Esempio n. 1
0
def render_queue():

    new_dim = (2560, 1440)

    undistort = FisheyeCalibrator()
    undistort.load_calibration_json(
        "../camera_presets\RunCam\DEV_Runcam_5_Orange_4K_30FPS_XV_16by9_stretched.json",
        True)

    N = 64

    start = time.time()

    for i in range(N):
        print(i)
        map1, map2 = undistort.get_maps(1,
                                        output_dim=new_dim,
                                        update_new_K=False,
                                        quat=np.array([1, 0, 0, 0]))

    tot = time.time() - start
    print(f"Single: {tot}s")

    start = time.time()
    n_proc = 4  # mp.cpu_count()
    chunksize = N // n_proc

    indices = [x for x in range(N)]

    proc_chunks = []
    for i_proc in range(n_proc):
        chunkstart = i_proc * chunksize
        # make sure to include the division remainder for the last process
        chunkend = (i_proc + 1) * chunksize if i_proc < n_proc - 1 else None

        proc_chunks.append(indices[chunkstart:chunkend])

    assert sum(map(len, proc_chunks)) == N

    with mp.Pool(processes=n_proc) as pool:
        # starts the sub-processes without blocking
        # pass the chunk to each worker process
        proc_results = [
            pool.apply_async(get_map_placeholder, args=(
                undistort,
                chunk,
            )) for chunk in proc_chunks
        ]
        # blocks until all results are fetched
        result_chunks = [r.get() for r in proc_results]

    tot = time.time() - start
    print(f"Multi: {tot}s")
    print(result_chunks)
Esempio n. 2
0
class BBLStabilizer(Stabilizer):
    def __init__(self, videopath, calibrationfile, bblpath, cam_angle_degrees=0, initial_offset=0):
        # General video stuff
        self.cap = cv2.VideoCapture(videopath)
        self.width = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        self.height = int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        self.fps = self.cap.get(cv2.CAP_PROP_FPS)
        self.num_frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))


        # Camera undistortion stuff
        self.undistort = FisheyeCalibrator()
        self.undistort.load_calibration_json(calibrationfile, True)
        self.map1, self.map2 = self.undistort.get_maps(1.6,new_img_dim=(self.width,self.height))

        # Get gyro data
        self.bbe = BlackboxExtractor("test_clips/GX015563.MP4_emuf_004.bbl")
        self.gyro_data = self.bbe.get_gyro_data(cam_angle_degrees=cam_angle_degrees)

        # This seems to make the orientation match. Implement auto match later
        self.gyro_data[:,[2, 3]] = self.gyro_data[:,[3, 2]]
        self.gyro_data[:,2] = -self.gyro_data[:,2]

        # Other attributes
        initial_orientation = Rotation.from_euler('xyz', [0, 0, 0], degrees=True).as_quat()

        self.integrator = GyroIntegrator(self.gyro_data,initial_orientation=initial_orientation)
        self.integrator.integrate_all()
        self.times = None
        self.stab_transform = None

        self.initial_offset = initial_offset

    
    def stabilization_settings(self, smooth = 0.99):


        v1 = 20 / self.fps
        v2 = 900 / self.fps
        d1 = 0.042
        d2 = -0.396

        err_slope = (d2-d1)/(v2-v1)
        correction_slope = err_slope + 1
        gyro_start = (d1 - err_slope*v1)

        interval = 1/(correction_slope * self.fps)


        print("Start {}".format(gyro_start))

        print("Interval {}, slope {}".format(interval, correction_slope))

        self.times, self.stab_transform = self.integrator.get_interpolated_stab_transform(smooth=0.985,start=2.56+0.07,interval = 1/59.94)
Esempio n. 3
0
class OpticalStabilizer:
    def __init__(self, videopath, calibrationfile):
        # General video stuff
        self.cap = cv2.VideoCapture(videopath)
        self.width = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        self.height = int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        self.fps = self.cap.get(cv2.CAP_PROP_FPS)
        self.num_frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))


        # Camera undistortion stuff
        self.undistort = FisheyeCalibrator()
        self.undistort.load_calibration_json(calibrationfile, True)
        self.map1, self.map2 = self.undistort.get_maps(1.6,new_img_dim=(self.width,self.height))

