Esempio n. 1
0
    def PredictAll(self, env, sess, langIds, visited, candidates):
        numActions, parentLang, mask = candidates.GetFeatures()
        assert(numActions > 0)
        
        numActionsNP = np.empty([1,1], dtype=np.int32)
        numActionsNP[0,0] = numActions

        #print("parentLang", numActions, parentLang.shape)
        #print("mask", mask.shape, mask)
        #print("linkLang", linkLang.shape, linkLang)
        langsVisited = GetLangsVisited(visited, langIds, env)
        #print("langsVisited", langsVisited)
        
        (qValues, ) = sess.run([self.qValues, ], 
                                feed_dict={self.parentLang: parentLang,
                                    self.numActions: numActionsNP,
                                    self.mask: mask,
                                    self.langIds: langIds,
                                    self.langsVisited: langsVisited})
        #qValues = qValues[0]
        #print("hidden3", hidden3.shape, hidden3)
        #print("qValues", qValues.shape, qValues)
        #print("linkSpecific", linkSpecific.shape)
        #print("numSiblings", numSiblings.shape)
        #print("numVisitedSiblings", numVisitedSiblings.shape)
        #print("numMatchedSiblings", numMatchedSiblings.shape)
        qValues = np.reshape(qValues, [1, qValues.shape[0] ])
        #print("   qValues", qValues)
        #print()

        action = np.argmax(qValues[0, :numActions])
        maxQ = qValues[0, action]
        #print("newAction", action, maxQ)

        return qValues, maxQ, action
Esempio n. 2
0
    def __init__(self, env, action, link, langIds, targetQ, visited,
                 candidates, nextVisited, nextCandidates):
        self.action = action
        self.link = link

        self.langIds = langIds
        self.targetQ = np.array(targetQ, copy=True)

        if visited is not None:
            self.visited = visited
            self.langsVisited = GetLangsVisited(visited, langIds, env)

        if candidates is not None:
            self.candidates = candidates
            numActions, parentLang, mask, numSiblings, numVisitedSiblings, numMatchedSiblings, parentMatched, linkLang = candidates.GetFeatures(
            )
            self.numActions = numActions
            self.parentLang = np.array(parentLang, copy=True)
            self.mask = np.array(mask, copy=True)
            self.numSiblings = np.array(numSiblings, copy=True)
            self.numVisitedSiblings = np.array(numVisitedSiblings, copy=True)
            self.numMatchedSiblings = np.array(numMatchedSiblings, copy=True)
            self.parentMatched = np.array(parentMatched, copy=True)
            self.linkLang = np.array(linkLang, copy=True)

        self.nextVisited = nextVisited
        self.nextCandidates = nextCandidates
Esempio n. 3
0
    def PredictAll(self, env, sess, langIds, visited, candidates):
        numActions, numCandidates, linkSpecific = candidates.GetMask()
        #print("numActions", numActions)
        #print("numCandidates", numCandidates.shape, numCandidates)
        #print("linkSpecific", linkSpecific.shape, linkSpecific)
        assert (numActions > 0)

        numActionsArr = np.empty([1, 1])
        numActionsArr[0, 0] = numActions

        langsVisited = GetLangsVisited(visited, langIds, env)
        #print("langsVisited", langsVisited)

        (probs, logit, smNumer, smNumerSum, maxLogit, maskNum,
         maskBigNeg) = sess.run(
             [
                 self.probs, self.logit, self.smNumer, self.smNumerSum,
                 self.maxLogit, self.maskNum, self.maskBigNeg
             ],
             feed_dict={
                 self.numCandidates: numCandidates,
                 self.linkSpecificInput: linkSpecific,
                 self.langsVisited: langsVisited,
                 self.numActions: numActionsArr
             })
        probs = np.reshape(probs, [probs.shape[1]])
        try:
            action = np.random.choice(self.params.NUM_ACTIONS, p=probs)
        except:
            print("langsVisited", probs, logit, smNumer, smNumerSum,
                  langsVisited)
            print("probs", probs)
            print("logit", logit)
            print("maxLogit", maxLogit)
            print("smNumer", smNumer)
            print("smNumerSum", smNumerSum)
            print("langsVisited", langsVisited)
            print("numCandidates", numCandidates)
            print("maskBigNeg", maskBigNeg)
            bugger_something_went_wrong

        # print("langsVisited", probs, logit, smNumer, smNumerSum, langsVisited)
        # print("probs", probs)
        # print("logit", logit)
        # print("maxLogit", maxLogit)
        # print("smNumer", smNumer)
        # print("smNumerSum", smNumerSum)
        # print("langsVisited", langsVisited)
        # print("mask", mask)
        # print("maskBigNeg", maskBigNeg)
        # print()

        #print("action", action, probs, logit, mask, langsVisited, numActions)
        if np.random.rand(1) < .005:
            print("action", action, probs, logit, numCandidates,
                  linkSpecific.tolist(), langsVisited, numActions)
        #print()

        return action
Esempio n. 4
0
    def PredictAll(self, env, sess, langIds, visited, candidates):
        numActions, numCandidates, parentLang = candidates.GetMask()
        #print("numActions", numActions)
        #print("numCandidates", numCandidates.shape, numCandidates)
        #print("parentLang", parentLang.shape, parentLang)
        assert (numActions > 0)

        langsVisited = GetLangsVisited(visited, langIds, env)
        #print("langsVisited", langsVisited)

