Esempio n. 1
0
 def test_pfba(self):
     fba_solution = fba(self.model)
     fba_flux_sum = sum((abs(val) for val in list(fba_solution.fluxes.values())))
     pfba_solution = pfba(self.model)
     pfba_flux_sum = sum((abs(val) for val in list(pfba_solution.fluxes.values())))
     # looks like GLPK finds a parsimonious solution without the flux minimization objective
     self.assertTrue((pfba_flux_sum - fba_flux_sum) < 1e-6,
                     msg="FBA sum is suppose to be lower than PFBA (was %f)" % (pfba_flux_sum - fba_flux_sum))
Esempio n. 2
0
 def test_pfba_iJO(self):
     fba_solution = fba(iJO_MODEL)
     fba_flux_sum = sum((abs(val) for val in list(fba_solution.fluxes.values())))
     pfba_solution = pfba(iJO_MODEL)
     pfba_flux_sum = sum((abs(val) for val in list(pfba_solution.fluxes.values())))
     print(pfba_flux_sum)
     self.assertTrue((pfba_flux_sum - fba_flux_sum) < 1e-6,
                     msg="FBA sum is suppose to be lower than PFBA (was %f)" % (pfba_flux_sum - fba_flux_sum))
Esempio n. 3
0
 def test_fba_with_reaction_filter(self, core_model):
     original_objective = core_model.objective
     solution = fba(
         core_model,
         reactions=['EX_o2_LPAREN_e_RPAREN_', 'EX_glc_LPAREN_e_RPAREN_'])
     assert abs(solution.objective_value - 0.873921) < 0.000001
     assert len(solution.fluxes) == 2
     assert core_model.objective is original_objective
Esempio n. 4
0
 def test_pfba_ijo1366(self, ijo1366):
     original_objective = ijo1366.objective
     fba_solution = fba(ijo1366)
     fba_flux_sum = sum((abs(val) for val in fba_solution.fluxes.values))
     pfba_solution = pfba(ijo1366)
     pfba_flux_sum = sum((abs(val) for val in pfba_solution.fluxes.values))
     assert (pfba_flux_sum - fba_flux_sum) < 1e-6, \
         "FBA sum is suppose to be lower than PFBA (was %f)" % (pfba_flux_sum - fba_flux_sum)
     assert ijo1366.objective.expression == original_objective.expression
Esempio n. 5
0
 def test_pfba_ijo1366(self, ijo1366):
     original_objective = ijo1366.objective
     fba_solution = fba(ijo1366)
     fba_flux_sum = sum((abs(val) for val in fba_solution.fluxes.values))
     pfba_solution = pfba(ijo1366)
     pfba_flux_sum = sum((abs(val) for val in pfba_solution.fluxes.values))
     assert (pfba_flux_sum - fba_flux_sum) < 1e-6, \
         "FBA sum is suppose to be lower than PFBA (was %f)" % (pfba_flux_sum - fba_flux_sum)
     assert ijo1366.objective.expression == original_objective.expression
Esempio n. 6
0
 def test_pfba_iJO(self):
     original_objective = self.model.objective
     fba_solution = fba(iJO_MODEL)
     fba_flux_sum = sum((abs(val) for val in fba_solution.fluxes.values()))
     pfba_solution = pfba(iJO_MODEL)
     pfba_flux_sum = sum((abs(val) for val in pfba_solution.fluxes.values()))
     self.assertTrue((pfba_flux_sum - fba_flux_sum) < 1e-6,
                     msg="FBA sum is suppose to be lower than PFBA (was %f)" % (pfba_flux_sum - fba_flux_sum))
     self.assertIs(self.model.objective, original_objective)
Esempio n. 7
0
 def test_pfba_iJO(self):
     original_objective = self.model.objective
     fba_solution = fba(iJO_MODEL)
     fba_flux_sum = sum((abs(val) for val in fba_solution.fluxes.values()))
     pfba_solution = pfba(iJO_MODEL)
     pfba_flux_sum = sum((abs(val) for val in pfba_solution.fluxes.values()))
     self.assertTrue((pfba_flux_sum - fba_flux_sum) < 1e-6,
                     msg="FBA sum is suppose to be lower than PFBA (was %f)" % (pfba_flux_sum - fba_flux_sum))
     self.assertIs(self.model.objective, original_objective)
Esempio n. 8
0
 def test_pfba(self):
     original_objective = self.model.objective
     fba_solution = fba(self.model)
     fba_flux_sum = sum((abs(val) for val in list(fba_solution.fluxes.values())))
     pfba_solution = pfba(self.model)
     pfba_flux_sum = sum((abs(val) for val in list(pfba_solution.fluxes.values())))
     # looks like GLPK finds a parsimonious solution without the flux minimization objective
     self.assertTrue((pfba_flux_sum - fba_flux_sum) < 1e-6,
                     msg="FBA sum is suppose to be lower than PFBA (was %f)" % (pfba_flux_sum - fba_flux_sum))
     self.assertIs(self.model.objective, original_objective)
