class LoncapaProblem(object): """ Main class for capa Problems. """ def __init__( self, problem_text, id, capa_system, capa_module, state=None, seed=None # pylint: disable=redefined-builtin ): """ Initializes capa Problem. Arguments: problem_text (string): xml defining the problem. id (string): identifier for this problem, often a filename (no spaces). capa_system (LoncapaSystem): LoncapaSystem instance which provides OS, rendering, user context, and other resources. capa_module: instance needed to access runtime/logging state (dict): containing the following keys: - `seed` (int) random number generator seed - `student_answers` (dict) maps input id to the stored answer for that input - `correct_map` (CorrectMap) a map of each input to their 'correctness' - `done` (bool) indicates whether or not this problem is considered done - `input_state` (dict) maps input_id to a dictionary that holds the state for that input seed (int): random number generator seed. """ ## Initialize class variables from state self.do_reset() self.problem_id = id self.capa_system = capa_system self.capa_module = capa_module state = state or {} # Set seed according to the following priority: # 1. Contained in problem's state # 2. Passed into capa_problem via constructor self.seed = state.get("seed", seed) assert self.seed is not None, "Seed must be provided for LoncapaProblem." self.student_answers = state.get("student_answers", {}) if "correct_map" in state: self.correct_map.set_dict(state["correct_map"]) self.done = state.get("done", False) self.input_state = state.get("input_state", {}) # Convert startouttext and endouttext to proper <text></text> problem_text = re.sub(r"startouttext\s*/", "text", problem_text) problem_text = re.sub(r"endouttext\s*/", "/text", problem_text) self.problem_text = problem_text # parse problem XML file into an element tree self.tree = etree.XML(problem_text) self.make_xml_compatible(self.tree) # handle any <include file="foo"> tags self._process_includes() # construct script processor context (eg for customresponse problems) self.context = self._extract_context(self.tree) # Pre-parse the XML tree: modifies it to add ID's and perform some in-place # transformations. This also creates the dict (self.responders) of Response # instances for each question in the problem. The dict has keys = xml subtree of # Response, values = Response instance self.problem_data = self._preprocess_problem(self.tree) if not self.student_answers: # True when student_answers is an empty dict self.set_initial_display() # dictionary of InputType objects associated with this problem # input_id string -> InputType object self.inputs = {} # Run response late_transforms last (see MultipleChoiceResponse) # Sort the responses to be in *_1 *_2 ... order. responses = self.responders.values() responses = sorted(responses, key=lambda resp: int(resp.id[resp.id.rindex("_") + 1 :])) for response in responses: if hasattr(response, "late_transforms"): response.late_transforms(self) self.extracted_tree = self._extract_html(self.tree) def make_xml_compatible(self, tree): """ Adjust tree xml in-place for compatibility before creating a problem from it. The idea here is to provide a central point for XML translation, for example, supporting an old XML format. At present, there just two translations. 1. <additional_answer> compatibility translation: old: <additional_answer>ANSWER</additional_answer> convert to new: <additional_answer answer="ANSWER">OPTIONAL-HINT</addional_answer> 2. <optioninput> compatibility translation: optioninput works like this internally: <optioninput options="('yellow','blue','green')" correct="blue" /> With extended hints there is a new <option> tag, like this <option correct="True">blue <optionhint>sky color</optionhint> </option> This translation takes in the new format and synthesizes the old option= attribute so all downstream logic works unchanged with the new <option> tag format. """ additionals = tree.xpath("//stringresponse/additional_answer") for additional in additionals: answer = additional.get("answer") text = additional.text if not answer and text: # trigger of old->new conversion additional.set("answer", text) additional.text = "" for optioninput in tree.xpath("//optioninput"): correct_option = None child_options = [] for option_element in optioninput.findall("./option"): option_name = option_element.text.strip() if option_element.get("correct").upper() == "TRUE": correct_option = option_name child_options.append("'" + option_name + "'") if len(child_options) > 0: options_string = "(" + ",".join(child_options) + ")" optioninput.attrib.update({"options": options_string}) if correct_option: optioninput.attrib.update({"correct": correct_option}) def do_reset(self): """ Reset internal state to unfinished, with no answers """ self.student_answers = dict() self.correct_map = CorrectMap() self.done = False def set_initial_display(self): """ Set the student's answers to the responders' initial displays, if specified. """ initial_answers = dict() for responder in self.responders.values(): if hasattr(responder, "get_initial_display"): initial_answers.update(responder.get_initial_display()) self.student_answers = initial_answers def __unicode__(self): return u"LoncapaProblem ({0})".format(self.problem_id) def get_state(self): """ Stored per-user session data neeeded to: 1) Recreate the problem 2) Populate any student answers. """ return { "seed": self.seed, "student_answers": self.student_answers, "correct_map": self.correct_map.get_dict(), "input_state": self.input_state, "done": self.done, } def get_max_score(self): """ Return the maximum score for this problem. """ maxscore = 0 for responder in self.responders.values(): maxscore += responder.get_max_score() return maxscore def get_score(self): """ Compute score for this problem. The score is the number of points awarded. Returns a dictionary {'score': integer, from 0 to get_max_score(), 'total': get_max_score()}. """ correct = 0 for key in self.correct_map: try: correct += self.correct_map.get_npoints(key) except Exception: log.error("key=%s, correct_map = %s", key, self.correct_map) raise if (not self.student_answers) or len(self.student_answers) == 0: return {"score": 0, "total": self.get_max_score()} else: return {"score": correct, "total": self.get_max_score()} def update_score(self, score_msg, queuekey): """ Deliver grading response (e.g. from async code checking) to the specific ResponseType that requested grading Returns an updated CorrectMap """ cmap = CorrectMap() cmap.update(self.correct_map) for responder in self.responders.values(): if hasattr(responder, "update_score"): # Each LoncapaResponse will update its specific entries in cmap # cmap is passed by reference responder.update_score(score_msg, cmap, queuekey) self.correct_map.set_dict(cmap.get_dict()) return cmap def ungraded_response(self, xqueue_msg, queuekey): """ Handle any responses from the xqueue that do not contain grades Will try to pass the queue message to all inputtypes that can handle ungraded responses Does not return any value """ # check against each inputtype for the_input in self.inputs.values(): # if the input type has an ungraded function, pass in the values if hasattr(the_input, "ungraded_response"): the_input.ungraded_response(xqueue_msg, queuekey) def is_queued(self): """ Returns True if any part of the problem has been submitted to an external queue (e.g. for grading.) """ return any(self.correct_map.is_queued(answer_id) for answer_id in self.correct_map) def get_recentmost_queuetime(self): """ Returns a DateTime object that represents the timestamp of the most recent queueing request, or None if not queued """ if not self.is_queued(): return None # Get a list of timestamps of all queueing requests, then convert it to a DateTime object queuetime_strs = [ self.correct_map.get_queuetime_str(answer_id) for answer_id in self.correct_map if self.correct_map.is_queued(answer_id) ] queuetimes = [ datetime.strptime(qt_str, xqueue_interface.dateformat).replace(tzinfo=UTC) for qt_str in queuetime_strs ] return max(queuetimes) def grade_answers(self, answers): """ Grade student responses. Called by capa_module.check_problem. `answers` is a dict of all the entries from request.POST, but with the first part of each key removed (the string before the first "_"). Thus, for example, input_ID123 -> ID123, and input_fromjs_ID123 -> fromjs_ID123 Calls the Response for each question in this problem, to do the actual grading. """ # if answers include File objects, convert them to filenames. self.student_answers = convert_files_to_filenames(answers) return self._grade_answers(answers) def supports_rescoring(self): """ Checks that the current problem definition permits rescoring. More precisely, it checks that there are no response types in the current problem that are not fully supported (yet) for rescoring. This includes responsetypes for which the student's answer is not properly stored in state, i.e. file submissions. At present, we have no way to know if an existing response was actually a real answer or merely the filename of a file submitted as an answer. It turns out that because rescoring is a background task, limiting it to responsetypes that don't support file submissions also means that the responsetypes are synchronous. This is convenient as it permits rescoring to be complete when the rescoring call returns. """ return all("filesubmission" not in responder.allowed_inputfields for responder in self.responders.values()) def rescore_existing_answers(self): """ Rescore student responses. Called by capa_module.rescore_problem. """ return self._grade_answers(None) def _grade_answers(self, student_answers): """ Internal grading call used for checking new 'student_answers' and also rescoring existing student_answers. For new student_answers being graded, `student_answers` is a dict of all the entries from request.POST, but with the first part of each key removed (the string before the first "_"). Thus, for example, input_ID123 -> ID123, and input_fromjs_ID123 -> fromjs_ID123. For rescoring, `student_answers` is None. Calls the Response for each question in this problem, to do the actual grading. """ # old CorrectMap oldcmap = self.correct_map # start new with empty CorrectMap newcmap = CorrectMap() # Call each responsetype instance to do actual grading for responder in self.responders.values(): # File objects are passed only if responsetype explicitly allows # for file submissions. But we have no way of knowing if # student_answers contains a proper answer or the filename of # an earlier submission, so for now skip these entirely. # TODO: figure out where to get file submissions when rescoring. if "filesubmission" in responder.allowed_inputfields and student_answers is None: _ = self.capa_system.i18n.ugettext raise Exception(_(u"Cannot rescore problems with possible file submissions")) # use 'student_answers' only if it is provided, and if it might contain a file # submission that would not exist in the persisted "student_answers". if "filesubmission" in responder.allowed_inputfields and student_answers is not None: results = responder.evaluate_answers(student_answers, oldcmap) else: results = responder.evaluate_answers(self.student_answers, oldcmap) newcmap.update(results) self.correct_map = newcmap return newcmap def get_question_answers(self): """ Returns a dict of answer_ids to answer values. If we cannot generate an answer (this sometimes happens in customresponses), that answer_id is not included. Called by "show answers" button JSON request (see capa_module) """ # dict of (id, correct_answer) answer_map = dict() for response in self.responders.keys(): results = self.responder_answers[response] answer_map.update(results) # include solutions from <solution>...