Esempio n. 1
0
 def test_no_strings(self):
     conn = dbapi.connect(self._simple_fixture())
     curs = conn.cursor()
     assert_raises_message(
         dbapi.Error,
         "Only Pandas callable functions accepted for execute()",
         curs.execute, "select * from table")
Esempio n. 2
0
    def test_description(self):
        def stmt(trace, namespace, params):
            return namespace["df1"][["col1", "col2", "col3"]]

        conn = dbapi.connect(self._simple_fixture())
        curs = conn.cursor()
        curs.execute(stmt)
        eq_(curs.description, [('col1', None, None, None, None, None, None),
                               ('col2', None, None, None, None, None, None),
                               ('col3', None, None, None, None, None, None)])
Esempio n. 3
0
    def test_dataframe(self):
        def stmt(trace, namespace, params):
            return namespace["df1"][["col1", "col2", "col3"]]

        conn = dbapi.connect(self._simple_fixture())
        curs = conn.cursor()
        curs.execute(stmt)
        eq_(list(curs.dataframe.itertuples(index=False)),
            [(0, 'string: 0', 0.0), (1, 'string: 1', 0.0054729999999999996),
             (2, 'string: 2', 0.010945999999999999),
             (3, 'string: 3', 0.016419),
             (4, 'string: 4', 0.021891999999999998)])
Esempio n. 4
0
    def test_simple_statement(self):
        def stmt(trace, namespace, params):
            return namespace["df1"][["col1", "col2", "col3"]]

        conn = dbapi.connect(self._simple_fixture())
        curs = conn.cursor()
        curs.execute(stmt)
        eq_(curs.fetchall(), [(0, 'string: 0', 0.0),
                              (1, 'string: 1', 0.005473),
                              (2, 'string: 2', 0.010946),
                              (3, 'string: 3', 0.016419),
                              (4, 'string: 4', 0.021892)])
Esempio n. 5
0
    def _numbers_fixture(self):
        numbers = pd.DataFrame(np.array(
            ((0.01, 0.01, 0.02, 0.04, 0.03), (0.00, 0.02, 0.02, 0.03, 0.02),
             (0.01, 0.02, 0.02, 0.03, 0.02), (0.01, 0.00, 0.01, 0.05, 0.03))),
                               columns=['a', 'b', 'c', 'd', 'e'])

        m = MetaData()
        n_t = Table('numbers', m, Column('a', Float), Column('b', Float),
                    Column('c', Float), Column('d', Float), Column('e', Float))

        conn = dbapi.connect({"numbers": numbers})
        return n_t, conn
Esempio n. 6
0
 def _emp_d_fixture(self):
     emp_df = pd.DataFrame([
         {
             "emp_id": 1,
             "name": "ed",
             "fullname": "Ed Jones",
             "dep_id": 1
         },
         {
             "emp_id": 2,
             "name": "wendy",
             "fullname": "Wendy Wharton",
             "dep_id": 1
         },
         {
             "emp_id": 3,
             "name": "jack",
             "fullname": "Jack Smith",
             "dep_id": 2
         },
     ])
     dept_df = pd.DataFrame([
         {
             "dep_id": 1,
             "name": "Engineering"
         },
         {
             "dep_id": 2,
             "name": "Accounting"
         },
         {
             "dep_id": 3,
             "name": "Sales"
         },
     ])
     m = MetaData()
     emp = Table('employee', m, Column('emp_id', Integer, primary_key=True),
                 Column('name', String), Column('fullname', String),
                 Column('dep_id', Integer, ForeignKey('department.dep_id')))
     dep = Table(
         'department',
         m,
         Column('dep_id', Integer, primary_key=True),
         Column('name', String),
     )
     conn = dbapi.connect({"employee": emp_df, "department": dept_df})
     return emp, dep, conn
Esempio n. 7
0
 def _autoinc_fixture(self):
     dept_df = pd.DataFrame([
         {
             "name": "Engineering"
         },
         {
             "name": "Accounting"
         },
         {
             "name": "Sales"
         },
     ])
     m = MetaData()
     dep = Table('department',
                 m,
                 Column('dep_id', Integer, primary_key=True),
                 Column('name', String),
                 pandas_index_pk=True)
     conn = dbapi.connect({"department": dept_df})
     return dep, conn
Esempio n. 8
0
 def _emp_d_fixture(self, pandas_index_pk=False):
     if pandas_index_pk:
         emp_df = pd.DataFrame(columns=["name", "fullname", "dep_id"])
         dept_df = pd.DataFrame(columns=["name"])
     else:
         emp_df = pd.DataFrame(
             columns=["emp_id", "name", "fullname", "dep_id"])
         dept_df = pd.DataFrame(columns=["dep_id", "name"])
     m = MetaData()
     emp = Table('employee',
                 m,
                 Column('emp_id', Integer, primary_key=True),
                 Column('name', String),
                 Column('fullname', String),
                 Column('dep_id', Integer, ForeignKey('department.dep_id')),
                 pandas_index_pk=pandas_index_pk)
     dep = Table('department',
                 m,
                 Column('dep_id', Integer, primary_key=True),
                 Column('name', String),
                 pandas_index_pk=pandas_index_pk)
     conn = dbapi.connect({"employee": emp_df, "department": dept_df})
     return emp, dep, conn
Esempio n. 9
0
 def _conn_fixture(self):
     conn = dbapi.connect(None)
     return conn