Esempio n. 1
0
    def eval(self):
        self.metric.reset()
        print(f"Length of classes: {len(self.classes)}")
        temp_weights = torch.eye(len(self.classes), device = "cuda")
        torch.nn.init.xavier_uniform_(temp_weights, gain=1.0)
        print(temp_weights)
        temp_weights.requires_grad= True
        # temp_weights.requires_grad= True
        temp_bias = torch.zeros(len(self.classes), device = "cuda")
        # torch.nn.init.xavier_uniform_(temp_bias, gain=1.0)
        temp_bias.requires_grad= True
        # temp_weights = torch.rand(len(self.classes), len(self.classes), device="cuda", requires_grad=True)
        # temp_bias = torch.rand(len(self.classes), device="cuda", requires_grad=True)

        logging.info("Start training of temprature weights, Total sample: {:d}".format(len(self.val_loader)))

        cce_criterion = CCELoss(len(self.classes)).to(self.device)
        cross_criterion = torch.nn.CrossEntropyLoss(ignore_index=-1)
        info_entropy_criterion = InfoEntropyLoss()
        optimizer = torch.optim.SGD([temp_weights, temp_bias], lr=self.lr)
        import time
        time_start = time.time()
        num_epochs = 300
        for epoch in range(num_epochs):
            eceEvaluator_perimage = perimageCCE(n_classes = len(self.classes))
            epoch_loss_cce_total = 0
            epoch_loss_cross_entropy_total = 0
            epoch_loss_total = 0
            epoch_loss_info_entropy_total = 0
            for i, (images, targets, filenames) in enumerate(self.val_loader):
                # import pdb; pdb.set_trace()
                optimizer.zero_grad()

                images = images.to(self.device)
                targets = targets.to(self.device)

                # print(image.shape)
                with torch.no_grad():
                    # outputs = model.evaluate(images)

                    # outputs = torch.rand(1,3,300,400)
                    outputs = torch.ones(1,2,300,400)*(torch.Tensor([0.51,0.49]).reshape(1,-1,1,1))
                    # outputs = torch.ones(1,4,300,400)*(torch.Tensor([0.5,0.25,0.15, 0.1]).reshape(1,-1,1,1))
                    outputs = outputs.cuda()
                    outputs[0,0,:, :200] = 0.49
                    outputs[0,1,:, 200:] = 0.51

                    # outputs = torch.ones(1,3,300,400)*(torch.Tensor([0.7,0.2,0.1]).reshape(1,-1,1,1))
                    # # outputs = torch.ones(1,4,300,400)*(torch.Tensor([0.5,0.25,0.15, 0.1]).reshape(1,-1,1,1))
                    # outputs = outputs.cuda()
                    # outputs[0,0,100:200, 50:150] = 0.1
                    # outputs[0,0,100:150, 250:300] = 0.2
                    # outputs[0,1,100:200, 50:150] = 0.7
                    # outputs[0,1,100:150, 250:300] = 0.1
                    # outputs[0,2,100:200, 50:150] = 0.2
                    # outputs[0,2,100:150, 250:300] = 0.7


                    # Converting back to logits
                    outputs = torch.log(outputs)

                outputs = outputs.permute(0, 2, 3, 1).contiguous()
                outputs = torch.matmul(outputs, temp_weights)
                outputs = outputs + temp_bias


                outputs = outputs.permute(0, 3, 1, 2).contiguous()
                