</solution> stanzas for entry in self.tree.xpath("//" + "|//".join(solution_tags)): answer = etree.tostring(entry) if answer: answer_map[entry.get("id")] = contextualize_text(answer, self.context) log.debug("answer_map = %s", answer_map) return answer_map def get_answer_ids(self): """ Return the IDs of all the responses -- these are the keys used for the dicts returned by grade_answers and get_question_answers. (Though get_question_answers may only return a subset of these. """ answer_ids = [] for response in self.responders.keys(): results = self.responder_answers[response] answer_ids.append(results.keys()) return answer_ids def do_targeted_feedback(self, tree): """ Implements targeted-feedback in-place on <multiplechoiceresponse> -- choice-level explanations shown to a student after submission. Does nothing if there is no targeted-feedback attribute. """ # Note that the modifications has been done, avoiding problems if called twice. if hasattr(self, "has_targeted"): return self.has_targeted = True # pylint: disable=attribute-defined-outside-init for mult_choice_response in tree.xpath("//multiplechoiceresponse[@targeted-feedback]"): show_explanation = mult_choice_response.get("targeted-feedback") == "alwaysShowCorrectChoiceExplanation" # Grab the first choicegroup (there should only be one within each <multiplechoiceresponse> tag) choicegroup = mult_choice_response.xpath('./choicegroup[@type="MultipleChoice"]')[0] choices_list = list(choicegroup.iter("choice")) # Find the student answer key that matches our <choicegroup> id student_answer = self.student_answers.get(choicegroup.get("id")) expl_id_for_student_answer = None # Keep track of the explanation-id that corresponds to the student's answer # Also, keep track of the solution-id solution_id = None for choice in choices_list: if choice.get("name") == student_answer: expl_id_for_student_answer = choice.get("explanation-id") if choice.get("correct") == "true": solution_id = choice.get("explanation-id") # Filter out targetedfeedback that doesn't correspond to the answer the student selected # Note: following-sibling will grab all following siblings, so we just want the first in the list targetedfeedbackset = mult_choice_response.xpath("./following-sibling::targetedfeedbackset") if len(targetedfeedbackset) != 0: targetedfeedbackset = targetedfeedbackset[0] targetedfeedbacks = targetedfeedbackset.xpath("./targetedfeedback") for targetedfeedback in targetedfeedbacks: # Don't show targeted feedback if the student hasn't answer the problem # or if the target feedback doesn't match the student's (incorrect) answer if not self.done or targetedfeedback.get("explanation-id") != expl_id_for_student_answer: targetedfeedbackset.remove(targetedfeedback) # Do not displace the solution under these circumstances if not show_explanation or not self.done: continue # The next element should either be <solution> or <solutionset> next_element = targetedfeedbackset.getnext() parent_element = tree solution_element = None if next_element is not None and next_element.tag == "solution": solution_element = next_element elif next_element is not None and next_element.tag == "solutionset": solutions = next_element.xpath("./solution") for solution in solutions: if solution.get("explanation-id") == solution_id: parent_element = next_element solution_element = solution # If could not find the solution element, then skip the remaining steps below if solution_element is None: continue # Change our correct-choice explanation from a "solution explanation" to within # the set of targeted feedback, which means the explanation will render on the page # without the student clicking "Show Answer" or seeing a checkmark next to the correct choice parent_element.remove(solution_element) # Add our solution instead to the targetedfeedbackset and change its tag name solution_element.tag = "targetedfeedback" targetedfeedbackset.append(solution_element) def get_html(self): """ Main method called externally to get the HTML to be rendered for this capa Problem. """ self.do_targeted_feedback(self.tree) html = contextualize_text(etree.tostring(self._extract_html(self.tree)), self.context) return html def handle_input_ajax(self, data): """ InputTypes can support specialized AJAX calls. Find the correct input and pass along the correct data Also, parse out the dispatch from the get so that it can be passed onto the input type nicely """ # pull out the id input_id = data["input_id"] if self.inputs[input_id]: dispatch = data["dispatch"] return self.inputs[input_id].handle_ajax(dispatch, data) else: log.warning("Could not find matching input for id: %s", input_id) return {} # ======= Private Methods Below ======== def _process_includes(self): """ Handle any <include file="foo"> tags by reading in the specified file and inserting it into our XML tree. Fail gracefully if debugging. """ includes = self.tree.findall(".//include") for inc in includes: filename = inc.get("file") if filename is not None: try: # open using LoncapaSystem OSFS filestore ifp = self.capa_system.filestore.open(filename) except Exception as err: log.warning("Error %s in problem xml include: %s", err, etree.tostring(inc, pretty_print=True)) log.warning("Cannot find file %s in %s", filename, self.capa_system.filestore) # if debugging, don't fail - just log error # TODO (vshnayder): need real error handling, display to users if not self.capa_system.DEBUG: raise else: continue try: # read in and convert to XML incxml = etree.XML(ifp.read()) except Exception as err: log.warning("Error %s in problem xml include: %s", err, etree.tostring(inc, pretty_print=True)) log.warning("Cannot parse XML in %s", (filename)) # if debugging, don't fail - just log error # TODO (vshnayder): same as above if not self.capa_system.DEBUG: raise else: continue # insert new XML into tree in place of include parent = inc.getparent() parent.insert(parent.index(inc), incxml) parent.remove(inc) log.debug("Included %s into %s", filename, self.problem_id) def _extract_system_path(self, script): """ Extracts and normalizes additional paths for code execution. For now, there's a default path of data/course/code; this may be removed at some point. script : ?? (TODO) """ DEFAULT_PATH = ["code"] # Separate paths by :, like the system path. raw_path = script.get("system_path", "").split(":") + DEFAULT_PATH # find additional comma-separated modules search path path = [] for dir in raw_path: if not dir: continue # path is an absolute path or a path relative to the data dir dir = os.path.join(self.capa_system.filestore.root_path, dir) # Check that we are within the filestore tree. reldir = os.path.relpath(dir, self.capa_system.filestore.root_path) if ".." in reldir: log.warning("Ignoring Python directory outside of course: %r", dir) continue abs_dir = os.path.normpath(dir) path.append(abs_dir) return path def _extract_context(self, tree): """ Extract content of <script>...</script> from the problem.xml file, and exec it in the context of this problem. Provides ability to randomize problems, and also set variables for problem answer checking. Problem XML goes to Python execution context. Runs everything in script tags. """ context = {} context["seed"] = self.seed context["anonymous_student_id"] = self.capa_system.anonymous_student_id all_code = "" python_path = [] for script in tree.findall(".//script"): stype = script.get("type") if stype: if "javascript" in stype: continue # skip javascript if "perl" in stype: continue # skip perl # TODO: evaluate only python for d in self._extract_system_path(script): if d not in python_path and os.path.exists(d): python_path.append(d) XMLESC = {"'": "'", """: '"'} code = unescape(script.text, XMLESC) all_code += code extra_files = [] if all_code: # An asset named python_lib.zip can be imported by Python code. zip_lib = self.capa_system.get_python_lib_zip() if zip_lib is not None: extra_files.append(("python_lib.zip", zip_lib)) python_path.append("python_lib.zip") try: safe_exec( all_code, context, random_seed=self.seed, python_path=python_path, extra_files=extra_files, cache=self.capa_system.cache, slug=self.problem_id, unsafely=self.capa_system.can_execute_unsafe_code(), ) except Exception as err: log.exception("Error while execing script code: " + all_code) msg = "Error while executing script code: %s" % str(err).replace("<", "<") raise responsetypes.LoncapaProblemError(msg) # Store code source in context, along with the Python path needed to run it correctly. context["script_code"] = all_code context["python_path"] = python_path context["extra_files"] = extra_files or None return context def _extract_html(self, problemtree): # private """ Main (private) function which converts Problem XML tree to HTML. Calls itself recursively. Returns Element tree of XHTML representation of problemtree. Calls render_html of Response instances to render responses into XHTML. Used by get_html. """ if not isinstance(problemtree.tag, basestring): # Comment and ProcessingInstruction nodes are not Elements, # and we're ok leaving those behind. # BTW: etree gives us no good way to distinguish these things # other than to examine .tag to see if it's a string. :( return if problemtree.tag == "script" and problemtree.get("type") and "javascript" in problemtree.get("type"): # leave javascript intact. return deepcopy(problemtree) if problemtree.tag in html_problem_semantics: return problemid = problemtree.get("id") # my ID if problemtree.tag in inputtypes.registry.registered_tags(): # If this is an inputtype subtree, let it render itself. response_data = self.problem_data[problemid] status = "unsubmitted" msg = "" hint = "" hintmode = None input_id = problemtree.get("id") answervariable = None if problemid in self.correct_map: pid = input_id status = self.correct_map.get_correctness(pid) msg = self.correct_map.get_msg(pid) hint = self.correct_map.get_hint(pid) hintmode = self.correct_map.get_hintmode(pid) answervariable = self.correct_map.get_property(pid, "answervariable") value = "" if self.student_answers and problemid in self.student_answers: value = self.student_answers[problemid] if input_id not in self.input_state: self.input_state[input_id] = {} # do the rendering state = { "value": value, "status": status, "id": input_id, "input_state": self.input_state[input_id], "answervariable": answervariable, "response_data": response_data, "feedback": {"message": msg, "hint": hint, "hintmode": hintmode}, } input_type_cls = inputtypes.registry.get_class_for_tag(problemtree.tag) # save the input type so that we can make ajax calls on it if we need to self.inputs[input_id] = input_type_cls(self.capa_system, problemtree, state) return self.inputs[input_id].get_html() # let each Response render itself if problemtree in self.responders: overall_msg = self.correct_map.get_overall_message() return self.responders[problemtree].render_html(self._extract_html, response_msg=overall_msg) # let each custom renderer render itself: if problemtree.tag in customrender.registry.registered_tags(): renderer_class = customrender.registry.get_class_for_tag(problemtree.tag) renderer = renderer_class(self.capa_system, problemtree) return renderer.get_html() # otherwise, render children recursively, and copy over attributes tree = etree.Element(problemtree.tag) for item in problemtree: item_xhtml = self._extract_html(item) if item_xhtml is not None: tree.append(item_xhtml) if tree.tag in html_transforms: tree.tag = html_transforms[problemtree.tag]["tag"] else: # copy attributes over if not innocufying for (key, value) in problemtree.items(): tree.set(key, value) tree.text = problemtree.text tree.tail = problemtree.tail return tree def _preprocess_problem(self, tree): # private """ Assign IDs to all the responses Assign sub-IDs to all entries (textline, schematic, etc.) Annoted correctness and value In-place transformation Also create capa Response instances for each responsetype and save as self.responders Obtain all responder answers and save as self.responder_answers dict (key = response) """ response_id = 1 problem_data = {} self.responders = {} for response in tree.xpath("//" + "|//".join(responsetypes.registry.registered_tags())): responsetype_id = self.problem_id + "_" + str(response_id) # create and save ID for this response response.set("id", responsetype_id) response_id += 1 answer_id = 1 input_tags = inputtypes.registry.registered_tags() inputfields = tree.xpath( "|".join(["//" + response.tag + "[@id=$id]//" + x for x in input_tags]), id=responsetype_id ) # assign one answer_id for each input type for entry in inputfields: entry.attrib["response_id"] = str(response_id) entry.attrib["answer_id"] = str(answer_id) entry.attrib["id"] = "%s_%i_%i" % (self.problem_id, response_id, answer_id) answer_id = answer_id + 1 self.response_a11y_data(response, inputfields, responsetype_id, problem_data) # instantiate capa Response responsetype_cls = responsetypes.registry.get_class_for_tag(response.tag) responder = responsetype_cls(response, inputfields, self.context, self.capa_system, self.capa_module) # save in list in self self.responders[response] = responder # get responder answers (do this only once, since there may be a performance cost, # eg with externalresponse) self.responder_answers = {} for response in self.responders.keys(): try: self.responder_answers[response] = self.responders[response].get_answers() except: log.debug("responder %s failed to properly return get_answers()", self.responders[response]) # FIXME raise # <solution>...</solution> may not be associated with any specific response; give # IDs for those separately # TODO: We should make the namespaces consistent and unique (e.g. %s_problem_%i). solution_id = 1 for solution in tree.findall(".//solution"): solution.attrib["id"] = "%s_solution_%i" % (self.problem_id, solution_id) solution_id += 1 return problem_data def response_a11y_data(self, response, inputfields, responsetype_id, problem_data): """ Construct data to be used for a11y. Arguments: response (object): xml response object inputfields (list): list of inputfields in a responsetype responsetype_id (str): responsetype id problem_data (dict): dict to be filled with response data """ # if there are no inputtypes then don't do anything if not inputfields: return element_to_be_deleted = None label = "" if len(inputfields) > 1: response.set("multiple_inputtypes", "true") group_label_tag = response.find("label") group_label_tag_text = "" if group_label_tag is not None: group_label_tag.tag = "p" group_label_tag.set("id", responsetype_id) group_label_tag.set("class", "multi-inputs-group-label") group_label_tag_text = stringify_children(group_label_tag) for inputfield in inputfields: problem_data[inputfield.get("id")] = { "group_label": group_label_tag_text, "label": inputfield.attrib.get("label", ""), "descriptions": {}, } else: # Extract label value from <label> tag or label attribute from inside the responsetype responsetype_label_tag = response.find("label") if responsetype_label_tag is not None: label = stringify_children(responsetype_label_tag) # store <label> tag containing question text to delete # it later otherwise question will be rendered twice element_to_be_deleted = responsetype_label_tag elif "label" in inputfields[0].attrib: # in this case we have old problems with label attribute and p tag having question in it # we will pick the first sibling of responsetype if its a p tag and match the text with # the label attribute text. if they are equal then we will use this text as question. # Get first <p> tag before responsetype, this <p> may contains the question text. p_tag = response.xpath("preceding-sibling::*[1][self::p]") if p_tag and p_tag[0].text == inputfields[0].attrib["label"]: label = stringify_children(p_tag[0]) element_to_be_deleted = p_tag[0] else: # In this case the problems don't have tag or label attribute inside the responsetype # so we will get the first preceding label tag w.r.t to this responsetype. # This will take care of those multi-question problems that are not using --- in their markdown. label_tag = response.xpath("preceding-sibling::*[1][self::label]") if label_tag: label = stringify_children(label_tag[0]) element_to_be_deleted = label_tag[0] # delete label or p element only if inputtype is fully accessible if inputfields[0].tag in ACCESSIBLE_CAPA_INPUT_TYPES and element_to_be_deleted is not None: element_to_be_deleted.getparent().remove(element_to_be_deleted) # Extract descriptions and set unique id on each description tag description_tags = response.findall("description") description_id = 1 descriptions = OrderedDict() for description in description_tags: descriptions["description_%s_%i" % (responsetype_id, description_id)] = HTML( stringify_children(description) ) response.remove(description) description_id += 1 problem_data[inputfields[0].get("id")] = { "label": HTML(label.strip()) if label else "", "descriptions": descriptions, }
