def AtRoot(AtTair10): if cf.test.force.COB: co.del_dataset('Expr', 'AtRoot', safe=False) if not co.available_datasets('Expr', 'AtRoot'): Root = ['GSE14578', 'GSE46205', 'GSE7631', 'GSE10576', 'GSE42007', 'GSE34130', 'GSE21611', 'GSE22966', 'GSE7641', 'GSE5620', 'GSE8934', 'GSE5628', 'GSE30095', 'GSE30097', 'GSE5624', 'GSE5626', 'GSE5749', 'GSE5621', 'GSE5622', 'GSE5623', 'GSE5625', 'GSE5688'] RootFam = sum( [co.Family.from_file( os.path.join( cf.options.testdir, 'raw', 'GSE', '{}_family.soft.gz'.format(x) ) ) for x in Root ] ) #RootFam.to_keepfile("RootKeep.tsv", keep_hint='root') return co.COB.from_DataFrame( RootFam.series_matrix( keepfile=os.path.join( cf.options.testdir, 'raw', 'GSE', 'RootKeep.tsv') ), 'AtRoot', 'Arab Root', AtTair10, rawtype='MICROARRAY', quantile=True ) else: return co.COB('AtRoot')
def AtRoot(AtTair10): if cf.test.force.COB: co.del_dataset('Expr', 'AtRoot', force=True) if not co.available_datasets('Expr', 'AtRoot'): Root = [ 'GSE14578', 'GSE46205', 'GSE7631', 'GSE10576', 'GSE42007', 'GSE34130', 'GSE21611', 'GSE22966', 'GSE7641', 'GSE5620', 'GSE8934', 'GSE5628', 'GSE30095', 'GSE30097', 'GSE5624', 'GSE5626', 'GSE5749', 'GSE5621', 'GSE5622', 'GSE5623', 'GSE5625', 'GSE5688' ] RootFam = sum([ co.Family.from_file( os.path.join(cf.options.testdir, 'raw', 'GSE', '{}_family.soft.gz'.format(x))) for x in Root ]) #RootFam.to_keepfile("RootKeep.tsv", keep_hint='root') return co.COB.from_DataFrame( RootFam.series_matrix(keepfile=os.path.join( cf.options.testdir, 'raw', 'GSE', 'RootKeep.tsv')), 'AtRoot', 'Arab Root', AtTair10, rawtype='MICROARRAY', quantile=True) else: return co.COB('AtRoot')
def AtRoot(self): co.del_dataset('Expr','AtRoot',safe=False) Root = ['GSE14578','GSE46205','GSE7631','GSE10576','GSE42007', 'GSE34130','GSE21611','GSE22966','GSE7641','GSE5620', 'GSE8934','GSE5628','GSE30095','GSE30097','GSE5624', 'GSE5626','GSE5749','GSE5621','GSE5622', 'GSE5623','GSE5625','GSE5688'] RootFam = sum( [co.Family.from_file( os.path.join( cf['options']['testdir'], 'raw','GSE','{}_family.soft'.format(x) ) ) for x in Root ] ) #RootFam.to_keepfile("RootKeep.tsv",keep_hint='root') AtRoot = co.COB.from_DataFrame( RootFam.series_matrix( keepfile=pjoin(self.rawdir,'GSE','RootKeep.tsv') ), 'AtRoot','Arab Root', co.RefGen('T10'), rawtype='MICROARRAY' ) self.assertIsInstance(AtRoot,co.COB)
def test_fromDataFrame(testRefGen): ''' Test GWAS creation from DataFrame ''' co.del_dataset('GWAS','testGWAS',force=True) df = pd.DataFrame({ 'Trait' : ['a','a','b','b'], 'CHR' : ['chr1','chr2','chr3','chr4'], 'POS' : [100,200,300,400], 'Start' : [100,200,300,400], 'End' : [1000,20000,3000,4000], 'id' : ['snp1','snp2','snp3','snp4'], 'pval' : [0.05,0.05,0.01,0.01] }) gwas = co.GWAS.from_DataFrame( df, 'testGWAS', 'Test GWAS Dataset', testRefGen, chr_col='CHR', pos_col='POS', id_col='id', term_col='Trait' ) assert len(gwas) == 2
def AtGen(AtTair10): if cf.test.force.COB: co.del_dataset('Expr', 'AtGen', safe=False) if not co.available_datasets('Expr', 'AtGen'): General = ['GSE18975', 'GSE39384', 'GSE19271', 'GSE5632', 'GSE39385', 'GSE5630', 'GSE15617', 'GSE5617', 'GSE5686', 'GSE2473', 'GSE5633', 'GSE5620', 'GSE5628', 'GSE5624', 'GSE5626', 'GSE5621', 'GSE5622', 'GSE5623', 'GSE5625', 'GSE5688'] GenFam = sum( [co.Family.from_file( os.path.join( cf.options.testdir, 'raw', 'GSE', '{}_family.soft.gz'.format(x) ) ) for x in General ] ) #GenFam.to_keepfile("GenKeep.tsv") return co.COB.from_DataFrame( GenFam.series_matrix( keepfile=os.path.join( cf.options.testdir, 'raw', 'GSE', 'GenKeep.tsv' ) ), 'AtGen', 'Arab General', AtTair10, rawtype='MICROARRAY', quantile=True ) else: return co.COB('AtGen')