                # Add image stuff
                save_imgs = torch.softmax(outputs, dim =1).squeeze(0)
                # analyse(outputs = save_imgs.unsqueeze(0))
                # accuracy(outputs = outputs)
                for class_no, class_distri in enumerate(save_imgs):
                    plt.clf()
                    class_distri[0][0] = 0
                    class_distri[0][1] = 1

                    im = plt.imshow(class_distri.detach().cpu().numpy(),cmap="Greens")
                    plt.colorbar(im)
                    plt.savefig("temp_files/temp.jpg")
                    plt.clf()
                    import cv2
                    img_dif = cv2.imread("temp_files/temp.jpg")

                    self.writer.add_image(f"Class_{class_no}", img_dif, epoch, dataformats="HWC")

                loss_cce = cce_criterion.forward(outputs, targets)
                loss_cross_entropy = cross_criterion.forward(outputs, targets)
                loss_info_entropy = info_entropy_criterion.forward(outputs)

                alpha = 1
                total_loss = loss_cce + alpha * loss_info_entropy
                # total_loss = loss_cross_entropy

                epoch_loss_info_entropy_total += loss_info_entropy
                epoch_loss_cce_total += loss_cce.item()
                epoch_loss_cross_entropy_total += loss_cross_entropy.item()
                epoch_loss_total += total_loss.item()

                total_loss.backward()
                optimizer.step()
                
                with torch.no_grad():
                    for output, target in zip(outputs,targets.detach()):
                        # older ece requires softmax and size output=[class,w,h] target=[w,h]
                        eceEvaluator_perimage.update(output.softmax(dim=0), target)
                # print(outputs.shape)
                # print(eceEvaluator_perimage.get_overall_CCELoss())
                print(f"batch :{i+1}/{len(self.val_loader)}" + "loss cce : {:.5f} | loss cls : {:.5f} | loss tot : {:.5f}".format(loss_cce, loss_cross_entropy, total_loss))
            
            print(temp_weights)
            print(temp_bias)
            epoch_loss_cce_total /= len(self.val_loader)
            epoch_loss_cross_entropy_total /= len(self.val_loader)
            epoch_loss_total /= len(self.val_loader)
            
            count_table_image, _ = eceEvaluator_perimage.get_count_table_img(self.classes)
            cce_table_image, dif_map= eceEvaluator_perimage.get_perc_table_img(self.classes)
            self.writer.add_image("CCE_table", cce_table_image, epoch, dataformats="HWC")
            self.writer.add_image("Count table", count_table_image, epoch, dataformats="HWC")
            self.writer.add_image("DifMap", dif_map, epoch, dataformats="HWC")
            
            self.writer.add_scalar(f"Cross EntropyLoss_LR", epoch_loss_cross_entropy_total, epoch)
            self.writer.add_scalar(f"Info EntropyLoss_LR", epoch_loss_info_entropy_total, epoch)
            self.writer.add_scalar(f"CCELoss_LR", epoch_loss_cce_total, epoch)
            self.writer.add_scalar(f"Total Loss_LR", epoch_loss_total, epoch)
            self.writer.add_histogram("Weights", temp_weights, epoch)
            self.writer.add_histogram("Bias", temp_bias, epoch)
            # output = output/temp_weights
            # print(output.shape)
            # print(temp_weights, temp_bias)

            if epoch > 0 and epoch % 10 == 0:
                print("saving weights.")
                np.save("weights/toy/wt_{}_{}.npy".format(epoch, self.prefix), temp_weights.cpu().detach().numpy())
                np.save("weights/toy/b{}_{}.npy".format(epoch, self.prefix), temp_bias.cpu().detach().numpy())


            # print("epoch {} : loss {:.5f}".format(epoch, epoch_loss))
            # import pdb; pdb.set_trace()
        
        self.writer.close()
Esempio n. 2
0
from calibration_library.metrics import CCELoss as perimageCCE
from calibration_library.cce_loss import CCELoss

a = CCELoss(19, 10)
b = perimageCCE(19, 10)

import torch
img = torch.rand(4, 19, 769, 769).cuda()
target = torch.randint(0, 20, (4, 769, 769)).cuda()
a.forward(img, target)

with torch.no_grad():
    for output, target in zip(img, target.detach()):
        #older ece requires softmax and size output=[class,w,h] target=[w,h]
        b.update(output.softmax(dim=0), target)

b.get_overall_CCELoss()

img = torch.rand(4, 19, 769, 769).cuda()
target = torch.randint(0, 20, (4, 769, 769)).cuda()
a.forward(img, target)

with torch.no_grad():
    for output, target in zip(img, target.detach()):
        #older ece requires softmax and size output=[class,w,h] target=[w,h]
        b.update(output.softmax(dim=0), target)