class LoncapaProblem(object): ''' Main class for capa Problems. ''' def __init__(self, problem_text, id, state=None, seed=None, system=None): ''' Initializes capa Problem. Arguments: - problem_text (string): xml defining the problem - id (string): identifier for this problem; often a filename (no spaces) - seed (int): random number generator seed (int) - state (dict): containing the following keys: - 'seed' - (int) random number generator seed - 'student_answers' - (dict) maps input id to the stored answer for that input - 'correct_map' (CorrectMap) a map of each input to their 'correctness' - 'done' - (bool) indicates whether or not this problem is considered done - 'input_state' - (dict) maps input_id to a dictionary that holds the state for that input - system (ModuleSystem): ModuleSystem instance which provides OS, rendering, and user context ''' ## Initialize class variables from state self.do_reset() self.problem_id = id self.system = system if self.system is None: raise Exception() state = state or {} # Set seed according to the following priority: # 1. Contained in problem's state # 2. Passed into capa_problem via constructor self.seed = state.get('seed', seed) assert self.seed is not None, "Seed must be provided for LoncapaProblem." self.student_answers = state.get('student_answers', {}) if 'correct_map' in state: self.correct_map.set_dict(state['correct_map']) self.done = state.get('done', False) self.input_state = state.get('input_state', {}) # Convert startouttext and endouttext to proper <text></text> problem_text = re.sub(r"startouttext\s*/", "text", problem_text) problem_text = re.sub(r"endouttext\s*/", "/text", problem_text) self.problem_text = problem_text # parse problem XML file into an element tree self.tree = etree.XML(problem_text) # handle any <include file="foo"> tags self._process_includes() # construct script processor context (eg for customresponse problems) self.context = self._extract_context(self.tree) # Pre-parse the XML tree: modifies it to add ID's and perform some in-place # transformations. This also creates the dict (self.responders) of Response # instances for each question in the problem. The dict has keys = xml subtree of # Response, values = Response instance self._preprocess_problem(self.tree) if not self.student_answers: # True when student_answers is an empty dict self.set_initial_display() # dictionary of InputType objects associated with this problem # input_id string -> InputType object self.inputs = {} self.extracted_tree = self._extract_html(self.tree) def do_reset(self): ''' Reset internal state to unfinished, with no answers ''' self.student_answers = dict() self.correct_map = CorrectMap() self.done = False def set_initial_display(self): """ Set the student's answers to the responders' initial displays, if specified. """ initial_answers = dict() for responder in self.responders.values(): if hasattr(responder, 'get_initial_display'): initial_answers.update(responder.get_initial_display()) self.student_answers = initial_answers def __unicode__(self): return u"LoncapaProblem ({0})".format(self.problem_id) def get_state(self): ''' Stored per-user session data neeeded to: 1) Recreate the problem 2) Populate any student answers. ''' return { 'seed': self.seed, 'student_answers': self.student_answers, 'correct_map': self.correct_map.get_dict(), 'input_state': self.input_state, 'done': self.done } def get_max_score(self): ''' Return the maximum score for this problem. ''' maxscore = 0 for responder in self.responders.values(): maxscore += responder.get_max_score() return maxscore def get_score(self): """ Compute score for this problem. The score is the number of points awarded. Returns a dictionary {'score': integer, from 0 to get_max_score(), 'total': get_max_score()}. """ correct = 0 for key in self.correct_map: try: correct += self.correct_map.get_npoints(key) except Exception: log.error('key=%s, correct_map = %s' % (key, self.correct_map)) raise if (not self.student_answers) or len(self.student_answers) == 0: return {'score': 0, 'total': self.get_max_score()} else: return {'score': correct, 'total': self.get_max_score()} def update_score(self, score_msg, queuekey): ''' Deliver grading response (e.g. from async code checking) to the specific ResponseType that requested grading Returns an updated CorrectMap ''' cmap = CorrectMap() cmap.update(self.correct_map) for responder in self.responders.values(): if hasattr(responder, 'update_score'): # Each LoncapaResponse will update its specific entries in cmap # cmap is passed by reference responder.update_score(score_msg, cmap, queuekey) self.correct_map.set_dict(cmap.get_dict()) return cmap def ungraded_response(self, xqueue_msg, queuekey): ''' Handle any responses from the xqueue that do not contain grades Will try to pass the queue message to all inputtypes that can handle ungraded responses Does not return any value ''' # check against each inputtype for the_input in self.inputs.values(): # if the input type has an ungraded function, pass in the values if hasattr(the_input, 'ungraded_response'): the_input.ungraded_response(xqueue_msg, queuekey) def is_queued(self): ''' Returns True if any part of the problem has been submitted to an external queue (e.g. for grading.) ''' return any( self.correct_map.is_queued(answer_id) for answer_id in self.correct_map) def get_recentmost_queuetime(self): ''' Returns a DateTime object that represents the timestamp of the most recent queueing request, or None if not queued ''' if not self.is_queued(): return None # Get a list of timestamps of all queueing requests, then convert it to a DateTime object queuetime_strs = [ self.correct_map.get_queuetime_str(answer_id) for answer_id in self.correct_map if self.correct_map.is_queued(answer_id) ] queuetimes = [ datetime.strptime(qt_str, xqueue_interface.dateformat).replace(tzinfo=UTC) for qt_str in queuetime_strs ] return max(queuetimes) def grade_answers(self, answers): ''' Grade student responses. Called by capa_module.check_problem. `answers` is a dict of all the entries from request.POST, but with the first part of each key removed (the string before the first "_"). Thus, for example, input_ID123 -> ID123, and input_fromjs_ID123 -> fromjs_ID123 Calls the Response for each question in this problem, to do the actual grading. ''' # if answers include File objects, convert them to filenames. self.student_answers = convert_files_to_filenames(answers) return self._grade_answers(answers) def supports_rescoring(self): """ Checks that the current problem definition permits rescoring. More precisely, it checks that there are no response types in the current problem that are not fully supported (yet) for rescoring. This includes responsetypes for which the student's answer is not properly stored in state, i.e. file submissions. At present, we have no way to know if an existing response was actually a real answer or merely the filename of a file submitted as an answer. It turns out that because rescoring is a background task, limiting it to responsetypes that don't support file submissions also means that the responsetypes are synchronous. This is convenient as it permits rescoring to be complete when the rescoring call returns. """ return all('filesubmission' not in responder.allowed_inputfields for responder in self.responders.values()) def rescore_existing_answers(self): """ Rescore student responses. Called by capa_module.rescore_problem. """ return self._grade_answers(None) def _grade_answers(self, student_answers): """ Internal grading call used for checking new 'student_answers' and also rescoring existing student_answers. For new student_answers being graded, `student_answers` is a dict of all the entries from request.POST, but with the first part of each key removed (the string before the first "_"). Thus, for example, input_ID123 -> ID123, and input_fromjs_ID123 -> fromjs_ID123. For rescoring, `student_answers` is None. Calls the Response for each question in this problem, to do the actual grading. """ # old CorrectMap oldcmap = self.correct_map # start new with empty CorrectMap newcmap = CorrectMap() # Call each responsetype instance to do actual grading for responder in self.responders.values(): # File objects are passed only if responsetype explicitly allows # for file submissions. But we have no way of knowing if # student_answers contains a proper answer or the filename of # an earlier submission, so for now skip these entirely. # TODO: figure out where to get file submissions when rescoring. if 'filesubmission' in responder.allowed_inputfields and student_answers is None: raise Exception( "Cannot rescore problems with possible file submissions") # use 'student_answers' only if it is provided, and if it might contain a file # submission that would not exist in the persisted "student_answers". if 'filesubmission' in responder.allowed_inputfields and student_answers is not None: results = responder.evaluate_answers(student_answers, oldcmap) else: results = responder.evaluate_answers(self.student_answers, oldcmap) newcmap.update(results) self.correct_map = newcmap return newcmap def get_question_answers(self): """ Returns a dict of answer_ids to answer values. If we cannot generate an answer (this sometimes happens in customresponses), that answer_id is not included. Called by "show answers" button JSON request (see capa_module) """ # dict of (id, correct_answer) answer_map = dict() for response in self.responders.keys(): results = self.responder_answers[response] answer_map.update(results) # include solutions from <solution>...</solution> stanzas for entry in self.tree.xpath("//" + "|//".join(solution_tags)): answer = etree.tostring(entry) if answer: answer_map[entry.get('id')] = contextualize_text( answer, self.context) log.debug('answer_map = %s' % answer_map) return answer_map def get_answer_ids(self): """ Return the IDs of all the responses -- these are the keys used for the dicts returned by grade_answers and get_question_answers. (Though get_question_answers may only return a subset of these. """ answer_ids = [] for response in self.responders.keys(): results = self.responder_answers[response] answer_ids.append(results.keys()) return answer_ids def get_html(self): ''' Main method called externally to get the HTML to be rendered for this capa Problem. ''' html = contextualize_text( etree.tostring(self._extract_html(self.tree)), self.context) return html def handle_input_ajax(self, data): ''' InputTypes can support specialized AJAX calls. Find the correct input and pass along the correct data Also, parse out the dispatch from the get so that it can be passed onto the input type nicely ''' # pull out the id input_id = data['input_id'] if self.inputs[input_id]: dispatch = data['dispatch'] return self.inputs[input_id].handle_ajax(dispatch, data) else: log.warning("Could not find matching input for id: %s" % input_id) return {} # ======= Private Methods Below ======== def _process_includes(self): ''' Handle any <include file="foo"> tags by reading in the specified file and inserting it into our XML tree. Fail gracefully if debugging. ''' includes = self.tree.findall('.