unary_expression
                                 | BIGPROD DOWN LBRACE ID EQ expression RBRACE POW LBRACE expression RBRACE unary_expression
                                 | unary_expression
                                 """
    #  0                           1       2    3      4  5  6          7      8  9      10         11     12
    if len(p) == 13:
        p[0] = BigProd([p[12], translate_id(p[4]), p[6], p[10]], {})
    if len(p) == 2:
        p[0] = p[1]
    else:
        if p[2] in ['*', '\\times']:
            p[0] = Prod([p[1], p[3]], {})
        elif p[2] == '/':
            p[0] = Prod([p[1], Pow([p[3], Int(-1)], {})], {})
        elif p[2] == '\\%':
            p[0] = Mod([p[1], p[3]], {})
Esempio n. 9
0
def p_additive_expression(p):
    """additive_expression : additive_expression       PLUS  multiplicative_expression
                           | additive_expression       MINUS multiplicative_expression
                           | BIGSUM DOWN LBRACE ID EQ expression RBRACE POW LBRACE expression RBRACE multiplicative_expression
                           | BIGINT DOWN LBRACE ID EQ expression RBRACE POW LBRACE expression RBRACE multiplicative_expression
                           | multiplicative_expression
                           """
    #  0                     1      2    3      4  5  6          7      8   9      10         11     12
    if len(p) == 13:
        if p[1] == "\\int":
            p[0] = Integrate([p[12], translate_id(p[4]), p[6], p[10]], {})
        else:
            p[0] = Series([p[12], translate_id(p[4]), p[6], p[10]], {})
    elif len(p) == 2:
        p[0] = p[1]
    else:
        if p[2] == '+':
            p[0] = Sum([p[1], p[3]], {})
        elif p[2] == '-':
            p[0] = Sum([p[1], Prod([Int(-1), p[3]], {})], {})
Esempio n. 10
0
def p_postfix_expression_unary(p):
    """postfix_expression_unary : UNARY LBRACKET argument_list RBRACKET LBRACE argument_list RBRACE
                                | UNARY LBRACE   argument_list RBRACE
                                | UNARY LPAREN   argument_list RPAREN
                                | UNARY ID
                                """
    #  0                          1     2          3             4        5      6             7
    token_to_func = {
        '\\sqrt': Sqrt,
        '\\log': Log,
        '\\exp': Exp,
        '\\cos': Cos,
        '\\sin': Sin,
        '\\tan': Tan,
    }
    if len(p) == 8:
        if p[1] == '\\sqrt':
            p[0] = Pow([p[6][0][0], Pow([p[3][0][0], Int(-1)], {})], {})
    elif len(p) == 5:
        p[0] = token_to_func[p[1]](*p[3])
    else:
        p[0] = token_to_func[p[1]]([p[2]], {})
Esempio n. 11
0
 def testParser(self):
     a = Id('a')
     b = Id('b')
     c = Id('c')
     d = Id('d')
     f = Id('f')
     g = Id('g')
     i = Id('i')
     j = Id('j')
     m = Id('m')
     n = Id('n')
     x = Id('x')
     y = Id('y')
     z = Id('z')
     _d0 = Id('_d0')
     __1 = Int(-1)
     _0 = Int(0)
     _1 = Int(1)
     _2 = Int(2)
     _3 = Int(3)
     _4 = Int(4)
     _6 = Int(6)
     _1024 = Int(1024)
     self.maxDiff = None
     test_list = [
         ("0", _0),
         ("Sin(x)", Sin([x], {})),