(b.get_overall_CCELoss())

a.get_overall_CCELoss()
Esempio n. 3
0
    def eval(self):
        self.metric.reset()
        self.model.eval()
        model = self.model

        temp_weights = torch.eye(len(self.classes), device="cuda")
        temp_weights /= 1.5
        # temp_weights.requires_grad= True
        # temp_weights.requires_grad= True
        temp_bias = torch.zeros(len(self.classes),
                                device="cuda",
                                requires_grad=False)
        # temp_weights = torch.rand(len(self.classes), len(self.classes), device="cuda", requires_grad=True)
        # temp_bias = torch.rand(len(self.classes), device="cuda", requires_grad=True)

        logging.info(
            "Start training of temprature weights, Total sample: {:d}".format(
                len(self.val_loader)))

        cce_criterion = CCELoss(len(self.classes)).to(self.device)
        cross_criterion = torch.nn.CrossEntropyLoss(ignore_index=-1)
        # optimizer = torch.optim.SGD([temp_weights, temp_bias], lr=self.lr)
        import time
        time_start = time.time()
        num_epochs = 1

        for epoch in range(num_epochs):
            eceEvaluator_perimage = perimageCCE(n_classes=len(self.classes))
            epoch_loss_cce_total = 0
            epoch_loss_cross_entropy_total = 0
            epoch_loss_total = 0
            for i, (images, targets, filenames) in enumerate(self.val_loader):
                # import pdb; pdb.set_trace()
                # optimizer.zero_grad()

                images = images.to(self.device)
                targets = targets.to(self.device)

                # print(image.shape)
                with torch.no_grad():
                    outputs = model.evaluate(images)

                outputs = outputs.permute(0, 2, 3, 1).contiguous()
                outputs = torch.matmul(outputs, temp_weights)
                outputs = outputs + temp_bias

                outputs = outputs.permute(0, 3, 1, 2).contiguous()

                loss_cce = cce_criterion.forward(outputs, targets)
                loss_cross_entropy = cross_criterion.forward(outputs, targets)

                total_loss = loss_cce + loss_cross_entropy

                epoch_loss_cce_total += loss_cce.item()
                epoch_loss_cross_entropy_total += loss_cross_entropy.item()
                epoch_loss_total += total_loss.item()

                # total_loss.backward()
                # optimizer.step()

                with torch.no_grad():
                    for output, target in zip(outputs, targets.detach()):
                        #older ece requires softmax and size output=[class,w,h] target=[w,h]
                        eceEvaluator_perimage.update(output.softmax(dim=0),
                                                     target)
                # print(outputs.shape)
                # print(eceEvaluator_perimage.get_overall_CCELoss())
                print(
                    f"batch :{i+1}/{len(self.val_loader)}" +
                    "loss cce : {:.5f} | loss cls : {:.5f} | loss tot : {:.5f}"
                    .format(loss_cce, loss_cross_entropy, total_loss))

            print(temp_weights)
            print(temp_bias)
            epoch_loss_cce_total /= len(self.val_loader)
            epoch_loss_cross_entropy_total /= len(self.val_loader)
            epoch_loss_total /= len(self.val_loader)

            cce_table_image, dif_map = eceEvaluator_perimage.get_perc_table_img(
                self.classes)
            self.writer.add_image("CCE_table",
                                  cce_table_image,
                                  epoch,
                                  dataformats="HWC")
            self.writer.add_image("DifMap", dif_map, epoch, dataformats="HWC")