//include') for inc in includes: filename = inc.get('file') if filename is not None: try: # open using ModuleSystem OSFS filestore ifp = self.system.filestore.open(filename) except Exception as err: log.warning('Error %s in problem xml include: %s' % (err, etree.tostring(inc, pretty_print=True))) log.warning('Cannot find file %s in %s' % (filename, self.system.filestore)) # if debugging, don't fail - just log error # TODO (vshnayder): need real error handling, display to users if not self.system.get('DEBUG'): raise else: continue try: # read in and convert to XML incxml = etree.XML(ifp.read()) except Exception as err: log.warning('Error %s in problem xml include: %s' % (err, etree.tostring(inc, pretty_print=True))) log.warning('Cannot parse XML in %s' % (filename)) # if debugging, don't fail - just log error # TODO (vshnayder): same as above if not self.system.get('DEBUG'): raise else: continue # insert new XML into tree in place of include parent = inc.getparent() parent.insert(parent.index(inc), incxml) parent.remove(inc) log.debug('Included %s into %s' % (filename, self.problem_id)) def _extract_system_path(self, script): """ Extracts and normalizes additional paths for code execution. For now, there's a default path of data/course/code; this may be removed at some point. script : ?? (TODO) """ DEFAULT_PATH = ['code'] # Separate paths by :, like the system path. raw_path = script.get('system_path', '').split(":") + DEFAULT_PATH # find additional comma-separated modules search path path = [] for dir in raw_path: if not dir: continue # path is an absolute path or a path relative to the data dir dir = os.path.join(self.system.filestore.root_path, dir) # Check that we are within the filestore tree. reldir = os.path.relpath(dir, self.system.filestore.root_path) if ".." in reldir: log.warning("Ignoring Python directory outside of course: %r" % dir) continue abs_dir = os.path.normpath(dir) path.append(abs_dir) return path def _extract_context(self, tree): ''' Extract content of <script>...</script> from the problem.xml file, and exec it in the context of this problem. Provides ability to randomize problems, and also set variables for problem answer checking. Problem XML goes to Python execution context. Runs everything in script tags. ''' context = {} context['seed'] = self.seed all_code = '' python_path = [] for script in tree.findall('.//script'): stype = script.get('type') if stype: if 'javascript' in stype: continue # skip javascript if 'perl' in stype: continue # skip perl # TODO: evaluate only python for d in self._extract_system_path(script): if d not in python_path and os.path.exists(d): python_path.append(d) XMLESC = {"'": "'", """: '"'} code = unescape(script.text, XMLESC) all_code += code if all_code: try: safe_exec( all_code, context, random_seed=self.seed, python_path=python_path, cache=self.system.cache, slug=self.problem_id, unsafely=self.system.can_execute_unsafe_code(), ) except Exception as err: log.exception("Error while execing script code: " + all_code) msg = "Error while executing script code: %s" % str( err).replace('<', '<') raise responsetypes.LoncapaProblemError(msg) # Store code source in context, along with the Python path needed to run it correctly. context['script_code'] = all_code context['python_path'] = python_path return context def _extract_html(self, problemtree): # private ''' Main (private) function which converts Problem XML tree to HTML. Calls itself recursively. Returns Element tree of XHTML representation of problemtree. Calls render_html of Response instances to render responses into XHTML. Used by get_html. ''' if (problemtree.tag == 'script' and problemtree.get('type') and 'javascript' in problemtree.get('type')): # leave javascript intact. return deepcopy(problemtree) if problemtree.tag in html_problem_semantics: return problemid = problemtree.get('id') # my ID if problemtree.tag in inputtypes.registry.registered_tags(): # If this is an inputtype subtree, let it render itself. status = "unsubmitted" msg = '' hint = '' hintmode = None input_id = problemtree.get('id') if problemid in self.correct_map: pid = input_id status = self.correct_map.get_correctness(pid) msg = self.correct_map.get_msg(pid) hint = self.correct_map.get_hint(pid) hintmode = self.correct_map.get_hintmode(pid) value = "" if self.student_answers and problemid in self.student_answers: value = self.student_answers[problemid] if input_id not in self.input_state: self.input_state[input_id] = {} # do the rendering state = { 'value': value, 'status': status, 'id': input_id, 'input_state': self.input_state[input_id], 'feedback': { 'message': msg, 'hint': hint, 'hintmode': hintmode, } } input_type_cls = inputtypes.registry.get_class_for_tag( problemtree.tag) # save the input type so that we can make ajax calls on it if we need to self.inputs[input_id] = input_type_cls(self.system, problemtree, state) return self.inputs[input_id].get_html() # let each Response render itself if problemtree in self.responders: overall_msg = self.correct_map.get_overall_message() return self.responders[problemtree].render_html( self._extract_html, response_msg=overall_msg) # let each custom renderer render itself: if problemtree.tag in customrender.registry.registered_tags(): renderer_class = customrender.registry.get_class_for_tag( problemtree.tag) renderer = renderer_class(self.system, problemtree) return renderer.get_html() # otherwise, render children recursively, and copy over attributes tree = etree.Element(problemtree.tag) for item in problemtree: item_xhtml = self._extract_html(item) if item_xhtml is not None: tree.append(item_xhtml) if tree.tag in html_transforms: tree.tag = html_transforms[problemtree.tag]['tag'] else: # copy attributes over if not innocufying for (key, value) in problemtree.items(): tree.set(key, value) tree.text = problemtree.text tree.tail = problemtree.tail return tree def _preprocess_problem(self, tree): # private ''' Assign IDs to all the responses Assign sub-IDs to all entries (textline, schematic, etc.) Annoted correctness and value In-place transformation Also create capa Response instances for each responsetype and save as self.responders Obtain all responder answers and save as self.responder_answers dict (key = response) ''' response_id = 1 self.responders = {} for response in tree.xpath('//' + "|//".join(response_tag_dict)): response_id_str = self.problem_id + "_" + str(response_id) # create and save ID for this response response.set('id', response_id_str) response_id += 1 answer_id = 1 input_tags = inputtypes.registry.registered_tags() inputfields = tree.xpath("|".join([ '//' + response.tag + '[@id=$id]//' + x for x in (input_tags + solution_tags) ]), id=response_id_str) # assign one answer_id for each input type or solution type for entry in inputfields: entry.attrib['response_id'] = str(response_id) entry.attrib['answer_id'] = str(answer_id) entry.attrib['id'] = "%s_%i_%i" % (self.problem_id, response_id, answer_id) answer_id = answer_id + 1 # instantiate capa Response responder = response_tag_dict[response.tag](response, inputfields, self.context, self.system) # save in list in self self.responders[response] = responder # get responder answers (do this only once, since there may be a performance cost, # eg with externalresponse) self.responder_answers = {} for response in self.responders.keys(): try: self.responder_answers[response] = self.responders[ response].get_answers() except: log.debug( 'responder %s failed to properly return get_answers()', self.responders[response]) # FIXME raise # <solution>...</solution> may not be associated with any specific response; give # IDs for those separately # TODO: We should make the namespaces consistent and unique (e.g. %s_problem_%i). solution_id = 1 for solution in tree.findall('.//solution'): solution.attrib['id'] = "%s_solution_%i" % (self.problem_id, solution_id) solution_id += 1
class LoncapaProblem(object): """ Main class for capa Problems. """ def __init__( self, problem_text, id, capa_system, capa_module, # pylint: disable=redefined-builtin state=None, seed=None): """ Initializes capa Problem. Arguments: problem_text (string): xml defining the problem. id (string): identifier for this problem, often a filename (no spaces). capa_system (LoncapaSystem): LoncapaSystem instance which provides OS, rendering, user context, and other resources. capa_module: instance needed to access runtime/logging state (dict): containing the following keys: - `seed` (int) random number generator seed - `student_answers` (dict) maps input id to the stored answer for that input - `correct_map` (CorrectMap) a map of each input to their 'correctness' - `done` (bool) indicates whether or not this problem is considered done - `input_state` (dict) maps input_id to a dictionary that holds the state for that input seed (int): random number generator seed. """ ## Initialize class variables from state self.do_reset() self.problem_id = id self.capa_system = capa_system self.capa_module = capa_module state = state or {} # Set seed according to the following priority: # 1. Contained in problem's state # 2. Passed into capa_problem via constructor self.seed = state.get('seed', seed) assert self.seed is not None, "Seed must be provided for LoncapaProblem." self.student_answers = state.get('student_answers', {}) if 'correct_map' in state: self.correct_map.set_dict(state['correct_map']) self.done = state.get('done', False) self.input_state = state.get('input_state', {}) # Convert startouttext and endouttext to proper <text></text> problem_text = re.sub(r"startouttext\s*/", "text", problem_text) problem_text = re.sub(r"endouttext\s*/", "/text", problem_text) self.problem_text = problem_text # parse problem XML file into an element tree self.tree = etree.XML(problem_text) self.make_xml_compatible(self.tree) # handle any <include file="foo"> tags self._process_includes() # construct script processor context (eg for customresponse problems) self.context = self._extract_context(self.tree) # Pre-parse the XML tree: modifies it to add ID's and perform some in-place # transformations. This also creates the dict (self.responders) of Response # instances for each question in the problem. The dict has keys = xml subtree of # Response, values = Response instance self.problem_data = self._preprocess_problem(self.tree) if not self.student_answers: # True when student_answers is an empty dict self.set_initial_display() # dictionary of InputType objects associated with this problem # input_id string -> InputType object self.inputs = {} # Run response late_transforms last (see MultipleChoiceResponse) # Sort the responses to be in *_1 *_2 ... order. responses = self.responders.values() responses = sorted( responses, key=lambda resp: int(resp.id[resp.id.rindex('_') + 1:])) for response in responses: if hasattr(response, 'late_transforms'): response.late_transforms(self) self.extracted_tree = self._extract_html(self.tree) def make_xml_compatible(self, tree): """ Adjust tree xml in-place for compatibility before creating a problem from it. The idea here is to provide a central point for XML translation, for example, supporting an old XML format. At present, there just two translations. 1. <additional_answer> compatibility translation: old: <additional_answer>ANSWER</additional_answer> convert to new: <additional_answer answer="ANSWER">OPTIONAL-HINT</addional_answer> 2. <optioninput> compatibility translation: optioninput works like this internally: <optioninput options="('yellow','blue','green')" correct="blue" /> With extended hints there is a new <option> tag, like this <option correct="True">blue <optionhint>sky color</optionhint> </option> This translation takes in the new format and synthesizes the old option= attribute so all downstream logic works unchanged with the new <option> tag format. """ additionals = tree.xpath('//stringresponse/additional_answer') for additional in additionals: answer = additional.get('answer') text = additional.text if not answer and text: # trigger of old->new conversion additional.set('answer', text) additional.text = '' for optioninput in tree.xpath('//optioninput'): correct_option = None child_options = [] for option_element in optioninput.findall('./option'): option_name = option_element.text.strip() if option_element.get('correct').upper() == 'TRUE': correct_option = option_name child_options.append("'" + option_name + "'") if len(child_options) > 0: options_string = '(' + ','.join(child_options) + ')' optioninput.attrib.update({'options': options_string}) if correct_option: optioninput.attrib.update({'correct': correct_option}) def do_reset(self): """ Reset internal state to unfinished, with no answers """ self.student_answers = dict() self.correct_map = CorrectMap() self.done = False def set_initial_display(self): """ Set the student's answers to the responders' initial displays, if specified. """ initial_answers = dict() for responder in self.responders.values(): if hasattr(responder, 'get_initial_display'): initial_answers.update(responder.get_initial_display()) self.student_answers = initial_answers def __unicode__(self): return u"LoncapaProblem ({0})".format(self.problem_id) def get_state(self): """ Stored per-user session data neeeded to: 1) Recreate the problem 2) Populate any student answers. """ return { 'seed': self.seed, 'student_answers': self.student_answers, 'correct_map': self.correct_map.get_dict(), 'input_state': self.input_state, 'done': self.done } def get_max_score(self): """ Return the maximum score for this problem. """ maxscore = 0 for responder in self.responders.values(): maxscore += responder.get_max_score() return maxscore def get_score(self): """ Compute score for this problem. The score is the number of points awarded. Returns a dictionary {'score': integer, from 0 to get_max_score(), 'total': get_max_score()}. """ correct = 0 for key in self.correct_map: try: correct += self.correct_map.get_npoints(key) except Exception: log.error('key=%s, correct_map = %s', key, self.correct_map) raise if (not self.student_answers) or len(self.student_answers) == 0: return {'score': 0, 'total': self.get_max_score()} else: return {'score': correct, 'total': self.get_max_score()} def update_score(self, score_msg, queuekey): """ Deliver grading response (e.g. from async code checking) to the