         ("Arctan(x)", Arctan([x], {})),
         ("Sqrt(4)", Sqrt([_4], {})),
         ("ArcTan(x)", Arctan([x], {})),
         ("x^2", Pow([x, _2], {})),
         ("a+b", Sum([a, b], {})),
         ("a*b", Prod([a, b], {})),
         ("a!", Fact([a], {})),
         ("2*a!", Prod([_2, Fact([a], {})], {})),
         ("a!!", Fact([Fact([a], {})], {})),
         ("-a!", Prod([__1, Fact([a], {})], {})),
         ("b+a!", Sum([b, Fact([a], {})], {})),
         ("-a-a",
          Sum([Prod([__1, a], {}), Prod([__1, a], {})], {})),
         ("--a", Prod([__1, Prod([__1, a], {})], {})),
         ("+a", a),
         ("+-a", Prod([__1, a], {})),
         ("-+a", Prod([__1, a], {})),
         ("a*-b", Prod([a, Prod([__1, b], {})], {})),
         ("-a*b", Prod([Prod([__1, a], {}), b], {})),
         ("-a^b", Prod([__1, Pow([a, b], {})], {})),
         ("-c**d", Prod([__1, Pow([c, d], {})], {})),
         ("a/b", Prod([a, Pow([b, __1], {})], {})),
         ("a-b", Sum([a, Prod([__1, b], {})], {})),
         ("a^b", Pow([a, b], {})),
         ("a^b/c",
          Prod([Pow([a, b], {}), Pow([c, __1], {})], {})),
         ("-a^b/c",
          Prod([Prod([__1, Pow([a, b], {})], {}),
                Pow([c, __1], {})], {})),
         ("(a+b)", Sum([a, b], {})),
         ("(a*b)", Prod([a, b], {})),
         ("(a/b)", Prod([a, Pow([b, __1], {})], {})),
         ("(a-b)", Sum([a, Prod([__1, b], {})], {})),
         ("(a^b)", Pow([a, b], {})),
         ("(a)^b", Pow([a, b], {})),
         ("(a+b)*c", Prod([Sum([a, b], {}), c], {})),
         ("a+(b*c)", Sum([a, Prod([b, c], {})], {})),
         ("a+b*c", Sum([a, Prod([b, c], {})], {})),
         ("a^b^c", Pow([a, Pow([b, c], {})], {})),
         ("a*b/c",
          Prod([Prod([a, b], {}), Pow([c, __1], {})], {})),
         ("a+b/c", Sum([a, Prod([b, Pow([c, __1], {})], {})], {})),
         ("x^n/n!",
          Prod([Pow([x, n], {}),
                Pow([Fact([n], {}), __1], {})], {})),
         ("a^n%b!", Mod([Pow([a, n], {}), Fact([b], {})], {})),
         ("a!%b^c+d",
          Sum([Mod([Fact([a], {}), Pow([b, c], {})], {}), d], {})),
         ("a^g(x)", Pow([a, Call(g, [x], {})], {})),
         ("f(x)+f(x)",
          Sum([Call(f, [x], {}), Call(f, [x], {})], {})),
         ("f(x)^g(x)",
          Pow([Call(f, [x], {}), Call(g, [x], {})], {})),
         ("Sin(x)^2+Cos(x)^2",
          Sum([Pow([Sin([x], {}), _2], {}),
               Pow([Cos([x], {}), _2], {})], {})),
         ("Sum(1/i^6, i, 1, Infinity)",
          Series([
              Prod([_1, Pow([Pow([i, _6], {}), __1], {})], {}), i, _1,
              infinity
          ], {})),
         ("Sum(Sum(j/i^6, i, 1, Infinity), j, 0 , m)",
          Series([
              Series([
                  Prod([j, Pow([Pow([i, _6], {}), __1], {})], {}), i, _1,
                  infinity
              ], {}), j, _0, m
          ], {})),
         ("Integrate(1/(x^3 + 1), x)",
          Integrate([
              Prod([_1, Pow([Sum([Pow([x, _3], {}), _1], {}), __1], {})],
                   {}), x
          ], {})),
         ("Integrate(1/(x^3 + 1), x, 0, 1)",
          Integrate([
              Prod([_1, Pow([Sum([Pow([x, _3], {}), _1], {}), __1], {})],