def AtGen(AtTair10): if cf.test.force.COB: co.del_dataset('Expr', 'AtGen', force=True) if not co.available_datasets('Expr', 'AtGen'): General = [ 'GSE18975', 'GSE39384', 'GSE19271', 'GSE5632', 'GSE39385', 'GSE5630', 'GSE15617', 'GSE5617', 'GSE5686', 'GSE2473', 'GSE5633', 'GSE5620', 'GSE5628', 'GSE5624', 'GSE5626', 'GSE5621', 'GSE5622', 'GSE5623', 'GSE5625', 'GSE5688' ] GenFam = sum([ co.Family.from_file( os.path.join(cf.options.testdir, 'raw', 'GSE', '{}_family.soft.gz'.format(x))) for x in General ]) #GenFam.to_keepfile("GenKeep.tsv") return co.COB.from_DataFrame( GenFam.series_matrix(keepfile=os.path.join( cf.options.testdir, 'raw', 'GSE', 'GenKeep.tsv')), 'AtGen', 'Arab General', AtTair10, rawtype='MICROARRAY', quantile=True) else: return co.COB('AtGen')
def ZmIonome(Zm5bFGS): # Delete the old dataset if cf.test.force.Ontology: co.del_dataset('GWAS', 'ZmIonome', force=True) if not co.available_datasets('GWAS', 'ZmIonome'): # Grab path the csv csv = os.path.join( cf.options.testdir, 'raw', 'GWAS', 'Ionome', 'sigGWASsnpsCombinedIterations.longhorn.allLoc.csv.gz') # Define our reference geneome df = pd.DataFrame.from_csv(csv, index_col=None) # Import class from dataframe IONS = co.GWAS.from_DataFrame(df, 'ZmIonome', 'Maize Ionome', Zm5bFGS, term_col='el', chr_col='chr', pos_col='pos') # Get rid of pesky Cobalt IONS.del_term('Co59') # I guess we need a test in here too return IONS else: return co.GWAS('ZmIonome')
def AtSeed(AtTair10): if cf.test.force.COB: co.del_dataset('Expr', 'AtSeed', safe=False) if not co.available_datasets('Expr', 'AtSeed'): Seed = ['GSE12404', #'GSE30223', 'GSE1051', 'GSE11852', 'GSE5634'] SeedFam = sum( [co.Family.from_file( os.path.join( cf.options.testdir, 'raw', 'GSE', '{}_family.soft.gz'.format(x) ) ) for x in Seed ] ) #SeedFam.to_keepfile("SeedKeep.tsv", keep_hint='seed') return co.COB.from_DataFrame( SeedFam.series_matrix( keepfile=os.path.join( cf.options.testdir, 'raw', 'GSE', 'SeedKeep.tsv' ) ), 'AtSeed', 'Arabidopsis Seed', AtTair10, rawtype='MICROARRAY', quantile=True ) else: return co.COB('AtSeed')
def AtSeed(AtTair10): if cf.test.force.COB: co.del_dataset('Expr', 'AtSeed', force=True) if not co.available_datasets('Expr', 'AtSeed'): Seed = [ 'GSE12404', #'GSE30223', 'GSE1051', 'GSE11852', 'GSE5634' ] SeedFam = sum([ co.Family.from_file( os.path.join(cf.options.testdir, 'raw', 'GSE', '{}_family.soft.gz'.format(x))) for x in Seed ]) #SeedFam.to_keepfile("SeedKeep.tsv", keep_hint='seed') return co.COB.from_DataFrame( SeedFam.series_matrix(keepfile=os.path.join( cf.options.testdir, 'raw', 'GSE', 'SeedKeep.tsv')), 'AtSeed', 'Arabidopsis Seed', AtTair10, rawtype='MICROARRAY', quantile=True) else: return co.COB('AtSeed')
def AtLeaf(AtTair10): if cf.test.force.COB: co.del_dataset('Expr', 'AtLeaf', safe=False) if not co.available_datasets('Expr', 'AtLeaf'): Leaf = ['GSE14578', 'GSE5630', 'GSE13739', #'GSE26199', 'GSE5686', 'GSE5615', 'GSE5620', 'GSE5628', 'GSE5624', 'GSE5626', 'GSE5621', 'GSE5622', 'GSE5623', 'GSE5625', 'GSE5688'] LeafFam = sum( [co.Family.from_file( os.path.join( cf.options.testdir, 'raw', 'GSE', '{}_family.soft.gz'.format(x) ) ) for x in Leaf ] ) #LeafFam.to_keepfile("LeafKeep.tsv", keep_hint="lea") return co.COB.from_DataFrame( LeafFam.series_matrix( keepfile=os.path.join( cf.options.testdir, 'raw', 'GSE', 'LeafKeep.tsv' ) ), 'AtLeaf', 'Arabidopsis Leaf', AtTair10, rawtype='MICROARRAY', max_gene_missing_data=0.3, min_expr=0.01, quantile=True, ) else: return co.COB('AtLeaf')