specific ResponseType that requested grading Returns an updated CorrectMap """ cmap = CorrectMap() cmap.update(self.correct_map) for responder in self.responders.values(): if hasattr(responder, 'update_score'): # Each LoncapaResponse will update its specific entries in cmap # cmap is passed by reference responder.update_score(score_msg, cmap, queuekey) self.correct_map.set_dict(cmap.get_dict()) return cmap def ungraded_response(self, xqueue_msg, queuekey): """ Handle any responses from the xqueue that do not contain grades Will try to pass the queue message to all inputtypes that can handle ungraded responses Does not return any value """ # check against each inputtype for the_input in self.inputs.values(): # if the input type has an ungraded function, pass in the values if hasattr(the_input, 'ungraded_response'): the_input.ungraded_response(xqueue_msg, queuekey) def is_queued(self): """ Returns True if any part of the problem has been submitted to an external queue (e.g. for grading.) """ return any( self.correct_map.is_queued(answer_id) for answer_id in self.correct_map) def get_recentmost_queuetime(self): """ Returns a DateTime object that represents the timestamp of the most recent queueing request, or None if not queued """ if not self.is_queued(): return None # Get a list of timestamps of all queueing requests, then convert it to a DateTime object queuetime_strs = [ self.correct_map.get_queuetime_str(answer_id) for answer_id in self.correct_map if self.correct_map.is_queued(answer_id) ] queuetimes = [ datetime.strptime(qt_str, xqueue_interface.dateformat).replace(tzinfo=UTC) for qt_str in queuetime_strs ] return max(queuetimes) def grade_answers(self, answers): """ Grade student responses. Called by capa_module.check_problem. `answers` is a dict of all the entries from request.POST, but with the first part of each key removed (the string before the first "_"). Thus, for example, input_ID123 -> ID123, and input_fromjs_ID123 -> fromjs_ID123 Calls the Response for each question in this problem, to do the actual grading. """ # if answers include File objects, convert them to filenames. self.student_answers = convert_files_to_filenames(answers) return self._grade_answers(answers) def supports_rescoring(self): """ Checks that the current problem definition permits rescoring. More precisely, it checks that there are no response types in the current problem that are not fully supported (yet) for rescoring. This includes responsetypes for which the student's answer is not properly stored in state, i.e. file submissions. At present, we have no way to know if an existing response was actually a real answer or merely the filename of a file submitted as an answer. It turns out that because rescoring is a background task, limiting it to responsetypes that don't support file submissions also means that the responsetypes are synchronous. This is convenient as it permits rescoring to be complete when the rescoring call returns. """ return all('filesubmission' not in responder.allowed_inputfields for responder in self.responders.values()) def rescore_existing_answers(self): """ Rescore student responses. Called by capa_module.rescore_problem. """ return self._grade_answers(None) def _grade_answers(self, student_answers): """ Internal grading call used for checking new 'student_answers' and also rescoring existing student_answers. For new student_answers being graded, `student_answers` is a dict of all the entries from request.POST, but with the first part of each key removed (the string before the first "_"). Thus, for example, input_ID123 -> ID123, and input_fromjs_ID123 -> fromjs_ID123. For rescoring, `student_answers` is None. Calls the Response for each question in this problem, to do the actual grading. """ # old CorrectMap oldcmap = self.correct_map # start new with empty CorrectMap newcmap = CorrectMap() # Call each responsetype instance to do actual grading for responder in self.responders.values(): # File objects are passed only if responsetype explicitly allows # for file submissions. But we have no way of knowing if # student_answers contains a proper answer or the filename of # an earlier submission, so for now skip these entirely. # TODO: figure out where to get file submissions when rescoring. if 'filesubmission' in responder.allowed_inputfields and student_answers is None: _ = self.capa_system.i18n.ugettext raise Exception( _(u"Cannot rescore problems with possible file submissions" )) # use 'student_answers' only if it is provided, and if it might contain a file # submission that would not exist in the persisted "student_answers". if 'filesubmission' in responder.allowed_inputfields and student_answers is not None: results = responder.evaluate_answers(student_answers, oldcmap) else: results = responder.evaluate_answers(self.student_answers, oldcmap) newcmap.update(results) self.correct_map = newcmap return newcmap def get_question_answers(self): """ Returns a dict of answer_ids to answer values. If we cannot generate an answer (this sometimes happens in customresponses), that answer_id is not included. Called by "show answers" button JSON request (see capa_module) """ # dict of (id, correct_answer) answer_map = dict() for response in self.responders.keys(): results = self.responder_answers[response] answer_map.update(results) # include solutions from <solution>...</solution> stanzas for entry in self.tree.xpath("//" + "|//".join(solution_tags)): answer = etree.tostring(entry) if answer: answer_map[entry.get('id')] = contextualize_text( answer, self.context) log.debug('answer_map = %s', answer_map) return answer_map def get_answer_ids(self): """ Return the IDs of all the responses -- these are the keys used for the dicts returned by grade_answers and get_question_answers. (Though get_question_answers may only return a subset of these. """ answer_ids = [] for response in self.responders.keys(): results = self.responder_answers[response] answer_ids.append(results.keys()) return answer_ids def do_targeted_feedback(self, tree): """ Implements targeted-feedback in-place on <multiplechoiceresponse> -- choice-level explanations shown to a student after submission. Does nothing if there is no targeted-feedback attribute. """ # Note that the modifications has been done, avoiding problems if called twice. if hasattr(self, 'has_targeted'): return self.has_targeted = True # pylint: disable=attribute-defined-outside-init for mult_choice_response in tree.xpath( '//multiplechoiceresponse[@targeted-feedback]'): show_explanation = mult_choice_response.get( 'targeted-feedback') == 'alwaysShowCorrectChoiceExplanation' # Grab the first choicegroup (there should only be one within each <multiplechoiceresponse> tag) choicegroup = mult_choice_response.xpath( './choicegroup[@type="MultipleChoice"]')[0] choices_list = list(choicegroup.iter('choice')) # Find the student answer key that matches our <choicegroup> id student_answer = self.student_answers.get(choicegroup.get('id')) expl_id_for_student_answer = None # Keep track of the explanation-id that corresponds to the student's answer # Also, keep track of the solution-id solution_id = None for choice in choices_list: if choice.get('name') == student_answer: expl_id_for_student_answer = choice.get('explanation-id') if choice.get('correct') == 'true': solution_id = choice.get('explanation-id') # Filter out targetedfeedback that doesn't correspond to the answer the student selected # Note: following-sibling will grab all following siblings, so we just want the first in the list targetedfeedbackset = mult_choice_response.xpath( './following-sibling::targetedfeedbackset') if len(targetedfeedbackset) != 0: targetedfeedbackset = targetedfeedbackset[0] targetedfeedbacks = targetedfeedbackset.xpath( './targetedfeedback') for targetedfeedback in targetedfeedbacks: # Don't show targeted feedback if the student hasn't answer the problem # or if the target feedback doesn't match the student's (incorrect) answer if not self.done or targetedfeedback.get( 'explanation-id') != expl_id_for_student_answer: targetedfeedbackset.remove(targetedfeedback) # Do not displace the solution under these circumstances if not show_explanation or not self.done: continue # The next element should either be <solution> or <solutionset> next_element = targetedfeedbackset.getnext() parent_element = tree solution_element = None if next_element is not None and next_element.tag == 'solution': solution_element = next_element elif next_element is not None and next_element.tag == 'solutionset': solutions = next_element.xpath('./solution') for solution in solutions: if solution.get('explanation-id') == solution_id: parent_element = next_element solution_element = solution # If could not find the solution element, then skip the remaining steps below if solution_element is None: continue # Change our correct-choice explanation from a "solution explanation" to within # the set of targeted feedback, which means the explanation will render on the page # without the student clicking "Show Answer" or seeing a checkmark next to the correct choice parent_element.remove(solution_element) # Add our solution instead to the targetedfeedbackset and change its tag name solution_element.tag = 'targetedfeedback' targetedfeedbackset.append(solution_element) def get_html(self): """ Main method called externally to get the HTML to be rendered for this capa Problem. """ self.do_targeted_feedback(self.tree) html = contextualize_text( etree.tostring(self._extract_html(self.tree)), self.context) return html def handle_input_ajax(self, data): """ InputTypes can support specialized AJAX calls. Find the correct input and pass along the correct data Also, parse out the dispatch from the get so that it can be passed onto the input type nicely """ # pull out the id input_id = data['input_id'] if self.inputs[input_id]: dispatch = data['dispatch'] return self.inputs[input_id].handle_ajax(dispatch, data) else: log.warning("Could not find matching input for id: %s", input_id) return {} # ======= Private Methods Below ======== def _process_includes(self): """ Handle any <include file="foo"> tags by reading in the specified file and inserting it into our XML tree. Fail gracefully if debugging. """ includes = self.tree.findall('.//include') for inc in includes: filename = inc.get('file') if filename is not None: try: # open using LoncapaSystem OSFS filestore ifp = self.capa_system.filestore.open(filename) except Exception as err: log.warning('Error %s in problem xml include: %s', err, etree.tostring(inc, pretty_print=True)) log.warning('Cannot find file %s in %s', filename, self.capa_system.filestore) # if debugging, don't fail - just log error # TODO (vshnayder): need real error handling, display to users if not self.capa_system.DEBUG: raise else: continue try: # read in and convert to XML incxml = etree.XML(ifp.read()) except Exception as err: log.warning('Error %s in problem xml include: %s', err, etree.tostring(inc, pretty_print=True)) log.warning('Cannot parse XML in %s', (filename)) # if debugging, don't fail - just log error # TODO (vshnayder): same as above if not self.capa_system.DEBUG: raise else: continue # insert new XML into tree in place of include parent = inc.getparent() parent.insert(parent.index(inc), incxml) parent.remove(inc) log.debug('Included %s into %s', filename, self.problem_id) def _extract_system_path(self, script): """ Extracts and normalizes additional paths for code execution. For now, there's a default path of data/course/code; this may be removed at some point. script : ?? (TODO) """ DEFAULT_PATH = ['code'] # Separate paths by :, like the system path. raw_path = script.get('system_path', '').split(":") + DEFAULT_PATH # find additional comma-separated modules search path path = [] for dir in raw_path: if not dir: continue # path is an absolute path or a path relative to the data dir dir = os.path.join(self.capa_system.filestore.root_path, dir) # Check that we are within the filestore tree. reldir = os.path.relpath(dir, self.capa_system.filestore.root_path) if ".." in reldir: log.warning("Ignoring Python directory outside of course: %r", dir) continue abs_dir = os.path.normpath(dir) path.append(abs_dir) return path def _extract_context(self, tree): """ Extract content of <script>...</script> from the problem.xml file, and exec it in the context of this problem. Provides ability to randomize problems, and also set variables for problem answer checking. Problem XML goes to Python execution context. Runs everything in script tags. """ context = {} context['seed'] = self.seed context['anonymous_student_id'] = self.capa_system.anonymous_student_id all_code = '' python_path = [] for script in tree.findall('.