Esempio n. 1
0
def test_gravity_vector_calculation():
    """ Tests that the function correctly calculates the direction of the gravity vector from two angles. """

    print "\n"
    print "Testing Cantilever Simulation gravity_vector_calculation function:"
    print "\n"

    # Create the simulation
    sim = CantileverSimulation()
    passCounter = 0

    # Run the tests
    if (sim.gravity_vector_calculation(90 * math.pi / 180,
                                       0 * math.pi / 180).all() == np.array(
                                           [-9.81, 0.0, 0.0]).all()):
        passCounter += 1
    if (sim.gravity_vector_calculation(90 * math.pi / 180,
                                       0 * math.pi / 180).all() == np.array(
                                           [-9.81, 0.0, 0.0]).all()):
        passCounter += 1

    # Can easily add more test cases!

    print "Calculation passed {0} of 2 tests.".format(passCounter)
    print "\n"
Esempio n. 2
0
def test_node_moving_calculation():
    """ Tests that the function which moves the nodes of the FE model does so in the correct manner. """

    print "\n"
    print "Testing Cantilever Simulation node relocation function:"
    print "\n"

    # Create the simulation
    sim = CantileverSimulation()

    # Set up the counter
    passCounter = 0

    # Run the tests
    sim.set_cantilever_dimensions(np.array([30, 12, 12]))
    if (np.isclose(sim.calculate_new_x_value(30.0), 30)):
        passCounter += 1
    if (np.isclose(sim.calculate_new_x_value(0.0), 0)):
        passCounter += 1
    if (np.isclose(sim.calculate_new_x_value(15.0), 7.5)):
        passCounter += 1
    if (np.isclose(sim.calculate_new_x_value(20.0), 120.0 / 9.0)):
        passCounter += 1

    print "Calculation passed {0} of 4 tests.".format(passCounter)
    print "\n"
Esempio n. 3
0
def test_node_moving_function():
    """ Tests whether the node moving function successfully moves the nodes closer to the model's fixed end. """

    print "\n"
    print "Testing Cantilever Simulation node relocation function:"
    print "\n"

    # Set up the simulation, making it small so the location of nodes can be easily determined.
    sim = CantileverSimulation()
    sim.set_cantilever_dimensions(np.array([30, 12, 12]))
    sim.set_cantilever_elements(np.array([1, 1, 1]))
    sim.setup_cantilever_simulation()

    # Since the simulation uses Cubic Lagrange interpolation, there are 64 nodes in the one element.
    sim.move_one_layer_nodes()

    # We know that the nodes should've been at 0, 10, 20 and 30 mm along the x-axis.
    passCounter = 0

    if np.isclose(
            sim.dependentField.ParameterSetGetNodeDP(
                iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES,
                1, 1, 1, 1), 0):
        passCounter += 1
    if np.isclose(
            sim.dependentField.ParameterSetGetNodeDP(
                iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES,
                1, 1, 2, 1), 30.0 / 9.0):
        passCounter += 1
    if np.isclose(
            sim.dependentField.ParameterSetGetNodeDP(
                iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES,
                1, 1, 3, 1), 120.0 / 9.0):
        passCounter += 1
    if np.isclose(
            sim.dependentField.ParameterSetGetNodeDP(
                iron.FieldVariableTypes.U, iron.FieldParameterSetTypes.VALUES,
                1, 1, 4, 1), 30):
        passCounter += 1

    destroy_routine(sim)

    print "Calculation passed {0} of 4 tests.".format(passCounter)
    print "\n"
Esempio n. 4
0
def test_set_diagnostic_level():
    """ Test if the set_diagnostic_level method sets the simulation's diagnostic level as expected. """

    print "\n"
    print "Testing Cantilever Simulation set_diagnostics_level function:"
    print "\n"

    # Create the simulation
    sim = CantileverSimulation()

    # Check its initial diagnostic level
    if (sim.diagnostics == None):
        print "Diagnostics Initiation Successful."
    else:
        print "Diagnostics Initiation Failed."