def AtLeaf(self): co.del_dataset('Expr','AtLeaf',safe=False) Leaf = ['GSE14578','GSE5630','GSE13739', #'GSE26199', 'GSE5686','GSE5615','GSE5620','GSE5628', 'GSE5624','GSE5626','GSE5621','GSE5622', 'GSE5623','GSE5625','GSE5688'] LeafFam = sum( [co.Family.from_file( pjoin( self.rawdir,'GSE','{}_family.soft'.format(x) ) ) for x in Leaf ] ) # Generate the LeafKeep file #LeafFam.to_keepfile("LeafKeep.tsv",keep_hint="lea") AtLeaf = co.COB.from_DataFrame( LeafFam.series_matrix( keepfile=pjoin(self.rawdir,'GSE','LeafKeep.tsv') ), 'AtLeaf','Arabidopsis Leaf', co.RefGen('T10'),rawtype='MICROARRAY', max_gene_missing_data=0.3, min_expr=0.01, quantile=False, ) self.assertIsInstance(AtLeaf,co.COB)
def ZmRNASeqTissueAtlas(Zm5bFGS): if cf.test.force.COB: co.del_dataset('COB', 'ZmRNASeqTissueAtlas', safe=False) co.del_dataset('Expr', 'ZmRNASeqTissueAtlas', safe=False) if not co.available_datasets('Expr', 'ZmRNASeqTissueAtlas'): # Build it return co.COB.from_table( os.path.join(cf.options.testdir, 'raw', 'Expr', 'RNASEQ', 'MaizeRNASeqTissue.tsv.bz2', ), 'ZmRNASeqTissueAtlas', 'Maize RNASeq Tissue Atlas Network, Sekhon 2013, PLoS ONE', Zm5bFGS, rawtype='RNASEQ', max_gene_missing_data=0.3, max_accession_missing_data=0.08, min_single_sample_expr=1, min_expr=0.001, quantile=False, max_val=300, dry_run=True ) else: return co.COB('ZmRNASeqTissueAtlas')
def ZmRNASeqTissueAtlas(Zm5bFGS): if cf.test.force.COB: print('Rebuilding ZmRNASeqTissueAtlas') co.del_dataset('COB', 'ZmRNASeqTissueAtlas', force=True) co.del_dataset('Expr', 'ZmRNASeqTissueAtlas', force=True) if not co.available_datasets('Expr', 'ZmRNASeqTissueAtlas'): # Build it return co.COB.from_table( os.path.join( cf.options.testdir, 'raw', 'Expr', 'RNASEQ', 'MaizeRNASeqTissue.tsv.bz2', ), 'ZmRNASeqTissueAtlas', 'Maize RNASeq Tissue Atlas Network, Sekhon 2013, PLoS ONE', Zm5bFGS, rawtype='RNASEQ', max_gene_missing_data=0.3, max_accession_missing_data=0.08, min_single_sample_expr=1, min_expr=0.001, quantile=False, max_val=300, dry_run=True) else: return co.COB('ZmRNASeqTissueAtlas')
def ZmIonome(Zm5bFGS): # Delete the old dataset if cf.test.force.Ontology: co.del_dataset('GWAS','ZmIonome',safe=False) if not co.available_datasets('GWAS','ZmIonome'): # Grab path the csv csv = os.path.join( cf.options.testdir, 'raw','GWAS','Ionome', 'sigGWASsnpsCombinedIterations.longhorn.allLoc.csv.gz' ) # Define our reference geneome df = pd.DataFrame.from_csv(csv,index_col=None) # Import class from dataframe IONS = co.GWAS.from_DataFrame( df,'ZmIonome','Maize Ionome', Zm5bFGS, term_col='el',chr_col='chr',pos_col='pos' ) # Get rid of pesky Cobalt IONS.del_term('Co59') # I guess we need a test in here too return IONS else: return co.GWAS('ZmIonome')
def AtRootHydroIonome(AtTair10): if cf.test.force.Ontology: co.del_dataset('GWAS','AtRootHydroIonome',safe=False) if not co.available_datasets('GWAS', 'AtRootHydroIonome'): # glob glob is god csvs = glob.glob(os.path.join( cf.options.testdir, 'raw','GWAS','AtIonome', 'AtRootHydroIonome','*.csv.gz' )) # Read in each table individually then concat for GIANT table df = pd.concat([pd.read_table(x,sep=' ') for x in csvs]) # Only keep significant pvals df = df.loc[df.pval <= cf.options.alpha,:] # Kill groups of SNPs that have identical (beta,pval)s df = df.groupby(['beta','pval']).filter(lambda x: len(x) < 5) # Add 'Chr' to chromosome column df.CHR = df.CHR.apply(lambda x: 'Chr'+str(x)) # Chase dat refgen # Import class from dataframe return co.GWAS.from_DataFrame( df,'AtRootHydroIonome','Arabidopsis second pass 1.6M', AtTair10, term_col='Trait', chr_col='CHR', pos_col='POS' ) else: return co.GWAS('AtRootHydroIonome')