Esempio n. 9
0
 def test_pfba(self, core_model):
     original_objective = core_model.objective
     fba_solution = fba(core_model)
     fba_flux_sum = sum((abs(val) for val in list(fba_solution.fluxes.values)))
     pfba_solution = pfba(core_model)
     pfba_flux_sum = sum((abs(val) for val in list(pfba_solution.fluxes.values)))
     # looks like GLPK finds a parsimonious solution without the flux minimization objective
     assert (pfba_flux_sum - fba_flux_sum) < 1e-6, \
         "FBA sum is suppose to be lower than PFBA (was %f)" % (pfba_flux_sum - fba_flux_sum)
     assert core_model.objective.expression == original_objective.expression
Esempio n. 10
0
 def test_pfba(self, core_model):
     original_objective = core_model.objective
     fba_solution = fba(core_model)
     fba_flux_sum = sum((abs(val) for val in list(fba_solution.fluxes.values)))
     pfba_solution = pfba(core_model)
     pfba_flux_sum = sum((abs(val) for val in list(pfba_solution.fluxes.values)))
     # looks like GLPK finds a parsimonious solution without the flux minimization objective
     assert (pfba_flux_sum - fba_flux_sum) < 1e-6, \
         "FBA sum is suppose to be lower than PFBA (was %f)" % (pfba_flux_sum - fba_flux_sum)
     assert core_model.objective.expression == original_objective.expression
Esempio n. 11
0
 def test_pfba_iJO(self):
     fba_solution = fba(iJO_MODEL)
     fba_flux_sum = sum(
         (abs(val) for val in list(fba_solution.fluxes.values())))
     pfba_solution = pfba(iJO_MODEL)
     pfba_flux_sum = sum(
         (abs(val) for val in list(pfba_solution.fluxes.values())))
     print(pfba_flux_sum)
     self.assertTrue(
         (pfba_flux_sum - fba_flux_sum) < 1e-6,
         msg="FBA sum is suppose to be lower than PFBA (was %f)" %
         (pfba_flux_sum - fba_flux_sum))
Esempio n. 12
0
 def test_fba(self):
     solution = fba(self.model)
     original_objective = self.model.objective
     self.assertAlmostEqual(solution.objective_value, 0.873921, delta=0.000001)
     self.assertEqual(len(solution.fluxes), len(self.model.reactions))
     self.assertIs(self.model.objective, original_objective)
Esempio n. 13
0
 def test_fba(self, core_model):
     solution = fba(core_model)
     original_objective = core_model.objective
     assert abs(solution.objective_value - 0.873921) < 0.000001
     assert len(solution.fluxes) == len(core_model.reactions)
     assert core_model.objective.expression == original_objective.expression
Esempio n. 14
0
 def test_fba_with_reaction_filter(self):
     original_objective = self.model.objective
     solution = fba(self.model, reactions=['EX_o2_LPAREN_e_RPAREN_', 'EX_glc_LPAREN_e_RPAREN_'])
     self.assertAlmostEqual(solution.objective_value, 0.873921, delta=0.000001)
     self.assertEqual(len(solution.fluxes), 2)
     self.assertIs(self.model.objective, original_objective)
Esempio n. 15
0
 def test_fba(self):
     solution = fba(self.model)
     self.assertAlmostEqual(solution.objective_value,
                            0.873921,
                            delta=0.000001)
Esempio n. 16
0
 def test_fba(self):
     solution = fba(self.model)
     self.assertAlmostEqual(solution.objective_value, 0.873921, delta=0.000001)
Esempio n. 17
0
 def display_on_map(self, index=0, map_name=None, palette="YlGnBu"):
     with TimeMachine() as tm:
         for ko in self.data_frame.loc[index, "reactions"]:
             self._model.reactions.get_by_id(ko).knock_out(tm)
         fluxes = fba(self._model)
         fluxes.display_on_map(map_name=map_name, palette=palette)
Esempio n. 18
0
 def display_on_map(self, index=0, map_name=None, palette="YlGnBu"):
     with self._model:
         for ko in self.data_frame.loc[index, "reactions"]:
             self._model.reactions.get_by_id(ko).knock_out()
         fluxes = fba(self._model)
         fluxes.display_on_map(map_name=map_name, palette=palette)
Esempio n. 19
0
    def run(self,
            target=None,
            max_enforced_flux=0.9,
            number_of_results=10,
            exclude=(),
            simulation_method=fba,
            simulation_kwargs=None):
        """
        Performs a Flux Scanning based on Enforced Objective Flux (FSEOF) analysis.