            self.writer.add_scalar(f"Cross EntropyLoss_LR",
                                   epoch_loss_cross_entropy_total, epoch)
            self.writer.add_scalar(f"CCELoss_LR", epoch_loss_cce_total, epoch)
            self.writer.add_scalar(f"Total Loss_LR", epoch_loss_total, epoch)
            self.writer.add_histogram("Weights", temp_weights, epoch)
            self.writer.add_histogram("Bias", temp_bias, epoch)
            # output = output/temp_weights
            # print(output.shape)
            # print(temp_weights, temp_bias)

            if epoch > 0 and epoch % 10 == 0:
                print("saving weights.")
                np.save(
                    "weights/foggy_cityscapes/wt_{}_{}.npy".format(
                        epoch, self.prefix),
                    temp_weights.cpu().detach().numpy())
                np.save(
                    "weights/foggy_cityscapes/b{}_{}.npy".format(
                        epoch, self.prefix),
                    temp_bias.cpu().detach().numpy())

            # print("epoch {} : loss {:.5f}".format(epoch, epoch_loss))
            # import pdb; pdb.set_trace()

        self.writer.close()
Esempio n. 4
0
    def eval(self):
        self.metric.reset()
        self.model.eval()
        model = self.model

        temp_weights = torch.eye(len(self.classes), device = "cuda")
        torch.nn.init.xavier_uniform_(temp_weights, gain=1.0)
        temp_weights.requires_grad= True
        # temp_weights.requires_grad= True
        temp_bias = torch.zeros(len(self.classes), device = "cuda")
        # torch.nn.init.xavier_uniform_(temp_bias, gain=1.0)
        temp_bias.requires_grad= True
        # temp_weights = torch.rand(len(self.classes), len(self.classes), device="cuda", requires_grad=True)
        # temp_bias = torch.rand(len(self.classes), device="cuda", requires_grad=True)

        logging.info("Start training of temprature weights, Total sample: {:d}".format(len(self.val_loader)))

        cce_criterion = CCELoss(len(self.classes)).to(self.device)
        cross_criterion = torch.nn.CrossEntropyLoss(ignore_index=-1)
        info_entropy_criterion = InfoEntropyLoss()
        optimizer = torch.optim.SGD(self.transformation_network.parameters(), lr=self.lr)

        import time
        time_start = time.time()
        num_epochs = 200
        for epoch in range(num_epochs):
            eceEvaluator_perimage = perimageCCE(n_classes = len(self.classes))
            epoch_loss_cce_total = 0
            epoch_loss_cross_entropy_total = 0
            epoch_loss_total = 0
            epoch_loss_info_entropy = 0

            for i, (images, targets, filenames) in enumerate(self.val_loader):
                # import pdb; pdb.set_trace()
                optimizer.zero_grad()

                images = images.to(self.device)
                targets = targets.to(self.device)



                # print(image.shape)
                with torch.no_grad():
                    outputs = model.evaluate(images)

                outputs = self.transformation_network(outputs)
                # print(outputs.shape)

                
                # Image saving and stuff
                save_imgs = torch.softmax(outputs, dim =1).squeeze(0)
                for class_no, class_distri in enumerate(save_imgs):
                    plt.clf()
                    class_distri[0][0] = 0
                    class_distri[0][1] = 1

                    im = plt.imshow(class_distri.detach().cpu().numpy(),cmap="Greens")
                    plt.colorbar(im)
                    plt.savefig("temp_files/temp.jpg")
                    plt.clf()
                    import cv2
                    img_dif = cv2.imread("temp_files/temp.jpg")

                    self.writer.add_image(f"Class_{self.classes[class_no]}", img_dif, epoch, dataformats="HWC")
                
                loss_cce = cce_criterion.forward(outputs, targets)
                loss_cross_entropy = cross_criterion.forward(outputs, targets)
                loss_info_entropy = info_entropy_criterion.forward(outputs)