        # Other attributes
        self.times = None
        self.stab_transform = None

    
    def stabilization_settings(self, smooth = 0.65):

        frame_idx, transforms = self.optical_flow_comparison(0, 902)

        # Match "standard" coordinate system
        #transforms[0] = transforms[0]
        #transforms[1] = transforms[1]

        transforms[:,0] = -transforms[:,0]
        transforms[:,1] = -transforms[:,1]
        transforms[:,2] = transforms[:,2]

        stacked_data = np.hstack([np.atleast_2d(frame_idx).T,transforms])
        

        initial_orientation = Rotation.from_euler('xyz', [0, 0, 0], degrees=True).as_quat()

        self.integrator = FrameRotationIntegrator(stacked_data,initial_orientation=initial_orientation)
        self.integrator.integrate_all()

        self.times, self.stab_transform = self.integrator.get_stabilize_transform(smooth=smooth)


        self.stab_transform_array = np.zeros((self.num_frames, 4))
        self.stab_transform_array[:,0] = 1

        for i in range(len(self.times)):
            self.stab_transform_array[round(self.times[i])] = self.stab_transform[i,:]


        print(self.stab_transform_array)


    def optical_flow_comparison(self, start_frame=0, analyze_length = 50):
        frame_times = []
        frame_idx = []
        transforms = []
        prev_pts_lst = []
        curr_pts_lst = []

        self.cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)

        # Read first frame
        _, prev = self.cap.read()
        prev_gray = cv2.cvtColor(prev, cv2.COLOR_BGR2GRAY)

        for i in range(analyze_length):
            prev_pts = cv2.goodFeaturesToTrack(prev_gray, maxCorners=200, qualityLevel=0.01, minDistance=30, blockSize=3)


            
            frame_id = (int(self.cap.get(cv2.CAP_PROP_POS_FRAMES)))
            frame_time = (self.cap.get(cv2.CAP_PROP_POS_MSEC)/1000)

            succ, curr = self.cap.read()


            if i % 10 == 0:
                print("Analyzing frame: {}/{}".format(i,analyze_length))

            if succ:
                # Only add if succeeded
                frame_idx.append(frame_id)
                frame_times.append(frame_time)

                curr_gray = cv2.cvtColor(curr, cv2.COLOR_BGR2GRAY)
                # Estimate transform using optical flow
                curr_pts, status, err = cv2.calcOpticalFlowPyrLK(prev_gray, curr_gray, prev_pts, None)

                idx = np.where(status==1)[0]
                prev_pts = prev_pts[idx]
                curr_pts = curr_pts[idx]
                assert prev_pts.shape == curr_pts.shape

                prev_pts_lst.append(prev_pts)
                curr_pts_lst.append(curr_pts)


                # TODO: Try getting undistort + homography working for more accurate rotation estimation
                src_pts = self.undistort.undistort_points(prev_pts, new_img_dim=(self.width,self.height))
                dst_pts = self.undistort.undistort_points(curr_pts, new_img_dim=(self.width,self.height))
                H, mask = cv2.findHomography(src_pts, dst_pts)
                retval, rots, trans, norms = self.undistort.decompose_homography(H, new_img_dim=(self.width,self.height))


                # rots contains for solutions for the rotation. Get one with smallest magnitude. Idk
                roteul = None
                smallest_mag = 1000
                for rot in rots:
                    thisrot = Rotation.from_matrix(rots[0]) # first one?
                    
                    if thisrot.magnitude() < smallest_mag and thisrot.magnitude() < 0.3:
                        roteul = Rotation.from_matrix(rot).as_euler("xyz")
                        smallest_mag = thisrot.magnitude()




                m, inliers = cv2.estimateAffine2D(src_pts, dst_pts) 

                dx = m[0,2]
                dy = m[1,2]
                