//script'): stype = script.get('type') if stype: if 'javascript' in stype: continue # skip javascript if 'perl' in stype: continue # skip perl # TODO: evaluate only python for d in self._extract_system_path(script): if d not in python_path and os.path.exists(d): python_path.append(d) XMLESC = {"'": "'", """: '"'} code = unescape(script.text, XMLESC) all_code += code extra_files = [] if all_code: # An asset named python_lib.zip can be imported by Python code. zip_lib = self.capa_system.get_python_lib_zip() if zip_lib is not None: extra_files.append(("python_lib.zip", zip_lib)) python_path.append("python_lib.zip") try: safe_exec( all_code, context, random_seed=self.seed, python_path=python_path, extra_files=extra_files, cache=self.capa_system.cache, slug=self.problem_id, unsafely=self.capa_system.can_execute_unsafe_code(), ) except Exception as err: log.exception("Error while execing script code: " + all_code) msg = "Error while executing script code: %s" % str( err).replace('<', '<') raise responsetypes.LoncapaProblemError(msg) # Store code source in context, along with the Python path needed to run it correctly. context['script_code'] = all_code context['python_path'] = python_path context['extra_files'] = extra_files or None return context def _extract_html(self, problemtree): # private """ Main (private) function which converts Problem XML tree to HTML. Calls itself recursively. Returns Element tree of XHTML representation of problemtree. Calls render_html of Response instances to render responses into XHTML. Used by get_html. """ if not isinstance(problemtree.tag, basestring): # Comment and ProcessingInstruction nodes are not Elements, # and we're ok leaving those behind. # BTW: etree gives us no good way to distinguish these things # other than to examine .tag to see if it's a string. :( return if (problemtree.tag == 'script' and problemtree.get('type') and 'javascript' in problemtree.get('type')): # leave javascript intact. return deepcopy(problemtree) if problemtree.tag in html_problem_semantics: return problemid = problemtree.get('id') # my ID if problemtree.tag in inputtypes.registry.registered_tags(): # If this is an inputtype subtree, let it render itself. response_data = self.problem_data[problemid] status = 'unsubmitted' msg = '' hint = '' hintmode = None input_id = problemtree.get('id') answervariable = None if problemid in self.correct_map: pid = input_id status = self.correct_map.get_correctness(pid) msg = self.correct_map.get_msg(pid) hint = self.correct_map.get_hint(pid) hintmode = self.correct_map.get_hintmode(pid) answervariable = self.correct_map.get_property( pid, 'answervariable') value = '' if self.student_answers and problemid in self.student_answers: value = self.student_answers[problemid] if input_id not in self.input_state: self.input_state[input_id] = {} # do the rendering state = { 'value': value, 'status': status, 'id': input_id, 'input_state': self.input_state[input_id], 'answervariable': answervariable, 'response_data': response_data, 'feedback': { 'message': msg, 'hint': hint, 'hintmode': hintmode, } } input_type_cls = inputtypes.registry.get_class_for_tag( problemtree.tag) # save the input type so that we can make ajax calls on it if we need to self.inputs[input_id] = input_type_cls(self.capa_system, problemtree, state) return self.inputs[input_id].get_html() # let each Response render itself if problemtree in self.responders: overall_msg = self.correct_map.get_overall_message() return self.responders[problemtree].render_html( self._extract_html, response_msg=overall_msg) # let each custom renderer render itself: if problemtree.tag in customrender.registry.registered_tags(): renderer_class = customrender.registry.get_class_for_tag( problemtree.tag) renderer = renderer_class(self.capa_system, problemtree) return renderer.get_html() # otherwise, render children recursively, and copy over attributes tree = etree.Element(problemtree.tag) for item in problemtree: item_xhtml = self._extract_html(item) if item_xhtml is not None: tree.append(item_xhtml) if tree.tag in html_transforms: tree.tag = html_transforms[problemtree.tag]['tag'] else: # copy attributes over if not innocufying for (key, value) in problemtree.items(): tree.set(key, value) tree.text = problemtree.text tree.tail = problemtree.tail return tree def _preprocess_problem(self, tree): # private """ Assign IDs to all the responses Assign sub-IDs to all entries (textline, schematic, etc.) Annoted correctness and value In-place transformation Also create capa Response instances for each responsetype and save as self.responders Obtain all responder answers and save as self.responder_answers dict (key = response) """ response_id = 1 problem_data = {} self.responders = {} for response in tree.xpath( '//' + "|//".join(responsetypes.registry.registered_tags())): responsetype_id = self.problem_id + "_" + str(response_id) # create and save ID for this response response.set('id', responsetype_id) response_id += 1 answer_id = 1 input_tags = inputtypes.registry.registered_tags() inputfields = tree.xpath("|".join( ['//' + response.tag + '[@id=$id]//' + x for x in input_tags]), id=responsetype_id) # assign one answer_id for each input type for entry in inputfields: entry.attrib['response_id'] = str(response_id) entry.attrib['answer_id'] = str(answer_id) entry.attrib['id'] = "%s_%i_%i" % (self.problem_id, response_id, answer_id) answer_id = answer_id + 1 self.response_a11y_data(response, inputfields, responsetype_id, problem_data) # instantiate capa Response responsetype_cls = responsetypes.registry.get_class_for_tag( response.tag) responder = responsetype_cls(response, inputfields, self.context, self.capa_system, self.capa_module) # save in list in self self.responders[response] = responder # get responder answers (do this only once, since there may be a performance cost, # eg with externalresponse) self.responder_answers = {} for response in self.responders.keys(): try: self.responder_answers[response] = self.responders[ response].get_answers() except: log.debug( 'responder %s failed to properly return get_answers()', self.responders[response]) # FIXME raise # <solution>...</solution> may not be associated with any specific response; give # IDs for those separately # TODO: We should make the namespaces consistent and unique (e.g. %s_problem_%i). solution_id = 1 for solution in tree.findall('.//solution'): solution.attrib['id'] = "%s_solution_%i" % (self.problem_id, solution_id) solution_id += 1 return problem_data def response_a11y_data(self, response, inputfields, responsetype_id, problem_data): """ Construct data to be used for a11y. Arguments: response (object): xml response object inputfields (list): list of inputfields in a responsetype responsetype_id (str): responsetype id problem_data (dict): dict to be filled with response data """ # if there are no inputtypes then don't do anything if not inputfields: return element_to_be_deleted = None label = '' if len(inputfields) > 1: response.set('multiple_inputtypes', 'true') group_label_tag = response.find('label') group_label_tag_text = '' if group_label_tag is not None: group_label_tag.tag = 'p' group_label_tag.set('id', responsetype_id) group_label_tag.set('class', 'multi-inputs-group-label') group_label_tag_text = group_label_tag.text for inputfield in inputfields: problem_data[inputfield.get('id')] = { 'group_label': group_label_tag_text, 'label': inputfield.attrib.get('label', ''), 'descriptions': {} } else: # Extract label value from <label> tag or label attribute from inside the responsetype responsetype_label_tag = response.find('label') if responsetype_label_tag is not None: label = responsetype_label_tag.text # store <label> tag containing question text to delete # it later otherwise question will be rendered twice element_to_be_deleted = responsetype_label_tag elif 'label' in inputfields[0].attrib: # in this case we have old problems with label attribute and p tag having question in it # we will pick the first sibling of responsetype if its a p tag and match the text with # the label attribute text. if they are equal then we will use this text as question. # Get first <p> tag before responsetype, this <p> may contains the question text. p_tag = response.xpath('preceding-sibling::*[1][self::p]') if p_tag and p_tag[0].text == inputfields[0].attrib['label']: label = p_tag[0].text element_to_be_deleted = p_tag[0] else: # In this case the problems don't have tag or label attribute inside the responsetype # so we will get the first preceding label tag w.r.t to this responsetype. # This will take care of those multi-question problems that are not using --- in their markdown. label_tag = response.xpath( 'preceding-sibling::*[1][self::label]') if label_tag: label = label_tag[0].text element_to_be_deleted = label_tag[0] # delete label or p element only if inputtype is fully accessible if inputfields[ 0].tag in ACCESSIBLE_CAPA_INPUT_TYPES and element_to_be_deleted is not None: element_to_be_deleted.getparent().remove(element_to_be_deleted) # Extract descriptions and set unique id on each description tag description_tags = response.findall('description') description_id = 1 descriptions = OrderedDict() for description in description_tags: descriptions["description_%s_%i" % (responsetype_id, description_id)] = description.text response.remove(description) description_id += 1 problem_data[inputfields[0].get('id')] = { 'label': label.strip() if label else '', 'descriptions': descriptions }
class LoncapaProblem(object): ''' Main class for capa Problems. ''' def __init__(self, problem_text, id, state=None, seed=None, system=None): ''' Initializes capa Problem. Arguments: - problem_text (string): xml defining the problem - id (string): identifier for this problem; often a filename (no spaces) - seed (int): random number generator seed (int) - state (dict): containing the following keys: - 'seed' - (int) random number generator seed - 'student_answers' - (dict) maps input id to the stored answer for that input - 'correct_map' (CorrectMap) a map of each input to their 'correctness' - 'done' - (bool) indicates whether or not this problem is considered done - 'input_state' - (dict) maps input_id to a dictionary that holds the state for that input - system (ModuleSystem): ModuleSystem instance which provides OS, rendering, and user context ''' ## Initialize class variables from state self.do_reset() self.problem_id = id self.system = system if self.system is None: raise Exception() state = state or {} # Set seed according to the following priority: # 1. Contained in problem's state # 2. Passed into capa_problem via constructor self.seed = state.get('seed', seed) assert self.seed is not None, "Seed must be provided for LoncapaProblem." self.student_answers = state.get('student_answers', {}) if 'correct_map' in state: self.correct_map.set_dict(state['correct_map']) self.done = state.get('done', False) self.input_state = state.get('input_state', {}) # Convert startouttext and endouttext to proper <text></text> problem_text = re.sub(r"startouttext\s*/", "text", problem_text) problem_text = re.sub(r"endouttext\s*/", "/text", problem_text) self.problem_text = problem_text # parse problem XML file into an element tree self.tree = etree.XML(problem_text) # handle any <include file="foo"> tags self._process_includes() # construct script processor context (eg for customresponse problems) self.context = self._extract_context(self.tree) # Pre-parse the XML tree: modifies it to add ID's and perform some in-place # transformations. This also creates the dict (self.responders) of Response # instances for each question in the problem. The dict has keys = xml subtree of # Response, values = Response instance self._preprocess_problem(self.tree) if not self.student_answers: # True when student_answers is an empty dict self.set_initial_display() # dictionary of InputType objects associated with this problem # input_id string -> InputType object self.inputs = {} self.extracted_tree = self._extract_html(self.tree) def do_reset(self): ''' Reset internal state to unfinished, with no answers ''' self.student_answers = dict() self.correct_map = CorrectMap() self.done = False def set_initial_display(self): """ Set the student's answers to the responders' initial displays, if specified. """ initial_answers = dict() for responder in self.responders.values(): if hasattr(responder, 'get_initial_display'): initial_answers.update(responder.get_initial_display()) self.student_answers = initial_answers def __unicode__(self): return u"LoncapaProblem ({0})".format(self.problem_id) def get_state(self): ''' Stored per-user session data neeeded to: 1) Recreate the problem 2) Populate any student answers. ''' return {'seed': self.seed, 'student_answers': self.student_answers, 'correct_map': self.correct_map.get_dict(), 'input_state': self.input_state, 'done': self.done} def get_max_score(self): ''' Return the maximum score for this problem. ''' maxscore = 0 for responder in self.responders.values(): maxscore += responder.get_max_score() return maxscore def get_score(self): """ Compute score for this problem. The score is the number of points awarded. Returns a dictionary {'score': integer, from 0 to get_max_score(), 'total': get_max_score()}. """ correct = 0 for key in self.correct_map: try: correct += self.correct_map.get_npoints(key) except Exception: log.error('key=%s, correct_map = %s' % (key, self.correct_map)) raise if (not self.student_answers) or len(self.student_answers) == 0: return {'score': 0, 'total': self.get_max_score()} else: return {'score': correct, 'total': self.get_max_score()} def update_score(self, score_msg, queuekey): ''' Deliver grading response (e.g. from async code checking) to the specific ResponseType that requested grading Returns an updated CorrectMap ''' cmap = CorrectMap() cmap.update(self.correct_map) for responder in self.responders.values(): if hasattr(responder, 'update_score'): # Each LoncapaResponse will update its specific entries in cmap # cmap is passed by reference responder.update_score(score_msg, cmap, queuekey) self.correct_map.set_dict(cmap.get_dict()) return cmap def ungraded_response(self, xqueue_msg, queuekey): ''' Handle any responses from the xqueue that do not contain grades Will try to pass the queue message to all inputtypes that can handle ungraded responses Does not return