                   {}), x, _0, _1
          ], {})),
         ("Integrate(Integrate(Sin(x*y), x, 0, 1), y, 0, x)",
          Integrate([
              Integrate([Sin([Prod([x, y], {})], {}), x, _0, _1], {}), y,
              _0, x
          ], {})),
         ("Limit(Sin(x)/x, x, 0)",
          Limit([Prod([Sin([x], {}), Pow([x, __1], {})], {}), x, _0], {})),
         ("Limit((1+x/n)^n, x, Infinity)",
          Limit([
              Pow([Sum([_1, Prod([x, Pow([n, __1], {})], {})], {}), n], {}),
              x, infinity
          ], {})),
         ("Pow(1024, 1/2)",
          Pow([_1024, Prod([_1, Pow([_2, __1], {})], {})], {})),
         ("cos'(x)", Call(Diff([Fun(_d0, Cos([_d0], {})), _1], {}), [x],
                          {})),
         ("cos''''(x)",
          Call(Diff([Fun(_d0, Cos([_d0], {})), _4], {}), [x], {})),
         ("x | y", Or([x, y], {})),
         ("~ y", Not([y], {})),
         ("x & y", And([x, y], {})),
         ("x | ~z & ~ y",
          Or([x, And([Not([z], {}), Not([y], {})], {})], {})),
     ]
     for (expr, res) in test_list:
         self.assertEqual(repr(parse_natural(expr)), repr(res))
Esempio n. 12
0
    def testToCalchas(self):
        x_ = sympy.symbols('x')
        f = sympy.symbols('f', cls=sympy.Function)
        test_list = [(sympy.Symbol('a'), Id('a')), (sympy.pi, pi), (1, Int(1)),
                     (sympy.Rational(47, 10), Float(4.7)), (6, Int(6)),
                     (30, Int(30)), (15, Int(15)),
                     (f(12, 18), Call(Id('f'), [Int(12), Int(18)])),
                     ({
                         2: 1,
                         3: 2
                     }, DictFunctionExpression({
                         Int(2): Int(1),
                         Int(3): Int(2)
                     })), (18, Int(18)), (sympy.pi, pi),
                     (sympy.Lambda(x_, x_), Fun(Id('x'), Id('x')))]

        for (tree, res) in test_list:
            builder = Translator()
            calchas_tree = builder.to_calchas_tree(tree)
            self.assertEqual(calchas_tree, res)
Esempio n. 13
0
 def testParserWithImplicitMultiplication(self):
     a = Id('a')
     b = Id('b')
     c = Id('c')
     d = Id('d')
     f = Id('f')
     g = Id('g')
     n = Id('n')
     x = Id('x')
     test_list = [
         ("(a)a^n%b!+c", "(a)*a^n%b!+c",
          Sum([Mod([Prod([a, Pow([a, n], {})], {}),
                    Fact([b], {})], {}), c], {})),
         ("f(x)a", "f(x)*a", Prod([Call(f, [x], {}), a], {})),
         ("g f(n)", "g*f(n)", Prod([g, Call(f, [n], {})], {})),
         ("((f(a)(a+b)a))a(c+d)d", "((f(a)*(a+b)*a))*a(c+d)*d",
          Prod([
              Prod([
                  Prod([Prod(
                      [Call(f, [a], {}), Sum([a, b], {})], {}), a], {}),
                  Call(a, [Sum([c, d], {})], {})
              ], {}), d
          ], {})),
         ("a 2", "a*2", Prod([a, Int(2)], {})),
         ("2 a", "2*a", Prod([Int(2), a], {})),
         ("2 4", "2*4", Prod([Int(2), Int(4)], {})),
         ("2x", "2*x", Prod([Int(2), x], {})),
         ("x2", "x2", Id('x2')),
         ("a-b", "a-b", Sum([a, Prod([Int(-1), b], {})], {})),
         ("a/-b", "a/-b",
          Prod([a, Pow(