def AtLeafHydroIonome(AtTair10): if cf.test.force.Ontology: co.del_dataset('GWAS', 'AtLeafHydroIonome', force=True) if not co.available_datasets('GWAS', 'AtLeafHydroIonome'): # glob glob is god csvs = glob.glob( os.path.join(cf.options.testdir, 'raw', 'GWAS', 'AtIonome', 'AtLeafHydroIonome', '*.csv.gz')) # Read in each table individually then concat for GIANT table df = pd.concat([pd.read_table(x, sep=' ') for x in csvs]) df = df.loc[df.pval <= cf.options.alpha, :] # Kill groups of SNPs that have identical (beta,pval)s df = df.groupby(['beta', 'pval']).filter(lambda x: len(x) < 5) # Add 'Chr' to chromosome column df.CHR = df.CHR.apply(lambda x: 'Chr' + str(x)) # Import class from dataframe return co.GWAS.from_DataFrame(df, 'AtLeafHydroIonome', 'Arabidopsis second pass 1.6M', AtTair10, term_col='Trait', chr_col='CHR', pos_col='POS') else: return co.GWAS('AtLeafHydroIonome')
def Tair10(self): gff = os.path.join( cf['options']['testdir'], 'raw','TAIR10_GFF3_genes.gff' ) co.del_dataset('RefGen','T10',safe=False) T10 = co.RefGen.from_gff(gff,'T10','Tair 10','10','Arabidopsis') self.assertIsInstance(T10,co.RefGen)
def test_filtered_refgen(testRefGen): co.del_dataset("RefGen", "test_filtered_refgen", safe=False) random_genes = set(testRefGen.random_genes(n=500)) test_filtered_refgen = testRefGen.filtered_refgen( "test_filtered_refgen", "test. please ignore", testRefGen, random_genes ) assert len(test_filtered_refgen) == len(random_genes) for x in random_genes: assert x in test_filtered_refgen co.del_dataset("RefGen", "test_filtered_refgen", safe=False)
def Zm5bFGS(self): gff = os.path.join( cf['options']['testdir'], 'raw','ZmB73_5b_FGS.gff' ) co.del_dataset('RefGen','Zm5bFGS',safe=False) ZM = co.RefGen.from_gff( gff,'Zm5bFGS','Maize 5b Filtered Gene Set','5b','Zea Mays' ) self.assertIsInstance(ZM,co.RefGen)
def ZmGO(Zm5bFGS): if cf.test.force.Ontology: co.del_dataset('GOnt', 'ZmGO', force=True) if not co.available_datasets('GOnt', 'ZmGO'): obo = os.path.join(cf.options.testdir, 'raw', 'GOnt', 'go.obo.bz2') gene_map_file = os.path.join(cf.options.testdir, 'raw', 'GOnt', 'zm_go.tsv.bz2') return co.GOnt.from_obo(obo, gene_map_file, 'ZmGO', 'Maize Gene Ontology', Zm5bFGS) else: return co.GOnt('ZmGO')
def TestGO(Zm5bFGS): if cf.test.force.Ontology: co.del_dataset('GOnt', 'TestGO', force=True) if not co.available_datasets('GOnt', 'TestGO'): obo = os.path.join(cf.options.testdir, 'raw', 'GOnt', 'go.test.obo') gene_map_file = os.path.join(cf.options.testdir, 'raw', 'GOnt', 'go.test.tsv') return co.GOnt.from_obo(obo, gene_map_file, 'TestGO', 'Test GO', Zm5bFGS) else: return co.GOnt('TestGO')
def AtTair10(): if cf.test.force.RefGen: co.del_dataset('RefGen', 'AtTair10', force=True) if not co.available_datasets('RefGen', 'AtTair10'): gff = os.path.expanduser( os.path.join(cf.options.testdir, 'raw', 'RefGen', 'TAIR10_GFF3_genes.gff.gz')) return co.RefGen.from_gff(gff, 'AtTair10', 'Tair 10', '10', 'Arabidopsis') else: return co.RefGen('AtTair10')