    # Call the set_diagnostic_level function and check if it changed the level correctly.
    sim.set_diagnostic_level(1)
    if (sim.diagnostics == 1):
        print "set_diagnostic_level function Successful."
    else:
        print "set_diagnostic_level function Failed."

    print "\n"
Esempio n. 5
0
    simulation.region.Destroy()
    simulation.basis.Destroy()
    simulation.problem.Destroy()


dimensions = np.array([30, 12, 12])
elements = np.array([2, 2, 2])
initial_parameter = np.array([8.4378])

theta1 = 30*math.pi/180
phi1 = 0*math.pi/180
theta2 = 30*math.pi/180
phi2 = 90*math.pi/180

ps = ParameterEstimation()
ps.simulation = CantileverSimulation()
ps.simulation.set_cantilever_dimensions(dimensions)
ps.simulation.set_cantilever_elements(elements)
ps.simulation.set_gravity_vector(ps.simulation.gravity_vector_calculation(theta1, phi1))
ps.simulation.set_diagnostic_level(0)
ps.simulation.setup_cantilever_simulation()
ps.simulation.set_Neo_Hookean_single_layer(initial_parameter)
ps.simulation.solve_simulation()

#ps.simulation.export_results("output_3/Cantilever")
ps.simulation.set_projection_data()
ps.set_objective_function(single_layer_objective_function)
[H, detH, condH, detH0] = ps.new_evaluate_hessian_method(initial_parameter, 1e-7)

print "For angles Theta = {0}, Phi = {1}".format(theta1, phi1)
print "Gravity Vector = {0}".format(ps.simulation.gravity_vector)
Esempio n. 6
0
def generate_one_layer_cantilever_output():
    """
    Generates expected output data set for test_one_layer_cantilever_output unit test.

    Stiffness value is 5.432
    """

    # Set up the simulation
    sim = CantileverSimulation()
    sim.set_cantilever_dimensions(np.array([30, 12, 12]))
    sim.set_cantilever_elements(np.array([4, 4, 4]))
    sim.setup_cantilever_simulation()
    sim.set_Neo_Hookean_single_layer(np.array([5.432]))

    # Solve the simulation
    sim.solve_simulation()

    # Export the results
    sim.export_results("Expected Output/generate_one_layer_cantilever_output")
Esempio n. 7
0
        else:
            self.elementRecord = np.append(
                self.elementRecord,
                [self.elements[0] * self.elements[1] * self.elements[2]])


# Create instance of ConvergenceTest class
conTest = ConvergenceTest()

# Define some useful variables.
dimensions = np.array([30, 12, 12])
parameterValue = np.array([7.589])
conTest.tolerance = 1e-3

# Add a simulation to the convergence
conTest.sim = CantileverSimulation()

# Set up the chosen simulation.
conTest.elements = np.array([2, 2, 2])
conTest.sim.set_cantilever_elements(conTest.elements)
conTest.sim.set_cantilever_dimensions(dimensions)
conTest.sim.set_diagnostic_level(1)
conTest.sim.setup_cantilever_simulation()
conTest.sim.set_Neo_Hookean_single_layer(parameterValue)

# Now solve the simulation and generate a data set
conTest.sim.solve_simulation()
conTest.currentDataSet = conTest.sim.generate_data(0)
conTest.store_data()
conTest.store_elements()
Esempio n. 8
0
    def new_evaluate_hessian_method(self, x, stepsize):
        """