any value ''' # check against each inputtype for the_input in self.inputs.values(): # if the input type has an ungraded function, pass in the values if hasattr(the_input, 'ungraded_response'): the_input.ungraded_response(xqueue_msg, queuekey) def is_queued(self): ''' Returns True if any part of the problem has been submitted to an external queue (e.g. for grading.) ''' return any(self.correct_map.is_queued(answer_id) for answer_id in self.correct_map) def get_recentmost_queuetime(self): ''' Returns a DateTime object that represents the timestamp of the most recent queueing request, or None if not queued ''' if not self.is_queued(): return None # Get a list of timestamps of all queueing requests, then convert it to a DateTime object queuetime_strs = [ self.correct_map.get_queuetime_str(answer_id) for answer_id in self.correct_map if self.correct_map.is_queued(answer_id) ] queuetimes = [ datetime.strptime(qt_str, xqueue_interface.dateformat).replace(tzinfo=UTC) for qt_str in queuetime_strs ] return max(queuetimes) def grade_answers(self, answers): ''' Grade student responses. Called by capa_module.check_problem. `answers` is a dict of all the entries from request.POST, but with the first part of each key removed (the string before the first "_"). Thus, for example, input_ID123 -> ID123, and input_fromjs_ID123 -> fromjs_ID123 Calls the Response for each question in this problem, to do the actual grading. ''' # if answers include File objects, convert them to filenames. self.student_answers = convert_files_to_filenames(answers) return self._grade_answers(answers) def supports_rescoring(self): """ Checks that the current problem definition permits rescoring. More precisely, it checks that there are no response types in the current problem that are not fully supported (yet) for rescoring. This includes responsetypes for which the student's answer is not properly stored in state, i.e. file submissions. At present, we have no way to know if an existing response was actually a real answer or merely the filename of a file submitted as an answer. It turns out that because rescoring is a background task, limiting it to responsetypes that don't support file submissions also means that the responsetypes are synchronous. This is convenient as it permits rescoring to be complete when the rescoring call returns. """ return all('filesubmission' not in responder.allowed_inputfields for responder in self.responders.values()) def rescore_existing_answers(self): """ Rescore student responses. Called by capa_module.rescore_problem. """ return self._grade_answers(None) def _grade_answers(self, student_answers): """ Internal grading call used for checking new 'student_answers' and also rescoring existing student_answers. For new student_answers being graded, `student_answers` is a dict of all the entries from request.POST, but with the first part of each key removed (the string before the first "_"). Thus, for example, input_ID123 -> ID123, and input_fromjs_ID123 -> fromjs_ID123. For rescoring, `student_answers` is None. Calls the Response for each question in this problem, to do the actual grading. """ # old CorrectMap oldcmap = self.correct_map # start new with empty CorrectMap newcmap = CorrectMap() # Call each responsetype instance to do actual grading for responder in self.responders.values(): # File objects are passed only if responsetype explicitly allows # for file submissions. But we have no way of knowing if # student_answers contains a proper answer or the filename of # an earlier submission, so for now skip these entirely. # TODO: figure out where to get file submissions when rescoring. if 'filesubmission' in responder.allowed_inputfields and student_answers is None: raise Exception("Cannot rescore problems with possible file submissions") # use 'student_answers' only if it is provided, and if it might contain a file # submission that would not exist in the persisted "student_answers". if 'filesubmission' in responder.allowed_inputfields and student_answers is not None: results = responder.evaluate_answers(student_answers, oldcmap) else: results = responder.evaluate_answers(self.student_answers, oldcmap) newcmap.update(results) self.correct_map = newcmap return newcmap def get_question_answers(self): """ Returns a dict of answer_ids to answer values. If we cannot generate an answer (this sometimes happens in customresponses), that answer_id is not included. Called by "show answers" button JSON request (see capa_module) """ # dict of (id, correct_answer) answer_map = dict() for response in self.responders.keys(): results = self.responder_answers[response] answer_map.update(results) # include solutions from <solution>...</solution> stanzas for entry in self.tree.xpath("//" + "|//".join(solution_tags)): answer = etree.tostring(entry) if answer: answer_map[entry.get('id')] = contextualize_text(answer, self.context) log.debug('answer_map = %s' % answer_map) return answer_map def get_answer_ids(self): """ Return the IDs of all the responses -- these are the keys used for the dicts returned by grade_answers and get_question_answers. (Though get_question_answers may only return a subset of these. """ answer_ids = [] for response in self.responders.keys(): results = self.responder_answers[response] answer_ids.append(results.keys()) return answer_ids def get_html(self): ''' Main method called externally to get the HTML to be rendered for this capa Problem. ''' html = contextualize_text(etree.tostring(self._extract_html(self.tree)), self.context) return html def handle_input_ajax(self, data): ''' InputTypes can support specialized AJAX calls. Find the correct input and pass along the correct data Also, parse out the dispatch from the get so that it can be passed onto the input type nicely ''' # pull out the id input_id = data['input_id'] if self.inputs[input_id]: dispatch = data['dispatch'] return self.inputs[input_id].handle_ajax(dispatch, data) else: log.warning("Could not find matching input for id: %s" % input_id) return {} # ======= Private Methods Below ======== def _process_includes(self): ''' Handle any <include file="foo"> tags by reading in the specified file and inserting it into our XML tree. Fail gracefully if debugging. ''' includes = self.tree.findall('.//include') for inc in includes: filename = inc.get('file') if filename is not None: try: # open using ModuleSystem OSFS filestore ifp = self.system.filestore.open(filename) except Exception as err: log.warning( 'Error %s in problem xml include: %s' % ( err, etree.tostring(inc, pretty_print=True) ) ) log.warning( 'Cannot find file %s in %s' % ( filename, self.system.filestore ) ) # if debugging, don't fail - just log error # TODO (vshnayder): need real error handling, display to users if not self.system.get('DEBUG'): raise else: continue try: # read in and convert to XML incxml = etree.XML(ifp.read()) except Exception as err: log.warning( 'Error %s in problem xml include: %s' % ( err, etree.tostring(inc, pretty_print=True) ) ) log.warning('Cannot parse XML in %s' % (filename)) # if debugging, don't fail - just log error # TODO (vshnayder): same as above if not self.system.get('DEBUG'): raise else: continue # insert new XML into tree in place of include parent = inc.getparent() parent.insert(parent.index(inc), incxml) parent.remove(inc) log.debug('Included %s into %s' % (filename, self.problem_id)) def _extract_system_path(self, script): """ Extracts and normalizes additional paths for code execution. For now, there's a default path of data/course/code; this may be removed at some point. script : ?? (TODO) """ DEFAULT_PATH = ['code'] # Separate paths by :, like the system path. raw_path = script.get('system_path', '').split(":") + DEFAULT_PATH # find additional comma-separated modules search path path = [] for dir in raw_path: if not dir: continue # path is an absolute path or a path relative to the data dir dir = os.path.join(self.system.filestore.root_path, dir) # Check that we are within the filestore tree. reldir = os.path.relpath(dir, self.system.filestore.root_path) if ".." in reldir: log.warning("Ignoring Python directory outside of course: %r" % dir) continue abs_dir = os.path.normpath(dir) path.append(abs_dir) return path def _extract_context(self, tree): ''' Extract content of <script>...</script> from the problem.xml file, and exec it in the context of this problem. Provides ability to randomize problems, and also set variables for problem answer checking. Problem XML goes to Python execution context. Runs everything in script tags. ''' context = {} context['seed'] = self.seed all_code = '' python_path = [] for script in tree.findall('.//script'): stype = script.get('type') if stype: if 'javascript' in stype: continue # skip javascript if 'perl' in stype: continue # skip perl # TODO: evaluate only python for d in self._extract_system_path(script): if d not in python_path and os.path.exists(d): python_path.append(d) XMLESC = {"'": "'", """: '"'} code = unescape(script.text, XMLESC) all_code += code if all_code: try: safe_exec( all_code, context, random_seed=self.seed, python_path=python_path, cache=self.system.cache, slug=self.problem_id, unsafely=self.system.can_execute_unsafe_code(), ) except Exception as err: log.exception("Error while execing script code: " + all_code) msg = "Error while executing script code: %s" % str(err).replace('<', '<') raise responsetypes.LoncapaProblemError(msg) # Store code source in context, along with the Python path needed to run it correctly. context['script_code'] = all_code context['python_path'] = python_path return context def _extract_html(self, problemtree): # private ''' Main (private) function which converts Problem XML tree to HTML. Calls itself recursively. Returns Element tree of XHTML representation of problemtree. Calls render_html of Response instances to render responses into XHTML. Used by get_html. ''' if not isinstance(problemtree.tag, basestring): # Comment and ProcessingInstruction nodes are not Elements, # and we're ok leaving those behind. # BTW: etree gives us no good way to distinguish these things # other than to examine .tag to see if it's a string. :( return if (problemtree.tag == 'script' and problemtree.get('type') and 'javascript' in problemtree.get('type')): # leave javascript intact. return deepcopy(problemtree) if problemtree.tag in html_problem_semantics: return problemid = problemtree.get('id') # my ID if problemtree.tag in inputtypes.registry.registered_tags(): # If this is an inputtype subtree, let it render itself. status = "unsubmitted" msg = '' hint = '' hintmode = None input_id = problemtree.get('id') if problemid in self.correct_map: pid = input_id status = self.correct_map.get_correctness(pid) msg = self.correct_map.get_msg(pid) hint = self.correct_map.get_hint(pid) hintmode = self.correct_map.get_hintmode(pid) value = "" if self.student_answers and problemid in self.student_answers: value = self.student_answers[problemid] if input_id not in self.input_state: self.input_state[input_id] = {} # do the rendering state = {'value': value, 'status': status, 'id': input_id, 'input_state': self.input_state[input_id], 'feedback': {'message': msg, 'hint': hint, 'hintmode': hintmode, }} input_type_cls = inputtypes.registry.get_class_for_tag(problemtree.tag) # save the input type so that we can make ajax calls on it if we need to self.inputs[input_id] = input_type_cls(self.system, problemtree, state) return self.inputs[input_id].get_html() # let each Response render itself if problemtree in self.responders: overall_msg = self.correct_map.get_overall_message() return self.responders[problemtree].render_html( self._extract_html, response_msg=overall_msg ) # let each custom renderer render itself: if problemtree.tag in customrender.registry.registered_tags(): renderer_class = customrender.registry.get_class_for_tag(problemtree.tag) renderer = renderer_class(self.system, problemtree) return renderer.get_html() # otherwise, render children recursively, and copy over attributes tree = etree.Element(problemtree.tag) for item in problemtree: item_xhtml = self._extract_html(item) if item_xhtml is not None: tree.append(item_xhtml) if tree.tag in html_transforms: tree.tag = html_transforms[problemtree.tag]['tag'] else: # copy attributes over if not innocufying for (key, value) in problemtree.items(): tree.set(key, value) tree.text = problemtree.text tree.tail = problemtree.tail return tree def _preprocess_problem(self, tree): # private ''' Assign IDs to all the responses Assign sub-IDs to all entries (textline, schematic, etc.) Annoted correctness and value In-place transformation Also create capa Response instances for each responsetype and save as self.responders Obtain all responder answers and save as self.responder_answers dict (key = response) ''' response_id = 1 self.responders = {} for response in tree.xpath('//' + "|//".join(responsetypes.registry.registered_tags())): response_id_str = self.problem_id + "_" + str(response_id) # create and save ID for this response response.set('id', response_id_str) response_id += 1 answer_id = 1 input_tags = inputtypes.registry.registered_tags() inputfields = tree.xpath( "|".join(['//' + response.tag + '[@id=$id]//' + x for x in (input_tags + solution_tags)]), id=response_id_str ) # assign one answer_id for each input type or solution type for entry in inputfields: entry.attrib['response_id'] = str(response_id) entry.attrib['answer_id'] = str(answer_id) entry.attrib['id'] = "%s_%i_%i" % (self.problem_id, response_id, answer_id) answer_id = answer_id + 1 # instantiate capa Response responsetype_cls = responsetypes.registry.get_class_for_tag(response.tag) responder = responsetype_cls(response, inputfields, self.context, self.system) # save in list in self self.responders[response] = responder # get responder answers (do this only once, since there may be a performance cost, # eg with externalresponse) self.responder_answers = {} for response in self.responders.keys(): try: self.responder_answers[response] = self.responders[response].get_answers() except: log.debug('responder %s failed to properly return get_answers()', self.responders[response]) # FIXME raise # <solution>...</solution> may not be associated with any specific response; give # IDs for those separately # TODO: We should make the namespaces consistent and unique (e.g. %s_problem_%i). solution_id = 1 for solution in tree.findall('.//solution'): solution.attrib['id'] = "%s_solution_%i" % (self.problem_id, solution_id) solution_id += 1