                alpha = 1
                # total_loss = loss_cce + alpha * loss_info_entropy
                total_loss = loss_cce

                epoch_loss_info_entropy += loss_info_entropy
                epoch_loss_cce_total += loss_cce.item()
                epoch_loss_cross_entropy_total += loss_cross_entropy.item()
                epoch_loss_total += total_loss.item()

                total_loss.backward()
                optimizer.step()
                
                with torch.no_grad():
                    for output, target in zip(outputs,targets.detach()):
                        #older ece requires softmax and size output=[class,w,h] target=[w,h]
                        eceEvaluator_perimage.update(output.softmax(dim=0), target)
                # print(outputs.shape)
                # print(eceEvaluator_perimage.get_overall_CCELoss())
                print(f"batch :{i+1}/{len(self.val_loader)}" + "loss cce : {:.5f} | loss cls : {:.5f} | loss tot : {:.5f}".format(loss_cce, loss_cross_entropy, total_loss))
            
            epoch_loss_cce_total /= len(self.val_loader)
            epoch_loss_cross_entropy_total /= len(self.val_loader)
            epoch_loss_total /= len(self.val_loader)
            epoch_loss_cross_entropy_total /= len(self.val_loader)
            
            count_table_image, _ = eceEvaluator_perimage.get_count_table_img(self.classes)
            cce_table_image, dif_map= eceEvaluator_perimage.get_perc_table_img(self.classes)
            self.writer.add_image("CCE_table", cce_table_image, epoch, dataformats="HWC")
            self.writer.add_image("Count table", count_table_image, epoch, dataformats="HWC")
            self.writer.add_image("DifMap", dif_map, epoch, dataformats="HWC")
            
            self.writer.add_scalar(f"Cross EntropyLoss_LR", epoch_loss_cross_entropy_total, epoch)
            self.writer.add_scalar(f"CCELoss_LR", epoch_loss_cce_total, epoch)
            self.writer.add_scalar(f"Info EntropyLoss_LR", epoch_loss_info_entropy, epoch)

            self.writer.add_scalar(f"Total Loss_LR", epoch_loss_total, epoch)
            self.writer.add_histogram("Weights", temp_weights, epoch)
            self.writer.add_histogram("Bias", temp_bias, epoch)
            # output = output/temp_weights
            # print(output.shape)
            # print(temp_weights, temp_bias)

            if epoch > 0 and epoch % 10 == 0:
                print("saving weights.")
                np.save("weights/foggy_cityscapes/wt_{}_{}.npy".format(epoch, self.prefix), temp_weights.cpu().detach().numpy())
                np.save("weights/foggy_cityscapes/b{}_{}.npy".format(epoch, self.prefix), temp_bias.cpu().detach().numpy())


            # print("epoch {} : loss {:.5f}".format(epoch, epoch_loss))
            # import pdb; pdb.set_trace()
        
        self.writer.close()
Esempio n. 5
0
    def validation(self, val_loader, writer, temp = 1):
        self.metric.reset()
        self.ece_evaluator.reset()
        self.cce_evaluator.reset()
        eceEvaluator_perimage = perimageCCE(n_classes = len(self.classes))

        if self.args.distributed:
            model = self.model.module
        else:
            model = self.model
        torch.cuda.empty_cache()
        model.eval()

        for i, (image, target, filename) in enumerate(val_loader):
            image = image.to(self.device)
            target = target.to(self.device)


            with torch.no_grad():
                if cfg.DATASET.MODE == 'val' or cfg.TEST.CROP_SIZE is None:
                    output = model(image)[0]
                else:
                    size = image.size()[2:]
                    pad_height = cfg.TEST.CROP_SIZE[0] - size[0]
                    pad_width = cfg.TEST.CROP_SIZE[1] - size[1]
                    image = F.pad(image, (0, pad_height, 0, pad_width))
                    output = model(image)[0]
                    output = output[..., :size[0], :size[1]]