        :param x:
        :param stepsize:
        :return:
        """

        dimensions = self.simulation.cantilever_dimensions
        elements = self.simulation.cantilever_elements
        gravity_vector = self.simulation.gravity_vector
        diagnostic_level = self.simulation.diagnostics
        data = self.simulation.data

        ps = ParameterEstimation()
        ps.simulation = CantileverSimulation()
        ps.simulation.set_cantilever_dimensions(dimensions)
        ps.simulation.set_cantilever_elements(elements)
        ps.simulation.set_gravity_vector(gravity_vector)
        ps.simulation.set_diagnostic_level(diagnostic_level)
        ps.simulation.data = data

        destroy_routine(self.simulation)
        ps.simulation.setup_cantilever_simulation()

        objfun = self.objective_function
        n = len(x)
        A = np.zeros(n)
        B = np.zeros(n)
        ee = stepsize * np.eye(n)

        # First-order derivatives: 2n function calls needed
        for i in range(n):
            A[i] = objfun(x + ee[:, i], ps.simulation)
            reset_simulation(ps.simulation, dimensions, elements,
                             gravity_vector, diagnostic_level, data)
            B[i] = objfun(x - ee[:, i], ps.simulation)
            reset_simulation(ps.simulation, dimensions, elements,
                             gravity_vector, diagnostic_level, data)

        # Second-order derivatives based on function calls only (Abramowitz and Stegun 1972, p.884): for dense Hessian, 2n+4n^2/2 function calls needed.
        H = np.zeros((n, n))
        for i in range(n):
            C = objfun(x + 2 * ee[:, i], ps.simulation)
            reset_simulation(ps.simulation, dimensions, elements,
                             gravity_vector, diagnostic_level, data)
            E = objfun(x, ps.simulation)
            reset_simulation(ps.simulation, dimensions, elements,
                             gravity_vector, diagnostic_level, data)
            F = objfun(x - 2 * ee[:, i], ps.simulation)
            reset_simulation(ps.simulation, dimensions, elements,
                             gravity_vector, diagnostic_level, data)
            H[i,
              i] = (-C + 16 * A[i] - 30 * E + 16 * B[i] - F) / (12 *
                                                                (ee[i, i]**2))
            for j in range(i + 1, n):
                G = objfun(x + ee[:, i] + ee[:, j], ps.simulation)
                reset_simulation(ps.simulation, dimensions, elements,
                                 gravity_vector, diagnostic_level, data)
                I = objfun(x + ee[:, i] - ee[:, j], ps.simulation)
                reset_simulation(ps.simulation, dimensions, elements,
                                 gravity_vector, diagnostic_level, data)
                J = objfun(x - ee[:, i] + ee[:, j], ps.simulation)
                reset_simulation(ps.simulation, dimensions, elements,
                                 gravity_vector, diagnostic_level, data)
                K = objfun(x - ee[:, i] - ee[:, j], ps.simulation)
                reset_simulation(ps.simulation, dimensions, elements,
                                 gravity_vector, diagnostic_level, data)
                H[i, j] = (G - I - J + K) / (4 * ee[i, i] * ee[j, j])
                H[j, i] = H[i, j]

        destroy_routine(ps.simulation)

        import cmath
        n = len(H)
        detH = np.linalg.det(H)
        condH = 1.0 / np.linalg.cond(H)
        H0 = np.zeros((n, n))
        for j in range(n):
            for k in range(n):
                H0[j, k] = H[j, k] / np.abs((cmath.sqrt(H[j, j] * H[k, k])))
        detH0 = np.linalg.det(H0)
        return H, detH, condH, detH0
Esempio n. 9
0
def create_routine(simulation, dimensions, elements, gravity_vector,
                   diagnostic_level, data):
    """

    :param dimensions:
    :param elements:
    :param gravity_vector:
    :param diagnostic_level:
    :param data:
    :return:
    """

    destroy_routine(simulation)
    simulation = None

    simulation = CantileverSimulation()
    simulation.set_cantilever_dimensions(dimensions)
    simulation.set_cantilever_elements(elements)
    simulation.set_gravity_vector(gravity_vector)
    simulation.set_diagnostic_level(diagnostic_level)
    simulation.setup_cantilever_simulation()
    simulation.data = data

    return simulation