def test_filtered_refgen(testRefGen): co.del_dataset('RefGen','test_filtered_refgen',force=True) random_genes = set(testRefGen.random_genes(n=500)) test_filtered_refgen = testRefGen.filtered_refgen( 'test_filtered_refgen', 'test. please ignore', testRefGen, random_genes ) assert len(test_filtered_refgen) == len(random_genes) for x in random_genes: assert x in test_filtered_refgen co.del_dataset('RefGen','test_filtered_refgen',force=True)
def Zm5bFGS(): if cf.test.force.RefGen: co.del_dataset('RefGen', 'Zm5bFGS', force=True) if not co.available_datasets('RefGen', 'Zm5bFGS'): # We have to build it gff = os.path.expanduser( os.path.join(cf.options.testdir, 'raw', 'RefGen', 'ZmB73_5b_FGS.gff.gz')) # This is stupid and necessary because pytables wont let me open # more than one table co.RefGen.from_gff(gff, 'Zm5bFGS', 'Maize 5b Filtered Gene Set', '5b', 'Zea Mays') return co.RefGen('Zm5bFGS')
def ZmRoot(self): co.del_dataset('Expr','ZmRoot',safe=False) ZM = co.RefGen('Zm5bFGS') ZmRoot = co.COB.from_table( os.path.join(cf.get('options','testdir'),'raw','Expression','ROOTFPKM.tsv'), 'ZmRoot', 'Maize Root Network', ZM, rawtype='RNASEQ', max_gene_missing_data=0.4, min_expr=0.1, dry_run=False, max_val=300 )
def AtTair10(): if cf.test.force.RefGen: co.del_dataset('RefGen', 'AtTair10', safe=False) if not co.available_datasets('RefGen', 'AtTair10'): gff = os.path.expanduser( os.path.join( cf.options.testdir, 'raw', 'RefGen', 'TAIR10_GFF3_genes.gff.gz' ) ) return co.RefGen.from_gff( gff, 'AtTair10', 'Tair 10', '10', 'Arabidopsis' ) else: return co.RefGen('AtTair10')
def AtGO(AtTair10): if cf.test.force.Ontology: co.del_dataset('GOnt', 'AtGO', force=True) if not co.available_datasets('GOnt', 'AtGO'): obo = os.path.join(cf.options.testdir, 'raw', 'GOnt', 'go.obo.bz2') gene_map_file = os.path.join(cf.options.testdir, 'raw', 'GOnt', 'ath_go.tsv.bz2') return co.GOnt.from_obo(obo, gene_map_file, 'AtGO', 'Arabidopsis Gene Ontology', AtTair10, id_col=0, go_col=5) else: return co.GOnt('AtGO')
def build_gont(args): refgen = co.RefGen(args.refgen) # Check to see if this dataset is already built if co.available_datasets('GOnt', args.name): print('Warning! This dataset has already been built.') co.del_dataset('GOnt', args.name, force=args.force) go = co.GOnt.from_obo(args.obo_filename, args.filename, args.name, args.description, refgen, go_col=args.go_col, id_col=args.id_col) print("Done: {}".format(go.summary())) print('Build Successful')
def build_cob(args): # Build the refgen refgen = co.RefGen(args.refgen) # Check that the sep is likely right. if len(pd.read_table(args.filename, sep=args.sep).columns) == 1: print( ("Detected only 1 column in {}, are you sure " "colunms are separated by '{}'?").format(args.filename, args.sep)) return None if args.allow_non_membership: refgen = refgen.copy('{}_tmp'.format(refgen.name), 'temp refgen'.format(refgen.name)) # Add non membership genes for gid in pd.read_table(args.filename, sep=args.sep).index: refgen.add_gene(Gene(None, None, id=gid)) quality_control = False if args.skip_quality_control else True normalize = False if args.skip_normalization else True # Check to see if this dataset is already built if co.available_datasets('Expr', args.name): print('Warning! This dataset has already been built.') co.del_dataset('Expr', args.name, safe=args.force) # Basically just pass all the CLI arguments to the COB class method cob = co.COB.from_table( args.filename, args.name, args.description, refgen, # Optional arguments sep=args.sep, rawtype=args.rawtype, # Data Processing quality_control=quality_control, normalization=normalize, quantile=args.quantile, # Data processing parameters max_gene_missing_data=args.max_gene_missing_data, max_accession_missing_data=args.max_accession_missing_data, min_single_sample_expr=args.min_single_sample_expr, min_expr=args.min_expr, max_val=args.max_val, dry_run=args.dry_run, index_col=args.index_col) print("Build successful!") print(cob.summary())