              [Prod([Int(-1), b], {}), Int(-1)], {})], {})),
         ("-a/+b", "-a/+b",
          Prod([Prod([Int(-1), a], {}),
                Pow([b, Int(-1)], {})], {})),
         ("a(b+c)", "a(b+c)", Call(a, [Sum([b, c], {})], {})),
         ("42(b+c)", "42*(b+c)", Prod([Int(42), Sum([b, c], {})], {})),
         ("1/2Pi", "1/2*Pi",
          Prod([Prod([Int(1), Pow([Int(2), Int(-1)], {})], {}), pi], {})),
     ]
     for e in test_list:
         if len(e) == 4:
             expr, prep, res, d = e
         else:
             expr, prep, res = e
             d = False
         expr_ = preprocess_natural(expr)
         self.assertEqual(expr_, prep)
         self.assertEqual(
             repr(naturalParser.parse(expr_, lexer=naturalLexer, debug=d)),
             repr(res))
Esempio n. 14
0
def p_primary_expression_int(p):
    """primary_expression : INT"""
    p[0] = Int(p[1])
    def testParser(self):
        a = Id('a')
        i = Id('i')
        n = Id('n')
        x = Id('x')
        y = Id('y')
        test_list = [
            ("0", Int(0)),
            ("sin(x)", Sin([x], {})),
            ("\\sin{y}", Sin([y], {})),
            ("\\sqrt{4}", Sqrt([Int(4)], {})),
            ("\\sqrt{a}", Sqrt([a], {})),
            ("\\sqrt[n]{a}", Pow([a, Pow([n, Int(-1)], {})], {})),
            ("\\frac{1}{2}", Prod([Int(1), Pow([Int(2), Int(-1)], {})], {})),
            ("\\binom{6}{4}", C([Int(6), Int(4)], {})),
            ("\\lceil sin(x) \\rceil", Ceiling([Sin([x], {})], {})),
            ("\\lim_{x\\to 0} sin(x)/x",
             Limit(
                 [Prod([Sin([x], {}), Pow([x, Int(-1)], {})], {}), x,
                  Int(0)], {})),
            ("\\sum _ { i = 0 } ^ { \\infty } (1)",
             Series([Int(1), i, Int(0), infinity], {})),
            ("\\sum _ { i = 0 } ^ { \\infty } (1/i^{2}) ",
             Series([
                 Prod(
                     [Int(1), Pow(
                         [Pow([i, Int(2)], {}), Int(-1)], {})], {}), i,
                 Int(0), infinity
             ], {})),
            ("\\frac { \\log ( \\frac { 1 } { 2 } ) } { 2 ^ {2} }",
             Prod([
                 Log([Prod([Int(1), Pow([Int(2), Int(-1)], {})], {})], {}),
                 Pow([Pow([Int(2), Int(2)], {}),
                      Int(-1)], {})
             ], {})),
            ("2\\times(1+3)", Prod([Int(2), Sum([Int(1), Int(3)], {})], {})),
        ]

        for e in test_list:
            if len(e) == 3:
                expr, res, d = e
            else:
                expr, res = e
                d = False
            self.assertEqual(
                repr(latexParser.parse(expr, lexer=latexLexer, debug=d)),
                repr(res))
 def testParser(self):
     a = Id('a')
     b = Id('b')
     c = Id('c')
     e = Id('e')
     i = Id('i')
     j = Id('j')
     m = Id('m')
     n = Id('n')
     x = Id('x')
     y = Id('y')
     test_list = [
         ("0", Int(0)),
         ("Sin[x]", Sin([x], {})),
         ("Arctan[x]", Call(Id('Arctan'), [x], {})),
         ("Sqrt[4]", Call(Id('Sqrt'), [Int(4)], {})),
         ("ArcTan[x]", Call(Id('ArcTan'), [x], {})),
         ("x^2", Pow([x, Int(2)], {})),
         ("a+b", Sum([a, b], {})),