        Parameters
        ----------
        target: str, Reaction, Metabolite
            The target for optimization.
        max_enforced_flux : float, optional
            The maximal flux of secondary_objective that will be enforced, relative to the theoretical maximum (
            defaults to 0.9).
        number_of_results : int, optional
            The number of enforced flux levels (defaults to 10).
        exclude : Iterable of reactions or reaction ids that will not be included in the output.

        Returns
        -------
        FseofResult
            An object containing the identified reactions and the used parameters.

        References
        ----------
        .. [1] H. S. Choi, S. Y. Lee, T. Y. Kim, and H. M. Woo, 'In silico identification of gene amplification targets
        for improvement of lycopene production.,' Appl Environ Microbiol, vol. 76, no. 10, pp. 3097–3105, May 2010.

        """
        model = self.model
        target = get_reaction_for(model, target)

        simulation_kwargs = simulation_kwargs if simulation_kwargs is not None else {}
        simulation_kwargs['objective'] = self.primary_objective

        if 'reference' not in simulation_kwargs:
            reference = simulation_kwargs['reference'] = pfba(
                model, **simulation_kwargs)
        else:
            reference = simulation_kwargs['reference']

        ndecimals = config.ndecimals

        # Exclude list
        exclude = list(exclude) + model.exchanges
        exclude_ids = [target.id]
        for reaction in exclude:
            if isinstance(reaction, Reaction):
                exclude_ids.append(reaction.id)
            else:
                exclude_ids.append(reaction)

        with TimeMachine() as tm:

            tm(do=int,
               undo=partial(setattr, model, "objective", model.objective))
            tm(do=int,
               undo=partial(setattr, target, "lower_bound",
                            target.lower_bound))
            tm(do=int,
               undo=partial(setattr, target, "upper_bound",
                            target.upper_bound))

            # Find initial flux of enforced reaction
            initial_fluxes = reference.fluxes
            initial_flux = round(initial_fluxes[target.id], ndecimals)

            # Find theoretical maximum of enforced reaction
            max_theoretical_flux = round(
                fba(model, objective=target.id,
                    reactions=[target.id]).fluxes[target.id], ndecimals)

            max_flux = max_theoretical_flux * max_enforced_flux

            # Calculate enforcement levels
            levels = [
                initial_flux + (i + 1) *
                (max_flux - initial_flux) / number_of_results
                for i in range(number_of_results)
            ]

            # FSEOF results
            results = {reaction.id: [] for reaction in model.reactions}

            for level in levels:
                target.lower_bound = level
                target.upper_bound = level
                solution = simulation_method(model, **simulation_kwargs)
                for reaction_id, flux in solution.fluxes.iteritems():
                    results[reaction_id].append(round(flux, ndecimals))

        # Test each reaction
        fseof_reactions = []
        for reaction_id, fluxes in results.items():
            if reaction_id not in exclude_ids \
                    and max(abs(max(fluxes)), abs(min(fluxes))) > abs(reference[reaction_id]) \
                    and min(fluxes) * max(fluxes) >= 0:
                fseof_reactions.append(model.reactions.get_by_id(reaction_id))

        results = {rea.id: results[rea.id] for rea in fseof_reactions}
        run_args = dict(max_enforced_flux=max_enforced_flux,
                        number_of_results=number_of_results,
                        solution_method=simulation_method,
                        simulation_kwargs=simulation_kwargs,
                        exclude=exclude)

        return FSEOFResult(fseof_reactions, target, model,
                           self.primary_objective, levels, results, run_args,
                           reference)
Esempio n. 20
0
 def test_fba(self):
     solution = fba(self.model)
     original_objective = self.model.objective
     self.assertAlmostEqual(solution.objective_value, 0.873921, delta=0.000001)
     self.assertEqual(len(solution.fluxes), len(self.model.reactions))
     self.assertIs(self.model.objective, original_objective)
Esempio n. 21
0
 def test_fba(self, core_model):
     solution = fba(core_model)
     original_objective = core_model.objective
     assert abs(solution.objective_value - 0.873921) < 0.000001
     assert len(solution.fluxes) == len(core_model.reactions)
     assert core_model.objective.expression == original_objective.expression
Esempio n. 22
0
 def test_fba_with_reaction_filter(self, core_model):
     original_objective = core_model.objective
     solution = fba(core_model, reactions=['EX_o2_LPAREN_e_RPAREN_', 'EX_glc_LPAREN_e_RPAREN_'])
     assert abs(solution.objective_value - 0.873921) < 0.000001
     assert len(solution.fluxes) == 2
     assert core_model.objective.expression == original_objective.expression
Esempio n. 23
0
    def run(self, target=None, max_enforced_flux=0.9, number_of_results=10, exclude=(), simulation_method=fba,
            simulation_kwargs=None):
        """
        Performs a Flux Scanning based on Enforced Objective Flux (FSEOF) analysis.

