def recognise(image, addr, extras): result = "" x = image.width - 1 channels = getChannels(image) bestBounds = [] #cv.NamedWindow("pic", 1) #cv.NamedWindow("cols", 0) while len(result) < nSegs and x >= minW: x = cap.getBound(image, cap.CAP_BOUND_RIGHT, start=x) ratings = [] for w in xrange(minW, min(maxW + 1, x)): bounds = findBounds(image, x, w) subImage = cap.getSubImage(image, bounds) flags = findColors(subImage) for index, flag in enumerate(flags): if not flag: continue seg = getSegment(channels[index], image, bounds) seg = cap.flattenImage(adjustSize(seg, segSize)) guesses = ann.run(seg) charIndex = cap.argmax(guesses) ratings.append((guesses[charIndex], charIndex, index, bounds, seg)) best = max(ratings, key=itemgetter(0)) result += charset[best[1]] bestChannel = channels[best[2]] cv.SetImageROI(bestChannel, best[3]) cv.Set(bestChannel, 96, bestChannel) cv.ResetImageROI(bestChannel) bestBounds.append(best[3]) bestW = best[3][2] x -= bestW #print ann.run(best[4]) cap.processExtras([cap.drawComponents(image, bestBounds)], addr, extras, cap.CAP_STAGE_RECOGNISE) return result[::-1]
def recogniseOne(seg): resized = adjustSize(seg, segSize) array = cap.flattenImage(resized) guesses = ann.run(array) ichar = cap.argmax(guesses) guess = guesses[ichar] return (guess, ichar)
def recognise(image, addr, extras): result = "" x = image.width - 1 channels = getChannels(image) bestBounds = [] #cv.NamedWindow("pic", 1) #cv.NamedWindow("cols", 0) while len(result) < nSegs and x >= minW: x = cap.getBound(image, cap.CAP_BOUND_RIGHT, start=x) ratings = [] for w in xrange(minW, min(maxW + 1, x)): bounds = findBounds(image, x, w) subImage = cap.getSubImage(image, bounds) flags = findColors(subImage) for index, flag in enumerate(flags): if not flag: continue seg = getSegment(channels[index], image, bounds) seg = cap.flattenImage(adjustSize(seg, segSize)) guesses = ann.run(seg) charIndex = cap.argmax(guesses) ratings.append( (guesses[charIndex], charIndex, index, bounds, seg)) best = max(ratings, key=itemgetter(0)) result += charset[best[1]] bestChannel = channels[best[2]] cv.SetImageROI(bestChannel, best[3]) cv.Set(bestChannel, 96, bestChannel) cv.ResetImageROI(bestChannel) bestBounds.append(best[3]) bestW = best[3][2] x -= bestW #print ann.run(best[4]) cap.processExtras([cap.drawComponents(image, bestBounds)], addr, extras, cap.CAP_STAGE_RECOGNISE) return result[::-1]