                # Extract rotation angle
                da = np.arctan2(m[1,0], m[0,0])
                #transforms.append([dx,dy,da]) 
                transforms.append(list(roteul))
                prev_gray = curr_gray

            else:
                print("Frame {}".format(i))
        
        transforms = np.array(transforms)
        return frame_idx, transforms


    def renderfile(self, starttime, stoptime, outpath = "Stabilized.mp4", out_size = (1920,1080)):

        out = cv2.VideoWriter(outpath, -1, 30, (1920*2,1080))
        crop = (int((self.width-out_size[0])/2), int((self.height-out_size[1])/2))

        self.cap.set(cv2.CAP_PROP_POS_FRAMES, int(starttime * self.fps))

        num_frames = int((stoptime - starttime) * self.fps) 

        i = 0
        while(True):
            frame_num = int(self.cap.get(cv2.CAP_PROP_POS_FRAMES))
            
            # Read next frame
            success, frame = self.cap.read() 

            
            print("FRAME: {}, IDX: {}".format(frame_num, i))

            if success:
                i +=1

            if i > num_frames:
                break

            if success and i > 0:

                frame_undistort = cv2.remap(frame, self.map1, self.map2, interpolation=cv2.INTER_LINEAR,
                                              borderMode=cv2.BORDER_CONSTANT)


                frame_out = self.undistort.get_rotation_map(frame_undistort, self.stab_transform_array[frame_num, :])

                # Fix border artifacts
                frame_out = frame_out[crop[1]:crop[1]+out_size[1], crop[0]:crop[0]+out_size[0]]
                frame_undistort = frame_undistort[crop[1]:crop[1]+out_size[1], crop[0]:crop[0]+out_size[0]]


                #out.write(frame_out)
                #print(frame_out.shape)

                # If the image is too big, resize it.
            #%if(frame_out.shape[1] > 1920): 
            #		frame_out = cv2.resize(frame_out, (int(frame_out.shape[1]/2), int(frame_out.shape[0]/2)));
                
                size = np.array(frame_out.shape)
                frame_out = cv2.resize(frame_out, (int(size[1]), int(size[0])))

                frame = cv2.resize(frame_undistort, ((int(size[1]), int(size[0]))))
                concatted = cv2.resize(cv2.hconcat([frame_out,frame],2), (1920*2,1080))
                out.write(concatted)
                cv2.imshow("Before and After", concatted)
                cv2.waitKey(5)

        # When everything done, release the capture
        out.release()

    def release(self):
        self.cap.release()
Esempio n. 4
0
class InstaStabilizer(Stabilizer):
    def __init__(self, videopath, calibrationfile, gyrocsv, fov_scale = 1.6):
        # General video stuff
        self.undistort_fov_scale = fov_scale
        self.cap = cv2.VideoCapture(videopath)
        self.width = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        self.height = int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        self.fps = self.cap.get(cv2.CAP_PROP_FPS)
        self.num_frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))


        # Camera undistortion stuff
        self.undistort = FisheyeCalibrator()
        self.undistort.load_calibration_json(calibrationfile, True)
        self.map1, self.map2 = self.undistort.get_maps(self.undistort_fov_scale,new_img_dim=(self.width,self.height))

        # Get gyro data

        self.gyro_data = self.instaCSVGyro(gyrocsv)
        hero = 6

        # Hero 6??
        if hero == 6:
            self.gyro_data[:,1] = self.gyro_data[:,1]
            self.gyro_data[:,2] = -self.gyro_data[:,2]
            self.gyro_data[:,3] = self.gyro_data[:,3]
        elif hero == 5:
            self.gyro_data[:,1] = -self.gyro_data[:,1]
            self.gyro_data[:,2] = self.gyro_data[:,2]
            self.gyro_data[:,3] = -self.gyro_data[:,3]
            self.gyro_data[:,[2, 3]] = self.gyro_data[:,[3, 2]]

        elif hero == 8:
            # Hero 8??
            self.gyro_data[:,[2, 3]] = self.gyro_data[:,[3, 2]]

        

        #gyro_data[:,1] = gyro_data[:,1]
        #gyro_data[:,2] = -gyro_data[:,2]
        #gyro_data[:,3] = gyro_data[:,3]

        #gyro_data[:,1:] = -gyro_data[:,1:]

        #points_test = np.array([[[0,0],[100,100],[200,300],[400,400]]], dtype = np.float32)
        #result = self.undistort.undistort_points(points_test, new_img_dim=(self.width,self.height))
        #print(result)
        #exit()