def Zm5bFGS(): if cf.test.force.RefGen: co.del_dataset('RefGen', 'Zm5bFGS', safe=False) if not co.available_datasets('RefGen', 'Zm5bFGS'): # We have to build it gff = os.path.expanduser( os.path.join( cf.options.testdir, 'raw', 'RefGen', 'ZmB73_5b_FGS.gff.gz' ) ) # This is stupid and necessary because pytables wont let me open # more than one table return co.RefGen.from_gff( gff, 'Zm5bFGS', 'Maize 5b Filtered Gene Set', '5b', 'Zea Mays' ) return co.RefGen('Zm5bFGS')
def ZmSAM(self): co.del_dataset('Expr','ZmSAM',safe=False) ZM = co.RefGen('Zm5bFGS') ZmSAM = co.COB.from_table( os.path.join( cf.get('options','testdir'),'raw','Expression', 'TranscriptomeProfiling_B73_Atlas_SAM_FGS_LiLin_20140316.txt' ), 'ZmSAM', 'Maize Root Network', ZM, rawtype='RNASEQ', max_gene_missing_data=0.4, min_expr=0.1, dry_run=False, max_val=300 )
def ZmRoot(self): co.del_dataset('Expr','ZmRoot',safe=False) ZM = co.RefGen('Zm5bFGS') ZmRoot = co.COB.from_table( os.path.join(cf.get('options','testdir'),'raw','Expression', 'RNASEQ','ROOTFPKM.tsv'), 'ZmRoot', 'Maize Root Network', ZM, rawtype='RNASEQ', max_gene_missing_data=0.3, max_accession_missing_data=0.08, min_single_sample_expr=1, min_expr=0.001, quantile=False, max_val=300 ) self.assertIsInstance(ZmRoot,co.COB)
def ZmGO(Zm5bFGS): if cf.test.force.Ontology: co.del_dataset('GOnt','ZmGO',safe=False) if not co.available_datasets('GOnt','ZmGO'): obo = os.path.join( cf.options.testdir, 'raw','GOnt','go.obo.bz2' ) gene_map_file = os.path.join( cf.options.testdir, 'raw','GOnt','zm_go.tsv.bz2' ) return co.GOnt.from_obo( obo, gene_map_file, 'ZmGO', 'Maize Gene Ontology', Zm5bFGS ) else: return co.GOnt('ZmGO')
def ZmSAM(Zm5bFGS): if cf.test.force.COB: co.del_dataset('Expr', 'ZmSAM', force=True) if not co.available_datasets('Expr', 'ZmSAM'): return co.COB.from_table(os.path.join( cf.options.testdir, 'raw', 'Expr', 'RNASEQ', 'TranscriptomeProfiling_B73_Atlas_SAM_FGS_LiLin_20140316.txt.gz'), 'ZmSAM', 'Maize Root Network', Zm5bFGS, rawtype='RNASEQ', max_gene_missing_data=0.4, min_expr=0.1, quantile=False, dry_run=False, max_val=250) else: return co.COB('ZmSAM')
def ZmRoot(Zm5bFGS): if cf.test.force.COB: co.del_dataset('Expr', 'ZmRoot', force=True) if not co.available_datasets('Expr', 'ZmRoot'): return co.COB.from_table(os.path.join(cf.options.testdir, 'raw', 'Expr', 'RNASEQ', 'ROOTFPKM.tsv.gz'), 'ZmRoot', 'Maize Root Network', Zm5bFGS, rawtype='RNASEQ', max_gene_missing_data=0.3, max_accession_missing_data=0.08, min_single_sample_expr=1, min_expr=0.001, quantile=False, max_val=300) else: return co.COB('ZmRoot')
def AtGO(AtTair10): if cf.test.force.Ontology: co.del_dataset('GOnt','AtGO',safe=False) if not co.available_datasets('GOnt','AtGO'): obo = os.path.join( cf.options.testdir, 'raw','GOnt','go.obo.bz2' ) gene_map_file = os.path.join( cf.options.testdir, 'raw','GOnt','ath_go.tsv.bz2' ) return co.GOnt.from_obo( obo, gene_map_file, 'AtGO', 'Arabidopsis Gene Ontology', AtTair10, id_col=0, go_col=5 ) else: return co.GOnt('AtGO')