         ("a+b+c", Sum([Sum([a, b], {}), c], {})),
         ("a*b", Prod([a, b], {})),
         ("a!", Fact([a], {})),
         ("2*a!", Prod([Int(2), Fact([a], {})], {})),
         ("a!!", Fact([Fact([a], {})], {})),
         ("-a!", Prod([Int(-1), Fact([a], {})], {})),
         ("b+a!", Sum([b, Fact([a], {})], {})),
         ("-a-a", Sum([Prod([Int(-1), a], {}),
                       Prod([Int(-1), a], {})], {})),
         ("--a", Prod([Int(-1), Prod([Int(-1), a], {})], {})),
         ("+a", a),
         ("+-a", Prod([Int(-1), a], {})),
         ("-+a", Prod([Int(-1), a], {})),
         ("a*-b", Prod([a, Prod([Int(-1), b], {})], {})),
         ("-a*b", Prod([Prod([Int(-1), a], {}), b], {})),
         ("a/b", Prod([a, Pow([b, Int(-1)], {})], {})),
         ("a-b", Sum([a, Prod([Int(-1), b], {})], {})),
         ("a^b", Pow([a, b], {})),
         ("a^b/c",
          Prod([Pow([a, b], {}), Pow([c, Int(-1)], {})], {})),
         ("-a^b/c",
          Prod(
              [Prod([Int(-1), Pow([a, b], {})], {}),
               Pow([c, Int(-1)], {})], {})),
         ("(a+b)", Sum([a, b], {})),
         ("(a*b)", Prod([a, b], {})),
         ("(a/b)", Prod([a, Pow([b, Int(-1)], {})], {})),
         ("(a-b)", Sum([a, Prod([Int(-1), b], {})], {})),
         ("(a^b)", Pow([a, b], {})),
         ("(a)^b", Pow([a, b], {})),
         ("(a+b)*c", Prod([Sum([a, b], {}), c], {})),
         ("a+(b*c)", Sum([a, Prod([b, c], {})], {})),
         ("a+b*c", Sum([a, Prod([b, c], {})], {})),
         ("a^b^c", Pow([a, Pow([b, c], {})], {})),
         ("a*b/c",
          Prod([Prod([a, b], {}), Pow([c, Int(-1)], {})], {})),
         ("a+b/c", Sum([a, Prod([b, Pow([c, Int(-1)], {})], {})], {})),
         ("x^n/n!",
          Prod([Pow([x, n], {}),
                Pow([Fact([n], {}), Int(-1)], {})], {})),
         ("a^G[x]", Pow([a, Call(Id('G'), [x], {})], {})),
         ("f[x]+f[x]",
          Sum([Call(Id('f'), [x], {}),
               Call(Id('f'), [x], {})], {})),
         ("f[x]^G[x]",
          Pow([Call(Id('f'), [x], {}),
               Call(Id('G'), [x], {})], {})),
         ("Sin[x]^2+Cos[x]^2",
          Sum([
              Pow([Sin([x], {}), Int(2)], {}),
              Pow([Cos([x], {}), Int(2)], {})
          ], {})),
         ("Sum[1/i^6, {i, 1, Infinity}]",
          Series([
              Prod(
                  [Int(1), Pow(
                      [Pow([i, Int(6)], {}), Int(-1)], {})], {}), i,
              Int(1), infinity
          ], {})),
         ("Sum[j/i^6, {i, 1, Infinity}, {j, 0 , m}]",
          Series([
              Series([
                  Prod([j, Pow(
                      [Pow([i, Int(6)], {}), Int(-1)], {})], {}), j,
                  Int(0), m
              ], {}), i,
              Int(1), infinity
          ], {})),
         ("Integrate[1/(x^3 + 1), x]",
          Integrate([
              Prod([
                  Int(1),
                  Pow([Sum(
                      [Pow([x, Int(3)], {}), Int(1)], {}),
                       Int(-1)], {})
              ], {}), x
          ], {})),
         ("Integrate[1/(x^3 + 1), {x, 0, 1}]",
          Integrate([
              Prod([
                  Int(1),
                  Pow([Sum(