        # Other attributes
        initial_orientation = Rotation.from_euler('xyz', [0, 0, 0], degrees=True).as_quat()

        self.integrator = GyroIntegrator(self.gyro_data,zero_out_time=False,initial_orientation=initial_orientation)
        self.integrator.integrate_all()
        self.times = None
        self.stab_transform = None


        self.initial_offset = 0

    def instaCSVGyro(self, csvfile):
        gyrodata = []
        with open(csvfile) as f:
            reader = csv.reader(f, delimiter=",", quotechar='"')
            next(reader, None)
            for row in reader:
                gyro = [float(row[0])] + [float(val) for val in row[2].split(" ")] # Time + gyro
                gyrodata.append(gyro)

        gyrodata = np.array(gyrodata)
        print(gyrodata)
        return gyrodata
    
    def stabilization_settings(self, smooth = 0.95):


        v1 = 20 / self.fps
        v2 = 900 / self.fps
        d1 = 0.042
        d2 = -0.396

        err_slope = (d2-d1)/(v2-v1)
        correction_slope = err_slope + 1
        gyro_start = (d1 - err_slope*v1)

        interval = 1/(correction_slope * self.fps)


        print("Start {}".format(gyro_start))

        print("Interval {}, slope {}".format(interval, correction_slope))

        self.times, self.stab_transform = self.integrator.get_interpolated_stab_transform(smooth=smooth,start=-gyro_start,interval = interval) # 2.2/30 , -1/30
Esempio n. 5
0
class GPMFStabilizer(Stabilizer):
    def __init__(self, videopath, calibrationfile, hero = 8, fov_scale = 1.6):
        # General video stuff
        self.undistort_fov_scale = fov_scale
        self.cap = cv2.VideoCapture(videopath)
        self.width = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        self.height = int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        self.fps = self.cap.get(cv2.CAP_PROP_FPS)
        self.num_frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))


        # Camera undistortion stuff
        self.undistort = FisheyeCalibrator()
        self.undistort.load_calibration_json(calibrationfile, True)
        self.map1, self.map2 = self.undistort.get_maps(self.undistort_fov_scale,new_img_dim=(self.width,self.height))

        # Get gyro data
        self.gpmf = Extractor(videopath)
        self.gyro_data = self.gpmf.get_gyro(True)

        # Hero 6??
        if hero == 6:
            self.gyro_data[:,1] = self.gyro_data[:,1]
            self.gyro_data[:,2] = -self.gyro_data[:,2]
            self.gyro_data[:,3] = self.gyro_data[:,3]
        elif hero == 5:
            self.gyro_data[:,1] = -self.gyro_data[:,1]
            self.gyro_data[:,2] = self.gyro_data[:,2]
            self.gyro_data[:,3] = -self.gyro_data[:,3]
            self.gyro_data[:,[2, 3]] = self.gyro_data[:,[3, 2]]

        elif hero == 8:
            # Hero 8??
            self.gyro_data[:,[2, 3]] = self.gyro_data[:,[3, 2]]

        

        #gyro_data[:,1] = gyro_data[:,1]
        #gyro_data[:,2] = -gyro_data[:,2]
        #gyro_data[:,3] = gyro_data[:,3]

        #gyro_data[:,1:] = -gyro_data[:,1:]

        #points_test = np.array([[[0,0],[100,100],[200,300],[400,400]]], dtype = np.float32)
        #result = self.undistort.undistort_points(points_test, new_img_dim=(self.width,self.height))
        #print(result)
        #exit()