def ZmPAN(Zm5bFGS): if cf.test.force.COB: co.del_dataset('Expr', 'ZmPAN', force=True) if not co.available_datasets('Expr', 'ZmPAN'): return co.COB.from_table(os.path.join(cf.options.testdir, 'raw', 'Expr', 'RNASEQ', 'PANGenomeFPKM.txt.gz'), 'ZmPAN', 'Maize Root Network', Zm5bFGS, rawtype='RNASEQ', max_gene_missing_data=0.4, min_expr=1, quantile=False, dry_run=False, sep=',', max_val=300) else: return co.COB('ZmPAN')
def ZmIonome(self): # Delete the old dataset co.del_dataset('Ontology','ZmIonome',safe=False) # Grab path the csv csv = os.path.join( cf.get('options','testdir'), 'raw','GWAS','Ionome', 'sigGWASsnpsCombinedIterations.longhorn.allLoc.csv' ) # Define our reference geneome ZM = co.RefGen('Zm5bFGS') df = pd.DataFrame.from_csv(csv,index_col=None) # Import class from dataframe IONS = co.Ontology.from_DataFrame( df,'ZmIonome','Maize Ionome', ZM,term_col='el',chr_col='chr',pos_col='pos' ) IONS.del_term('Co59') # I guess we need a test in here too self.assertIsInstance(IONS,co.Ontology)
def ZmPAN(self): co.del_dataset('Expr','ZmPAN',safe=False) ZM = co.RefGen('Zm5bFGS') ZmPAN = co.COB.from_table( os.path.join( cf.get('options','testdir'),'raw','Expression','RNASEQ', 'PANGenomeFPKM.txt' ), 'ZmPAN', 'Maize Root Network', ZM, rawtype='RNASEQ', max_gene_missing_data=0.4, min_expr=1, quantile=False, dry_run=False, sep=',', max_val=300 ) self.assertIsInstance(ZmPAN,co.COB)
def AtLeafHydroIonome(self): co.del_dataset('Ontology','AtLeafHydroIonome',safe=False) # glob glob is god csvs = glob.glob(os.path.join( cf.get('options','testdir'), 'raw','GWAS','AtLeafHydro', '*.sigsnps.csv' )) # Read in each table individually then concat for GIANT table df = pd.concat([pd.read_table(x,sep=',') for x in csvs]) # Add 'Chr' to chromosome column df.CHR = df.CHR.apply(lambda x: 'Chr'+str(x)) # Chase dat refgen T10 = co.RefGen('T10') # Import class from dataframe AtLeafHydroIonome = co.Ontology.from_DataFrame( df,'AtLeafHydroIonome','Arabidopsis 1.6M EmmaX GWAS', T10,term_col='Trait',chr_col='CHR',pos_col='BP' ) self.assertIsInstance(AtLeafHydroIonome,co.Ontology)
def ZmWallace(Zm5bFGS): if cf.test.force.Ontology: co.del_dataset('GWAS', 'ZmWallace', force=True) if not co.available_datasets('GWAS', 'ZmWallace'): # Grab path the csv csv = os.path.join( cf.options.testdir, 'raw', 'GWAS', 'WallacePLoSGenet', 'Wallace_etal_2014_PLoSGenet_GWAS_hits-150112.txt.bz2') # Define our reference geneome df = pd.DataFrame.from_csv(csv, index_col=None, sep='\t') # Import class from dataframe gwas = co.GWAS.from_DataFrame(df, 'ZmWallace', 'Wallace PLoS ONE Dataset.', Zm5bFGS, term_col='trait', chr_col='chr', pos_col='pos') return gwas else: return co.GWAS('ZmWallace')
def AtSeed(self): co.del_dataset('Expr','AtSeed',safe=False) Seed = ['GSE12404',#'GSE30223', 'GSE1051','GSE11852','GSE5634'] SeedFam = sum( [co.Family.from_file( pjoin( self.rawdir,'GSE','{}_family.soft'.format(x) ) ) for x in Seed ] ) #SeedFam.to_keepfile("SeedKeep.tsv",keep_hint='seed') AtSeed = co.COB.from_DataFrame( SeedFam.series_matrix( keepfile=pjoin(self.rawdir,'GSE','SeedKeep.tsv') ), 'AtSeed','Arabidopsis Seed', co.RefGen('T10'),rawtype='MICROARRAY' ) self.assertIsInstance(AtSeed,co.COB)
def testGWAS(testRefGen): if cf.test.force.Ontology: co.del_dataset('GWAS', 'testGWAS', force=True) df = pd.DataFrame({ 'Trait': ['a', 'a', 'b', 'b'], 'CHR': ['chr1', 'chr2', 'chr3', 'chr4'], 'POS': [100, 200, 300, 400], 'Start': [100, 200, 300, 400], 'End': [1000, 20000, 3000, 4000], 'id': ['snp1', 'snp2', 'snp3', 'snp4'], 'pval': [0.05, 0.05, 0.01, 0.01] }) gwas = co.GWAS.from_DataFrame(df, 'testGWAS', 'Test GWAS Dataset', testRefGen, chr_col='CHR', pos_col='POS', id_col='id', term_col='Trait') return gwas