            # output is [1, 19, 1024, 2048] logits
            # target is [1, 1024, 2048]

            output /= temp
            self.metric.update(output, target)

            if (i==0):
                import cv2
                image_read = cv2.imread(filename[0])
                writer.add_image("Image[0] Read", image_read, temp*10, dataformats="HWC")

                save_imgs = torch.softmax(output, dim =1)[0]
                for class_no, class_distri in enumerate(save_imgs):
                    plt.clf()
                    class_distri[0][0] = 0
                    class_distri[0][1] = 1

                    im = plt.imshow(class_distri.detach().cpu().numpy(),cmap="Greens")
                    plt.colorbar(im)
                    plt.savefig("temp_files/temp.jpg")
                    plt.clf()
                    import cv2
                    img_dif = cv2.imread("temp_files/temp.jpg")

                    writer.add_image(f"Class_{self.classes[class_no]}", img_dif, temp*10, dataformats="HWC")
            
            with torch.no_grad():
                self.ece_evaluator.forward(output,target)
                self.cce_evaluator.forward(output,target)
                # for output, target in zip(output,target.detach()):
                #     #older ece requires softmax and size output=[class,w,h] target=[w,h]
                #     eceEvaluator_perimage.update(output.softmax(dim=0), target)                

            pixAcc, mIoU = self.metric.get()
            logging.info("[EVAL] Sample: {:d}, pixAcc: {:.3f}, mIoU: {:.3f}".format(i + 1, pixAcc * 100, mIoU * 100))
        
        pixAcc, mIoU = self.metric.get()
        logging.info("[EVAL END] temp: {:f}, pixAcc: {:.3f}, mIoU: {:.3f}".format(temp, pixAcc * 100, mIoU * 100))
        writer.add_scalar("Temp [EVAL END] pixAcc", pixAcc * 100, temp*10 )
        writer.add_scalar("Temp [EVAL END] mIoU", mIoU * 100, temp*10 )

        # count_table_image, _ = eceEvaluator_perimage.get_count_table_img(self.classes)
        # cce_table_image, dif_map = eceEvaluator_perimage.get_perc_table_img(self.classes)

        ece_count_table_image, _ = self.ece_evaluator.get_count_table_img(self.classes)
        ece_table_image, ece_dif_map = self.ece_evaluator.get_perc_table_img(self.classes)
        
        cce_count_table_image, _ = self.cce_evaluator.get_count_table_img(self.classes)
        cce_table_image, cce_dif_map = self.cce_evaluator.get_perc_table_img(self.classes)
        
        # writer.add_image("Temp CCE_table", cce_table_image, temp, dataformats="HWC")
        # writer.add_image("Temp CCE Count table", count_table_image, temp, dataformats="HWC")
        # writer.add_image("Temp CCE DifMap", dif_map, temp, dataformats="HWC")
        # writer.add_scalar("Temp CCE Score", eceEvaluator_perimage.get_overall_CCELoss(), temp)

        writer.add_image("Temp ece_table", ece_table_image, temp*10, dataformats="HWC")
        writer.add_image("Temp ece Count table", ece_count_table_image, temp*10, dataformats="HWC")
        writer.add_image("Temp ece DifMap", ece_dif_map, temp*10, dataformats="HWC")
        writer.add_scalar("Temp ece Score", self.ece_evaluator.get_overall_ECELoss(), temp*10)

        writer.add_image("Temp cce_table", cce_table_image, temp*10, dataformats="HWC")
        writer.add_image("Temp cce Count table", cce_count_table_image, temp*10, dataformats="HWC")
        writer.add_image("Temp cce DifMap", cce_dif_map, temp*10, dataformats="HWC")
        writer.add_scalar("Temp cce Score", self.cce_evaluator.get_overall_CCELoss(), temp*10)
        synchronize()