        # Other attributes
        initial_orientation = Rotation.from_euler('xyz', [0, 0, 0], degrees=True).as_quat()

        self.integrator = GyroIntegrator(self.gyro_data,initial_orientation=initial_orientation)
        self.integrator.integrate_all()
        self.times = None
        self.stab_transform = None


        self.initial_offset = 0

    
    def stabilization_settings(self, smooth = 0.95):


        v1 = 20 / self.fps
        v2 = 900 / self.fps
        d1 = 0.042
        d2 = -0.396

        err_slope = (d2-d1)/(v2-v1)
        correction_slope = err_slope + 1
        gyro_start = (d1 - err_slope*v1)

        interval = 1/(correction_slope * self.fps)


        print("Start {}".format(gyro_start))

        print("Interval {}, slope {}".format(interval, correction_slope))

        self.times, self.stab_transform = self.integrator.get_interpolated_stab_transform(smooth=smooth,start=-gyro_start,interval = interval) # 2.2/30 , -1/30
Esempio n. 6
0
        parsed = [
            float(x) for x in line.decode().strip().split(":")[1].split(",")
        ]

        quat = np.array(
            quaternion_multiply(
                [parsed[0], -parsed[1], -parsed[3], -parsed[2]], [1, 0, 0, 0]))
        smoothed_quat = slerp(smoothed_quat, quat, [0.03])[0]

    correction_quat = rot_between(quat, smoothed_quat)

    ret, frame = cap.read()

    tmap1, tmap2 = undistort.get_maps(1,
                                      new_img_dim=(width, height),
                                      output_dim=(1280, 960),
                                      update_new_K=False,
                                      quat=correction_quat)

    # Our operations on the frame come here
    # gray = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    stabbed_frame = cv2.remap(frame,
                              tmap1,
                              tmap2,
                              interpolation=cv2.INTER_LINEAR)

    # Display the resulting frame
    cv2.imshow('frame', stabbed_frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
Esempio n. 7
0
fps = cap.get(cv2.CAP_PROP_FPS)
num_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)

outpath = "newsmooth92-crop.mp4"

out_size = (1920, 1080)

crop_start = (int((width - out_size[0]) / 2), int((height - out_size[1]) / 2))

out = cv2.VideoWriter(outpath, -1, 59.94, out_size)

undistort = FisheyeCalibrator()

undistort.load_calibration_json("camera_presets/gopro_calib2.JSON", True)

map1, map2 = undistort.get_maps(2)

bb = BlackboxExtractor("test_clips/GX015563.MP4_emuf_004.bbl")

gyro_data = bb.get_gyro_data(cam_angle_degrees=-2)

gyro_data[:, [2, 3]] = gyro_data[:, [3, 2]]

gyro_data[:, 2] = -gyro_data[:, 2]

#gyro_data[:,1:] = -gyro_data[:,1:]

initial_orientation = Rotation.from_euler('xyz', [0, 0, 0],
                                          degrees=True).as_quat()

integrator = GyroIntegrator(gyro_data, initial_orientation=initial_orientation)
Esempio n. 8
0
class GPMFStabilizer:
    def __init__(self, videopath, calibrationfile):
        # General video stuff
        self.cap = cv2.VideoCapture(videopath)
        self.width = int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        self.height = int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        self.fps = self.cap.get(cv2.CAP_PROP_FPS)
        self.num_frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))

        # Camera undistortion stuff
        self.undistort = FisheyeCalibrator()
        self.undistort.load_calibration_json(calibrationfile, True)
        self.map1, self.map2 = self.undistort.get_maps(
            1.6, new_img_dim=(self.width, self.height))

        # Get gyro data
        self.gpmf = Extractor(videopath)
        self.gyro_data = self.gpmf.get_gyro(True)

        # Hero 6??
        #self.gyro_data[:,1] = self.gyro_data[:,1]
        #self.gyro_data[:,2] = -self.gyro_data[:,2]
        #self.gyro_data[:,3] = self.gyro_data[:,3]

        # Hero 8??
        self.gyro_data[:, [2, 3]] = self.gyro_data[:, [3, 2]]
        #gyro_data[:,1] = gyro_data[:,1]
        #gyro_data[:,2] = -gyro_data[:,2]
        #gyro_data[:,3] = gyro_data[:,3]

        #gyro_data[:,1:] = -gyro_data[:,1:]