def ZmWallace(Zm5bFGS): if cf.test.force.Ontology: co.del_dataset('GWAS','ZmWallace',safe=False) if not co.available_datasets('GWAS','ZmWallace'): # Grab path the csv csv = os.path.join( cf.options.testdir, 'raw','GWAS','WallacePLoSGenet', 'Wallace_etal_2014_PLoSGenet_GWAS_hits-150112.txt.bz2' ) # Define our reference geneome df = pd.DataFrame.from_csv(csv,index_col=None,sep='\t') # Import class from dataframe gwas = co.GWAS.from_DataFrame( df, 'ZmWallace', 'Wallace PLoS ONE Dataset.', Zm5bFGS, term_col='trait', chr_col='chr', pos_col='pos' ) return gwas else: return co.GWAS('ZmWallace')
def AtLeaf(AtTair10): if cf.test.force.COB: co.del_dataset('Expr', 'AtLeaf', force=True) if not co.available_datasets('Expr', 'AtLeaf'): Leaf = [ 'GSE14578', 'GSE5630', 'GSE13739', #'GSE26199', 'GSE5686', 'GSE5615', 'GSE5620', 'GSE5628', 'GSE5624', 'GSE5626', 'GSE5621', 'GSE5622', 'GSE5623', 'GSE5625', 'GSE5688' ] LeafFam = sum([ co.Family.from_file( os.path.join(cf.options.testdir, 'raw', 'GSE', '{}_family.soft.gz'.format(x))) for x in Leaf ]) #LeafFam.to_keepfile("LeafKeep.tsv", keep_hint="lea") return co.COB.from_DataFrame( LeafFam.series_matrix(keepfile=os.path.join( cf.options.testdir, 'raw', 'GSE', 'LeafKeep.tsv')), 'AtLeaf', 'Arabidopsis Leaf', AtTair10, rawtype='MICROARRAY', max_gene_missing_data=0.3, min_expr=0.01, quantile=True, ) else: return co.COB('AtLeaf')
def ZmSAM(Zm5bFGS): if cf.test.force.COB: co.del_dataset('Expr','ZmSAM',safe=False) if not co.available_datasets('Expr','ZmSAM'): return co.COB.from_table( os.path.join( cf.options.testdir, 'raw','Expr','RNASEQ', 'TranscriptomeProfiling_B73_Atlas_SAM_FGS_LiLin_20140316.txt.gz' ), 'ZmSAM', 'Maize Root Network', Zm5bFGS, rawtype='RNASEQ', max_gene_missing_data=0.4, min_expr=0.1, quantile=False, dry_run=False, max_val=250 ) else: return co.COB('ZmSAM')
def ZmRoot(Zm5bFGS): if cf.test.force.COB: co.del_dataset('Expr','ZmRoot',safe=False) if not co.available_datasets('Expr','ZmRoot'): return co.COB.from_table( os.path.join( cf.options.testdir, 'raw','Expr', 'RNASEQ','ROOTFPKM.tsv.gz' ), 'ZmRoot', 'Maize Root Network', Zm5bFGS, rawtype='RNASEQ', max_gene_missing_data=0.3, max_accession_missing_data=0.08, min_single_sample_expr=1, min_expr=0.001, quantile=False, max_val=300 ) else: return co.COB('ZmRoot')
def ZmPAN(Zm5bFGS): if cf.test.force.COB: co.del_dataset('Expr','ZmPAN',safe=False) if not co.available_datasets('Expr','ZmPAN'): return co.COB.from_table( os.path.join( cf.options.testdir, 'raw','Expr','RNASEQ', 'PANGenomeFPKM.txt.gz' ), 'ZmPAN', 'Maize Root Network', Zm5bFGS, rawtype='RNASEQ', max_gene_missing_data=0.4, min_expr=1, quantile=False, dry_run=False, sep=',', max_val=300 ) else: return co.COB('ZmPAN')
def remove(args): co.del_dataset(args.type,args.name,force=args.force) print('Done')
def BuildT10(self): gff = os.path.join(cf.get('options','testdir'),'raw','TAIR10_GFF3_genes.gff') co.del_dataset('RefGen','T10',safe=False) T10 = co.RefGen.from_gff(gff,'T10','Tair 10','10','Arabidopsis') self.assertIsInstance(T10,co.RefGen)
def remove(args): co.del_dataset(args.type,args.name,safe=args.force) print('Done')
def BuildZm5bFGS(self): gff = os.path.join(cf.get('options','testdir'),'raw','ZmB73_5b_FGS.gff') co.del_dataset('RefGen','Zm5bFGS',safe=False) ZM = co.RefGen.from_gff(gff,'Zm5bFGS','Maize 5b Filtered Gene Set','5b','Zea Mays') self.assertIsInstance(ZM,co.RefGen)