                      [Pow([x, Int(3)], {}), Int(1)], {}),
                       Int(-1)], {})
              ], {}), x,
              Int(0),
              Int(1)
          ], {})),
         ("Integrate[Sin[x*y], {x, 0, 1}, {y, 0, x}]",
          Integrate([
              Integrate([Sin([Prod([x, y], {})], {}), y,
                         Int(0), x], {}), x,
              Int(0),
              Int(1)
          ], {})),
         ("Limit[e, x->a]", Limit([e], {x: a})),
         ("Limit[Sin[x]/x, x->0]",
          Limit([Prod([Sin([x], {}), Pow([x, Int(-1)], {})], {})],
                {x: Int(0)})),
         ("Limit[(1+x/n)^n, x->Infinity]",
          Limit([
              Pow([
                  Sum([Int(1), Prod([x, Pow([n, Int(-1)], {})], {})], {}), n
              ], {})
          ], {x: infinity})),
         ("Solve[x^2==1, x]",
          Solve([Eq([Pow([x, Int(2)], {}), Int(1)], {}), x], {})),
     ]
     for test in test_list:
         if len(test) == 2:
             expr, res = test
             d = False
         else:
             expr, res, d = test
         self.assertEqual(
             repr(
                 mathematicaParser.parse(expr,
                                         lexer=mathematicaLexer,
                                         debug=d)), repr(res))
Esempio n. 17
0
    def testToSympy(self):
        _x = sympy.symbols('x_')
        f = sympy.symbols('f', cls=sympy.Function)
        test_list = [(Id('a'), sympy.Symbol('a')),
                     (Id('pi'), sympy.Symbol('pi')), (pi, sympy.pi),
                     (Int(1), 1), (Float(4.7), sympy.Rational(47, 10)),
                     (Gcd([Int(12), Int(18)]), 6), (Sum([Int(12),
                                                         Int(18)]), 30),
                     (Sum([Int(12), Int(1), Int(2)]), 15),
                     (Call(Id('f'), [Int(12), Int(18)]), f(12, 18)),
                     (FactorInt([Int(18)]), {
                         2: 1,
                         3: 2
                     }), (Gcd([Sum([Int(18), Int(18)]),
                               Int(18)]), 18), (pi, sympy.pi),
                     (Fun(Id('x'), Id('x')), sympy.Lambda(_x, _x))]

        for (tree, res) in test_list:
            builder = Translator()
            sympy_tree = builder.to_sympy_tree(tree)
            self.assertEqual(sympy_tree, res)
 def testParserWithImplicitBracesOrTimes(self):
     a = Id('a')
     b = Id('b')
     c = Id('c')
     d = Id('d')
     f = Id('f')
     g = Id('g')
     i = Id('i')
     j = Id('j')
     n = Id('n')
     x = Id('x')
     test_list = [
         ("f ( a ) ", "f ( a ) ", Call(f, [a], {})),
         ("( a ) ", "( a ) ", a),
         ("( ( a ) ) ", "( ( a ) ) ", a),
         ("( ( a ) b ) ", "( ( a ) *b ) ", Prod([a, b], {})),
         ("( ( abc ) b a ^ {n} \\% b ! + c ) ",
          "( ( abc ) *b *a ^ { n } \\% b ! + c ) ",
          Sum([
              Mod([
                  Prod([Prod([Id('abc'), b], {}),
                        Pow([a, n], {})], {}),
                  Fact([b], {})
              ], {}), c
          ], {})),
         ("f(x)a", "f ( x ) *a ", Prod([Call(f, [x], {}), a], {})),