        # Other attributes
        initial_orientation = Rotation.from_euler('xyz', [0, 0, 0],
                                                  degrees=True).as_quat()

        self.integrator = GyroIntegrator(
            self.gyro_data, initial_orientation=initial_orientation)
        self.integrator.integrate_all()
        self.times = None
        self.stab_transform = None

    def stabilization_settings(self, smooth=0.95):

        v1 = 20 / self.fps
        v2 = 900 / self.fps
        d1 = 0.042
        d2 = -0.396

        err_slope = (d2 - d1) / (v2 - v1)
        correction_slope = err_slope + 1
        gyro_start = (d1 - err_slope * v1)

        interval = 1 / (correction_slope * self.fps)

        print("Start {}".format(gyro_start))

        print("Interval {}, slope {}".format(interval, correction_slope))

        self.times, self.stab_transform = self.integrator.get_interpolated_stab_transform(
            smooth=smooth, start=-gyro_start,
            interval=interval)  # 2.2/30 , -1/30

    def auto_sync_stab(self,
                       smooth=0.8,
                       sliceframe1=10,
                       sliceframe2=1000,
                       slicelength=50):
        v1 = (sliceframe1 + slicelength / 2) / self.fps
        v2 = (sliceframe2 + slicelength / 2) / self.fps
        d1, times1, transforms1 = self.optical_flow_comparison(
            sliceframe1, slicelength)
        d2, times2, transforms2 = self.optical_flow_comparison(
            sliceframe2, slicelength)

        print("v1: {}, v2: {}, d1: {}, d2: {}".format(v1, v2, d1, d2))

        err_slope = (d2 - d1) / (v2 - v1)
        correction_slope = err_slope + 1
        gyro_start = (d1 - err_slope * v1) - 0.4 / self.fps

        interval = 1 / (correction_slope * self.fps)

        print("Start {}".format(gyro_start))

        print("Interval {}, slope {}".format(interval, correction_slope))

        plt.plot(times1, transforms1[:, 2])
        plt.plot(times2, transforms2[:, 2])
        plt.plot((self.integrator.get_raw_data("t") + gyro_start) *
                 correction_slope, self.integrator.get_raw_data("z"))
        plt.plot((self.integrator.get_raw_data("t") + d2),
                 self.integrator.get_raw_data("z"))
        plt.plot((self.integrator.get_raw_data("t") + d1),
                 self.integrator.get_raw_data("z"))
        plt.show()

        self.times, self.stab_transform = self.integrator.get_interpolated_stab_transform(
            smooth=smooth, start=-gyro_start,
            interval=interval)  # 2.2/30 , -1/30

    def optical_flow_comparison(self, start_frame=0, analyze_length=50):
        frame_times = []
        frame_idx = []
        transforms = []

        self.cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)

        # Read first frame
        _, prev = self.cap.read()
        prev_gray = cv2.cvtColor(prev, cv2.COLOR_BGR2GRAY)

        for i in range(analyze_length):
            prev_pts = cv2.goodFeaturesToTrack(prev_gray,
                                               maxCorners=200,
                                               qualityLevel=0.01,
                                               minDistance=30,
                                               blockSize=3)

            succ, curr = self.cap.read()

            frame_id = (int(self.cap.get(cv2.CAP_PROP_POS_FRAMES)))
            frame_time = (self.cap.get(cv2.CAP_PROP_POS_MSEC) / 1000)

            if i % 10 == 0:
                print("Analyzing frame: {}/{}".format(i, analyze_length))

            if succ:
                # Only add if succeeded
                frame_idx.append(frame_id)
                frame_times.append(frame_time)
                print(frame_time)

                curr_gray = cv2.cvtColor(curr, cv2.COLOR_BGR2GRAY)
                # Estimate transform using optical flow
                curr_pts, status, err = cv2.calcOpticalFlowPyrLK(
                    prev_gray, curr_gray, prev_pts, None)

                idx = np.where(status == 1)[0]
                prev_pts = prev_pts[idx]
                curr_pts = curr_pts[idx]
                assert prev_pts.shape == curr_pts.shape

                # TODO: Try getting undistort + homography working for more accurate rotation estimation
                #src_pts = undistort.undistort_points(prev_pts, new_img_dim=(int(width),int(height)))
                #dst_pts = undistort.undistort_points(curr_pts, new_img_dim=(int(width),int(height)))
                #H, mask = cv2.findHomography(src_pts, dst_pts)
                #retval, rots, trans, norms = undistort.decompose_homography(H, new_img_dim=(int(width),int(height)))

                m, inliers = cv2.estimateAffine2D(prev_pts, curr_pts)

                dx = m[0, 2]
                dy = m[1, 2]