        Parameters
        ----------
        target: str, Reaction, Metabolite
            The target for optimization.
        max_enforced_flux : float, optional
            The maximal flux of secondary_objective that will be enforced, relative to the theoretical maximum (
            defaults to 0.9).
        number_of_results : int, optional
            The number of enforced flux levels (defaults to 10).
        exclude : Iterable of reactions or reaction ids that will not be included in the output.

        Returns
        -------
        FseofResult
            An object containing the identified reactions and the used parameters.

        References
        ----------
        .. [1] H. S. Choi, S. Y. Lee, T. Y. Kim, and H. M. Woo, 'In silico identification of gene amplification targets
        for improvement of lycopene production.,' Appl Environ Microbiol, vol. 76, no. 10, pp. 3097–3105, May 2010.

        """
        model = self.model
        target = get_reaction_for(model, target)

        simulation_kwargs = simulation_kwargs if simulation_kwargs is not None else {}
        simulation_kwargs['objective'] = self.primary_objective

        if 'reference' not in simulation_kwargs:
            reference = simulation_kwargs['reference'] = pfba(model, **simulation_kwargs)
        else:
            reference = simulation_kwargs['reference']

        ndecimals = config.ndecimals

        # Exclude list
        exclude = list(exclude) + model.boundary
        exclude_ids = [target.id]
        for reaction in exclude:
            if isinstance(reaction, Reaction):
                exclude_ids.append(reaction.id)
            else:
                exclude_ids.append(reaction)

        with TimeMachine() as tm:

            tm(do=int, undo=partial(setattr, model, "objective", model.objective))
            tm(do=int, undo=partial(setattr, target, "lower_bound", target.lower_bound))
            tm(do=int, undo=partial(setattr, target, "upper_bound", target.upper_bound))

            # Find initial flux of enforced reaction
            initial_fluxes = reference.fluxes
            initial_flux = round(initial_fluxes[target.id], ndecimals)

            # Find theoretical maximum of enforced reaction
            max_theoretical_flux = round(fba(model, objective=target.id, reactions=[target.id]).fluxes[target.id],
                                         ndecimals)

            max_flux = max_theoretical_flux * max_enforced_flux

            # Calculate enforcement levels
            levels = [initial_flux + (i + 1) * (max_flux - initial_flux) / number_of_results for i in
                      range(number_of_results)]

            # FSEOF results
            results = {reaction.id: [] for reaction in model.reactions}

            for level in levels:
                target.lower_bound = level
                target.upper_bound = level
                solution = simulation_method(model, **simulation_kwargs)
                for reaction_id, flux in solution.fluxes.iteritems():
                    results[reaction_id].append(round(flux, ndecimals))

        # Test each reaction
        fseof_reactions = []
        for reaction_id, fluxes in results.items():
            if reaction_id not in exclude_ids \
                    and max(abs(max(fluxes)), abs(min(fluxes))) > abs(reference[reaction_id]) \
                    and min(fluxes) * max(fluxes) >= 0:
                fseof_reactions.append(model.reactions.get_by_id(reaction_id))

        results = {rea.id: results[rea.id] for rea in fseof_reactions}
        run_args = dict(max_enforced_flux=max_enforced_flux,
                        number_of_results=number_of_results,
                        solution_method=simulation_method,
                        simulation_kwargs=simulation_kwargs,
                        exclude=exclude)

        return FSEOFResult(fseof_reactions, target, model, self.primary_objective, levels, results, run_args, reference)
Esempio n. 24
0
 def test_fba_with_reaction_filter(self):
     original_objective = self.model.objective
     solution = fba(self.model, reactions=['EX_o2_LPAREN_e_RPAREN_', 'EX_glc_LPAREN_e_RPAREN_'])
     self.assertAlmostEqual(solution.objective_value, 0.873921, delta=0.000001)
     self.assertEqual(len(solution.fluxes), 2)
     self.assertIs(self.model.objective, original_objective)