        (probs, logit, smNumer, smNumerSum, maxLogit, maskBigNeg) = sess.run(
            [
                self.probs, self.logit, self.smNumer, self.smNumerSum,
                self.maxLogit, self.maskBigNeg
            ],
            feed_dict={
                self.numCandidates: numCandidates,
                self.parentLang: parentLang,
                self.langsVisited: langsVisited
            })
        probs = np.reshape(probs, [probs.shape[1]])
        try:
            action = np.random.choice(self.params.NUM_ACTIONS, p=probs)
        except:
            print("langsVisited", probs, logit, smNumer, smNumerSum,
                  langsVisited)
            print("probs", probs)
            print("logit", logit)
            print("maxLogit", maxLogit)
            print("smNumer", smNumer)
            print("smNumerSum", smNumerSum)
            print("langsVisited", langsVisited)
            print("numCandidates", numCandidates)
            print("maskBigNeg", maskBigNeg)
            bugger_something_went_wrong

        # print("langsVisited", probs, logit, smNumer, smNumerSum, langsVisited)
        # print("probs", probs)
        # print("logit", logit)
        # print("maxLogit", maxLogit)
        # print("smNumer", smNumer)
        # print("smNumerSum", smNumerSum)
        # print("langsVisited", langsVisited)
        # print("mask", mask)
        # print("maskBigNeg", maskBigNeg)
        # print()

        #print("action", action, probs, logit, mask, langsVisited, parentLang, numActions)
        if np.random.rand(1) < .005:
            print("action", action, probs, logit, numCandidates, parentLang,
                  langsVisited, numActions)
        #print()

        return action
Esempio n. 5
0
    def PredictAll(self, env, sess, langIds, visited, candidates):
        numActions, mask = candidates.GetFeatures()
        #print("numActions", numActions)
        #print("mask", mask.shape, mask)
        #print("parentLang", parentLang.shape, parentLang)
        assert (numActions > 0)

        langsVisited = GetLangsVisited(visited, langIds, env)
        #print("langsVisited", langsVisited)

        (probs, logit, smNumer, smNumerSum, maxLogit,
         maskBigNeg) = sess.run([
             self.probs, self.logit, self.smNumer, self.smNumerSum,
             self.maxLogit, self.maskBigNeg
         ],
                                feed_dict={
                                    self.mask: mask,
                                    self.langsVisited: langsVisited
                                })
        probs = np.reshape(probs, [probs.shape[1]])
        try:
            action = np.random.choice(self.params.MAX_NODES, p=probs)
        except:
            print("langsVisited", probs, logit, smNumer, smNumerSum,
                  langsVisited)
            print("probs", probs)
            print("logit", logit)
            print("maxLogit", maxLogit)
            print("smNumer", smNumer)
            print("smNumerSum", smNumerSum)
            print("langsVisited", langsVisited)
            print("mask", mask)
            print("maskBigNeg", maskBigNeg)
            dsds

        # print("langsVisited", probs, logit, smNumer, smNumerSum, langsVisited)
        # print("probs", probs)
        # print("logit", logit)
        # print("maxLogit", maxLogit)
        # print("smNumer", smNumer)
        # print("smNumerSum", smNumerSum)
        # print("langsVisited", langsVisited)
        # print("mask", mask)
        # print("maskBigNeg", maskBigNeg)
        # print()

        #print("action", action, probs, logit, mask, langsVisited, parentLang, numActions)
        if np.random.rand(1) < .005:
            print("action", action, probs, logit, mask, langsVisited,
                  numActions)
        #print()

        return action
Esempio n. 6
0
    def PredictAll(self, env, sess, langIds, visited, candidates):
        numActions, parentLang, mask, numSiblings, numVisitedSiblings, numMatchedSiblings, parentMatched, linkLang = candidates.GetFeatures(
        )
        #print("numActions", numActions)

        numActionsNP = np.empty([1, 1], dtype=np.int32)
        numActionsNP[0, 0] = numActions

        assert (numActions > 0)

        #print("parentLang", numActions, parentLang.shape)
        #print("mask", mask.shape, mask)
        langsVisited = GetLangsVisited(visited, langIds, env)
        #print("langsVisited", langsVisited)

        (probs, ) = sess.run(
            [self.probs],
            feed_dict={
                self.parentLang: parentLang,
                self.numActions: numActionsNP,
                self.mask: mask,
                self.numSiblings: numSiblings,
                self.numVisitedSiblings: numVisitedSiblings,
                self.numMatchedSiblings: numMatchedSiblings,
                self.parentMatched: parentMatched,
                self.linkLang: linkLang,
                self.langIds: langIds,
                self.langsVisited: langsVisited
            })
        #print("hidden3", hidden3.shape, hidden3)
        #print("qValues", qValues.shape, qValues)
        #print("   maxQ", maxQ.shape, maxQ)
        #print("  probs", probs.shape, probs)
        #print("  chosenAction", chosenAction.shape, chosenAction)
        #print("linkSpecific", linkSpecific.shape)
        #print("numSiblings", numSiblings.shape)
        #print("numVisitedSiblings", numVisitedSiblings.shape)
        #print("numMatchedSiblings", numMatchedSiblings.shape)
        #print("   qValues", qValues)
        #print()

        probs = np.reshape(probs, [probs.shape[1]])
        action = np.random.choice(probs, p=probs)
        #print("  action", action)
        action = np.argmax(probs == action)
        #print("  action", action)

        return action
Esempio n. 7
0
    def __init__(self, env, action, reward, link, langIds, visited, candidates, nextVisited, nextCandidates):
        self.action = action
        self.link = link

        self.langIds = langIds 
        self.reward = reward
        self.discountedReward = None

        if visited is not None:
            self.visited = visited
            self.langsVisited = GetLangsVisited(visited, langIds, env)

        if candidates is not None:
            self.candidates = candidates
            numActions, mask = candidates.GetFeatures()
            self.numActions = numActions
            self.mask = np.array(mask, copy=True) 

        self.nextVisited = nextVisited
        self.nextCandidates = nextCandidates