                # Extract rotation angle
                da = np.arctan2(m[1, 0], m[0, 0])
                transforms.append([dx, dy, da])
                prev_gray = curr_gray

            else:
                print("Frame {}".format(i))

        transforms = np.array(transforms) * self.fps
        estimated_offset = self.estimate_gyro_offset(frame_times, transforms)
        return estimated_offset, frame_times, transforms

        # Test stuff
        v1 = 20 / self.fps
        v2 = 1300 / self.fps
        d1 = 0.042
        d2 = -0.604

        err_slope = (d2 - d1) / (v2 - v1)
        correction_slope = err_slope + 1
        gyro_start = (d1 - err_slope * v1)

        interval = correction_slope * 1 / self.fps

        plt.plot(frame_times, transforms[:, 2])
        plt.plot((self.integrator.get_raw_data("t") + gyro_start) *
                 correction_slope, self.integrator.get_raw_data("z"))
        plt.show()

    def estimate_gyro_offset(self, OF_times, OF_transforms):
        # Estimate offset between small optical flow slice and gyro data

        gyro_times = self.integrator.get_raw_data("t")
        gyro_roll = self.integrator.get_raw_data("z")
        OF_roll = OF_transforms[:, 2]

        costs = []
        offsets = []

        for i in range(800):
            offset = 0.8 - i / 500
            cost = self.gyro_cost_func(OF_times, OF_roll, gyro_times + offset,
                                       gyro_roll)
            offsets.append(offset)
            costs.append(cost)

        final_offset = offsets[np.argmin(costs)]

        print("Estimated offset: {}".format(final_offset))

        plt.plot(offsets, costs)
        plt.show()

        return final_offset

    def gyro_cost_func(self, OF_times, OF_roll, gyro_times, gyro_roll):
        sum_squared_diff = 0
        gyro_idx = 0

        for OF_idx in range(len(OF_times)):
            while gyro_times[gyro_idx] < OF_times[OF_idx]:
                gyro_idx += 1

            diff = gyro_roll[gyro_idx] - OF_roll[OF_idx]
            sum_squared_diff += diff**2
            #print("Gyro {}, OF {}".format(gyro_times[gyro_idx], OF_times[OF_idx]))

        #print("DIFF^2: {}".format(sum_squared_diff))

        #plt.plot(OF_times, OF_roll)
        #plt.plot(gyro_times, gyro_roll)
        #plt.show()
        return sum_squared_diff

    def renderfile(self, outpath="Stabilized.mp4", out_size=(1920, 1080)):

        out = cv2.VideoWriter(outpath, -1, 29.97, (1920 * 2, 1080))
        crop = (int((self.width - out_size[0]) / 2),
                int((self.height - out_size[1]) / 2))

        self.cap.set(cv2.CAP_PROP_POS_FRAMES, 21 * 30)

        i = 0
        while (True):
            # Read next frame
            success, frame = self.cap.read()

            frame_num = int(self.cap.get(cv2.CAP_PROP_POS_FRAMES))
            print("FRAME: {}, IDX: {}".format(frame_num, i))

            if success:
                i += 1

            if i > 1000:
                break

            if success and i > 0:

                frame_undistort = cv2.remap(frame,
                                            self.map1,
                                            self.map2,
                                            interpolation=cv2.INTER_LINEAR,
                                            borderMode=cv2.BORDER_CONSTANT)

                frame_out = self.undistort.get_rotation_map(
                    frame_undistort, self.stab_transform[frame_num - 1])

                # Fix border artifacts
                frame_out = frame_out[crop[1]:crop[1] + out_size[1],
                                      crop[0]:crop[0] + out_size[0]]
                frame_undistort = frame_undistort[crop[1]:crop[1] +
                                                  out_size[1],
                                                  crop[0]:crop[0] +
                                                  out_size[0]]

                #out.write(frame_out)
                #print(frame_out.shape)