         ("g f(n)", "g *f ( n ) ", Prod([g, Call(f, [n], {})], {})),
         ("((f(a)(a+b)a))a(c+d)d",
          "( ( f ( a ) *( a + b ) *a ) ) *a ( c + d ) *d ",
          Prod([
              Prod([
                  Prod([Prod(
                      [Call(f, [a], {}), Sum([a, b], {})], {}), a], {}),
                  Call(a, [Sum([c, d], {})], {})
              ], {}), d
          ], {})),
         ("a 2", "a *2 ", Prod([a, Int(2)], {})),
         ("2 a", "2 *a ", Prod([Int(2), a], {})),
         ("2 4", "2 *4 ", Prod([Int(2), Int(4)], {})),
         ("2x", "2 *x ", Prod([Int(2), x], {})),
         ("x2", "x *2 ", Prod([x, Int(2)], {})),
         ("a-b", "a - b ", Sum([a, Prod([Int(-1), b], {})], {})),
         ("a/-b", "a / - b ",
          Prod([a, Pow(
              [Prod([Int(-1), b], {}), Int(-1)], {})], {})),
         ("-a/+b", "- a / + b ",
          Prod([Prod([Int(-1), a], {}),
                Pow([b, Int(-1)], {})], {})),
         ("a(b+c)", "a ( b + c ) ", Call(a, [Sum([b, c], {})], {})),
         ("42(b+c)", "42 *( b + c ) ",
          Prod([Int(42), Sum([b, c], {})], {})),
         ("1/2\\pi", "1 / 2 *\\pi ",
          Prod([Prod([Int(1), Pow([Int(2), Int(-1)], {})], {}), pi], {})),
         ("\\sum_{i=0}^\\infty i", "\sum _ { i = 0 } ^ { \infty } { i } ",
          Series([i, i, Int(0), infinity], {})),
         ("\\sum\\limits_{j=0}^\\infty j",
          "\sum _ { j = 0 } ^ { \infty } { j } ",
          Series([j, j, Int(0), infinity], {})),
         ("\\sum_{i=0}^\\infty(1/i^2) ",
          "\sum _ { i = 0 } ^ { \infty } ( 1 / i ^ { 2 } ) ",
          Series([
              Prod(
                  [Int(1), Pow(
                      [Pow([i, Int(2)], {}), Int(-1)], {})], {}), i,
              Int(0), infinity
          ], {})),
         ("\\sqrt{a}", "\\sqrt { a } ", Sqrt([a], {})),
         ("\\sqrt[n]{a}", "\\sqrt [ n ] { a } ",
          Pow([a, Pow([n, Int(-1)], {})], {})),
         ("\\sqrt {\\sqrt a}", "\\sqrt { \\sqrt { a } } ",
          Sqrt([Sqrt([a], {})], {})),
     ]
     for e in test_list:
         if len(e) == 4:
             expr, prep, res, d = e
         else:
             expr, prep, res = e
             d = False
         expr_ = preprocess_latex(expr)
         self.assertEqual(expr_, prep)
         self.assertEqual(
             repr(latexParser.parse(expr_, lexer=latexLexer, debug=d)),
             repr(res))
Esempio n. 19
0
 def testSum(self):
     test_list = [
         (Sum([Int(1), Sum([Int(2), Int(3)], {})],
              {}), Sum([Int(1), Int(2), Int(3)], {})),
         (Sum([Int(0), Sum([Int(2), Sum([Int(3), Int(4)], {})], {})],
              {}), Sum([Int(2), Int(3), Int(4)], {})),
         (Sum([
             Int(0),
             Int(6),
             Prod([Int(2),
                   Sum([Int(3), Sum([Int(4), Int(5)], {})], {})], {})
         ], {}),
          Sum([
              Int(6),
              Prod([Int(2), Sum([Int(3), Int(4), Int(5)], {})], {})
          ], {})), (Sum([Id('x')], {}), Id('x'))
     ]
     for (tree, ret) in test_list:
         transformer = Transformer(tree)
         simplifier = SimplifySum()
         transformer.apply(simplifier)
         self.assertEqual(transformer.get_tree(), ret)