                # If the image is too big, resize it.
                #%if(frame_out.shape[1] > 1920):
                #		frame_out = cv2.resize(frame_out, (int(frame_out.shape[1]/2), int(frame_out.shape[0]/2)));

                size = np.array(frame_out.shape)
                frame_out = cv2.resize(frame_out, (int(size[1]), int(size[0])))

                frame = cv2.resize(frame_undistort,
                                   ((int(size[1]), int(size[0]))))
                concatted = cv2.resize(cv2.hconcat([frame_out, frame], 2),
                                       (1920 * 2, 1080))
                out.write(concatted)
                cv2.imshow("Before and After", concatted)
                cv2.waitKey(5)

        # When everything done, release the capture
        out.release()

    def release(self):
        self.cap.release()
Esempio n. 9
0
num_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)

outpath = "hero6testing3.mp4"

out_size = (1920, 1080)

crop_start = (int((width - out_size[0]) / 2), int((height - out_size[1]) / 2))

out = cv2.VideoWriter(outpath, -1, 29.97, (1920 * 2, 1080))

undistort = FisheyeCalibrator()

undistort.load_calibration_json("camera_presets/Hero_7_2.7K_60_4by3_wide.json",
                                True)

map1, map2 = undistort.get_maps(1.6, new_img_dim=(int(width), int(height)))
# Here

gpmf = Extractor("test_clips/GX016017.MP4")

#bb = BlackboxExtractor("test_clips/GX015563.MP4_emuf_004.bbl")

#gyro_data = bb.get_gyro_data()
gyro_data = gpmf.get_gyro(True)

#gyro_data[:,[2, 3]] = gyro_data[:,[3, 2]]
gyro_data[:, 1] = gyro_data[:, 1]
gyro_data[:, 2] = -gyro_data[:, 2]
gyro_data[:, 3] = gyro_data[:, 3]

#gyro_data[:,1:] = -gyro_data[:,1:]
Esempio n. 10
0
def video_speed():
    new_dim = (2560, 1440)

    undistort = FisheyeCalibrator()
    undistort.load_calibration_json(
        "../camera_presets\RunCam\DEV_Runcam_5_Orange_4K_30FPS_XV_16by9_stretched.json",
        True)

    # Create a VideoCapture object and read from input file
    cap = cv2.VideoCapture('../test_clips/Runcam/RC_0036_filtered.MP4')
    #cap = cv2.VideoCapture('C:/Users/elvin/Downloads/IF-RC01_0000.MP4')
    #cap.set(cv2.CAP_PROP_POS_FRAMES, 60 * 10)

    ret, frame_out = cap.read()

    frame_out = (frame_out * 0).astype(np.float64)

    mult = 3
    num_blend = 3

    i = 1

    tstart = time.time()

    # Read until video is completed
    while (cap.isOpened()):

        # Capture frame-by-frame
        ret, frame = cap.read()
        if ret == True:

            # Display the resulting frame

            if True:
                print(i)
                # Some random processing steps
                #prev_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                map1, map2 = undistort.get_maps(1,
                                                output_dim=new_dim,
                                                update_new_K=False,
                                                quat=np.array([1, 0, 0, 0]))
                frame_out = cv2.remap(frame,
                                      map1,
                                      map2,
                                      interpolation=cv2.INTER_LINEAR)
                #cv2.imshow('Frame', frame_out)
                #cv2.waitKey(1)
            else:

                if (i - 1) % mult == 0:
                    # Reset frame at beginning of hyperlapse range
                    print("reset")
                    frame_out = frame_out * 0.0

                if (i - 1) % mult < num_blend:
                    print(f"adding {i}")
                    frame_out += 1 / (num_blend) * frame.astype(np.float64)

                if ((i - 1) - num_blend + 1) % mult == 0:
                    cv2.imshow('Frame', frame_out.astype(np.uint8))

                    cv2.waitKey(5)

            i += 1
            # Press Q on keyboard to  exit
            if 0xFF == ord('q'):
                break

        else:
            break
        if i == 200:
            break

    tstop = time.time()
    dtime = tstop - tstart
    process_fps = 200 / dtime
    print(f"elapsed: {dtime}, fps: {process_fps}")

    cap.release()
    cv2.destroyAllWindows()