class CorrectMapTest(unittest.TestCase): """ Tests to verify that CorrectMap behaves correctly """ def setUp(self): self.cmap = CorrectMap() def test_set_input_properties(self): # Set the correctmap properties for two inputs self.cmap.set(answer_id='1_2_1', correctness='correct', npoints=5, msg='Test message', hint='Test hint', hintmode='always', queuestate={ 'key': 'secretstring', 'time': '20130228100026' }) self.cmap.set(answer_id='2_2_1', correctness='incorrect', npoints=None, msg=None, hint=None, hintmode=None, queuestate=None) # Assert that each input has the expected properties self.assertTrue(self.cmap.is_correct('1_2_1')) self.assertFalse(self.cmap.is_correct('2_2_1')) self.assertEqual(self.cmap.get_correctness('1_2_1'), 'correct') self.assertEqual(self.cmap.get_correctness('2_2_1'), 'incorrect') self.assertEqual(self.cmap.get_npoints('1_2_1'), 5) self.assertEqual(self.cmap.get_npoints('2_2_1'), 0) self.assertEqual(self.cmap.get_msg('1_2_1'), 'Test message') self.assertEqual(self.cmap.get_msg('2_2_1'), None) self.assertEqual(self.cmap.get_hint('1_2_1'), 'Test hint') self.assertEqual(self.cmap.get_hint('2_2_1'), None) self.assertEqual(self.cmap.get_hintmode('1_2_1'), 'always') self.assertEqual(self.cmap.get_hintmode('2_2_1'), None) self.assertTrue(self.cmap.is_queued('1_2_1')) self.assertFalse(self.cmap.is_queued('2_2_1')) self.assertEqual(self.cmap.get_queuetime_str('1_2_1'), '20130228100026') self.assertEqual(self.cmap.get_queuetime_str('2_2_1'), None) self.assertTrue(self.cmap.is_right_queuekey('1_2_1', 'secretstring')) self.assertFalse(self.cmap.is_right_queuekey('1_2_1', 'invalidstr')) self.assertFalse(self.cmap.is_right_queuekey('1_2_1', '')) self.assertFalse(self.cmap.is_right_queuekey('1_2_1', None)) self.assertFalse(self.cmap.is_right_queuekey('2_2_1', 'secretstring')) self.assertFalse(self.cmap.is_right_queuekey('2_2_1', 'invalidstr')) self.assertFalse(self.cmap.is_right_queuekey('2_2_1', '')) self.assertFalse(self.cmap.is_right_queuekey('2_2_1', None)) def test_get_npoints(self): # Set the correctmap properties for 4 inputs # 1) correct, 5 points # 2) correct, None points # 3) incorrect, 5 points # 4) incorrect, None points # 5) correct, 0 points self.cmap.set(answer_id='1_2_1', correctness='correct', npoints=5) self.cmap.set(answer_id='2_2_1', correctness='correct', npoints=None) self.cmap.set(answer_id='3_2_1', correctness='incorrect', npoints=5) self.cmap.set(answer_id='4_2_1', correctness='incorrect', npoints=None) self.cmap.set(answer_id='5_2_1', correctness='correct', npoints=0) # Assert that we get the expected points # If points assigned --> npoints # If no points assigned and correct --> 1 point # If no points assigned and incorrect --> 0 points self.assertEqual(self.cmap.get_npoints('1_2_1'), 5) self.assertEqual(self.cmap.get_npoints('2_2_1'), 1) self.assertEqual(self.cmap.get_npoints('3_2_1'), 5) self.assertEqual(self.cmap.get_npoints('4_2_1'), 0) self.assertEqual(self.cmap.get_npoints('5_2_1'), 0) def test_set_overall_message(self): # Default is an empty string string self.assertEqual(self.cmap.get_overall_message(), "") # Set a message that applies to the whole question self.cmap.set_overall_message("Test message") # Retrieve the message self.assertEqual(self.cmap.get_overall_message(), "Test message") # Setting the message to None --> empty string self.cmap.set_overall_message(None) self.assertEqual(self.cmap.get_overall_message(), "") def test_update_from_correctmap(self): # Initialize a CorrectMap with some properties self.cmap.set(answer_id='1_2_1', correctness='correct', npoints=5, msg='Test message', hint='Test hint', hintmode='always', queuestate={ 'key': 'secretstring', 'time': '20130228100026' }) self.cmap.set_overall_message("Test message") # Create a second cmap, then update it to have the same properties # as the first cmap other_cmap = CorrectMap() other_cmap.update(self.cmap) # Assert that it has all the same properties self.assertEqual(other_cmap.get_overall_message(), self.cmap.get_overall_message()) self.assertEqual(other_cmap.get_dict(), self.cmap.get_dict()) def test_update_from_invalid(self): # Should get an exception if we try to update() a CorrectMap # with a non-CorrectMap value invalid_list = [None, "string", 5, datetime.datetime.today()] for invalid in invalid_list: with self.assertRaises(Exception): self.cmap.update(invalid)
class LoncapaProblem(object): """ Main class for capa Problems. """ def __init__(self, problem_text, id, capa_system, capa_module, # pylint: disable=redefined-builtin state=None, seed=None, minimal_init=False, extract_tree=True): """ Initializes capa Problem. Arguments: problem_text (string): xml defining the problem. id (string): identifier for this problem, often a filename (no spaces). capa_system (LoncapaSystem): LoncapaSystem instance which provides OS, rendering, user context, and other resources. capa_module: instance needed to access runtime/logging state (dict): containing the following keys: - `seed` (int) random number generator seed - `student_answers` (dict) maps input id to the stored answer for that input - 'has_saved_answers' (Boolean) True if the answer has been saved since last submit. - `correct_map` (CorrectMap) a map of each input to their 'correctness' - `done` (bool) indicates whether or not this problem is considered done - `input_state` (dict) maps input_id to a dictionary that holds the state for that input seed (int): random number generator seed. minimal_init (bool): whether to skip pre-processing student answers extract_tree (bool): whether to parse the problem XML and store the HTML """ ## Initialize class variables from state self.do_reset() self.problem_id = id self.capa_system = capa_system self.capa_module = capa_module state = state or {} # Set seed according to the following priority: # 1. Contained in problem's state # 2. Passed into capa_problem via constructor self.seed = state.get('seed', seed) assert self.seed is not None, "Seed must be provided for LoncapaProblem." self.student_answers = state.get('student_answers', {}) self.has_saved_answers = state.get('has_saved_answers', False) if 'correct_map' in state: self.correct_map.set_dict(state['correct_map']) self.done = state.get('done', False) self.input_state = state.get('input_state', {}) # Convert startouttext and endouttext to proper <text></text> problem_text = re.sub(r"startouttext\s*/", "text", problem_text) problem_text = re.sub(r"endouttext\s*/", "/text", problem_text) self.problem_text = problem_text # parse problem XML file into an element tree self.tree = etree.XML(problem_text) self.make_xml_compatible(self.tree) # handle any <include file="foo"> tags self._process_includes() # construct script processor context (eg for customresponse problems) if minimal_init: self.context = {} else: self.context = self._extract_context(self.tree) # Pre-parse the XML tree: modifies it to add ID's and perform some in-place # transformations. This also creates the dict (self.responders) of Response # instances for each question in the problem. The dict has keys = xml subtree of # Response, values = Response instance self.problem_data = self._preprocess_problem(self.tree, minimal_init) if not minimal_init: if not self.student_answers: # True when student_answers is an empty dict self.set_initial_display() # dictionary of InputType objects associated with this problem # input_id string -> InputType object self.inputs = {} # Run response late_transforms last (see MultipleChoiceResponse) # Sort the responses to be in *_1 *_2 ... order. responses = self.responders.values() responses = sorted(responses, key=lambda resp: int(resp.id[resp.id.rindex('_') + 1:])) for response in responses: if hasattr(response, 'late_transforms'): response.late_transforms(self) if extract_tree: self.extracted_tree = self._extract_html(self.tree) def make_xml_compatible(self, tree): """ Adjust tree xml in-place for compatibility before creating a problem from it. The idea here is to provide a central point for XML translation, for example, supporting an old XML format. At present, there just two translations. 1. <additional_answer> compatibility translation: old: <additional_answer>ANSWER</additional_answer> convert to new: <additional_answer answer="ANSWER">OPTIONAL-HINT</addional_answer> 2. <optioninput> compatibility translation: optioninput works like this internally: <optioninput options="('yellow','blue','green')" correct="blue" /> With extended hints there is a new <option> tag, like this <option correct="True">blue <optionhint>sky color</optionhint> </option> This translation takes in the new format and synthesizes the old option= attribute so all downstream logic works unchanged with the new <option> tag format. """ additionals = tree.xpath('//stringresponse/additional_answer') for additional in additionals: answer = additional.get('answer') text = additional.text if not answer and text: # trigger of old->new conversion additional.set('answer', text) additional.text = '' for optioninput in tree.xpath('//optioninput'): correct_option = None child_options = [] for option_element in optioninput.findall('./option'): option_name = option_element.text.strip() if option_element.get('correct').upper() == 'TRUE': correct_option = option_name child_options.append("'" + option_name + "'") if len(child_options) > 0: options_string = '(' + ','.join(child_options) + ')' optioninput.attrib.update({'options': options_string}) if correct_option: optioninput.attrib.update({'correct': correct_option}) def do_reset(self): """ Reset internal state to unfinished, with no answers """ self.student_answers = dict() self.has_saved_answers = False self.correct_map = CorrectMap() self.done = False def set_initial_display(self): """ Set the student's answers to the responders' initial displays, if specified. """ initial_answers = dict() for responder in self.responders.values(): if hasattr(responder, 'get_initial_display'): initial_answers.update(responder.get_initial_display()) self.student_answers = initial_answers def __unicode__(self): return u"LoncapaProblem ({0})".format(self.problem_id) def get_state(self): """ Stored per-user session data neeeded to: 1) Recreate the problem 2) Populate any student answers. """ return {'seed': self.seed, 'student_answers': self.student_answers, 'has_saved_answers': self.has_saved_answers, 'correct_map': self.correct_map.get_dict(), 'input_state': self.input_state, 'done': self.done} def get_max_score(self): """ Return the maximum score for this problem. """ maxscore = 0 for responder in self.responders.values(): maxscore += responder.get_max_score() return maxscore def calculate_score(self, correct_map=None): """ Compute score for this problem. The score is the number of points awarded. Returns a dictionary {'score': integer, from 0 to get_max_score(), 'total': get_max_score()}. Takes an optional correctness map for use in the rescore workflow. """ if correct_map is None: correct_map = self.correct_map correct = 0 for key in correct_map: try: correct += correct_map.get_npoints(key) except Exception: log.error('key=%s, correct_map = %s', key, correct_map) raise return {'score': correct, 'total': self.get_max_score()} def update_score(self, score_msg, queuekey): """ Deliver grading response (e.g. from async code checking) to the specific ResponseType that requested grading Returns an updated CorrectMap """ cmap = CorrectMap() cmap.update(self.correct_map) for responder in self.responders.values(): if hasattr(responder, 'update_score'): # Each LoncapaResponse will update its specific entries in cmap # cmap is passed by reference responder.update_score(score_msg, cmap, queuekey) self.correct_map.set_dict(cmap.get_dict()) return cmap def ungraded_response(self, xqueue_msg, queuekey): """ Handle any responses from the xqueue that do not contain grades Will try to pass the queue message to all inputtypes that can handle ungraded responses Does not return any value """ # check against each inputtype for the_input in self.inputs.values(): # if the input type has an ungraded function, pass in the values if hasattr(the_input, 'ungraded_response'): the_input.ungraded_response(xqueue_msg, queuekey) def is_queued(self): """ Returns True if any part of the problem has been submitted to an external queue (e.g. for grading.) """ return any(self.correct_map.is_queued(answer_id) for answer_id in self.correct_map) def get_recentmost_queuetime(self): """ Returns a DateTime object that represents the timestamp of the most recent queueing request, or None if not queued """ if not self.is_queued(): return None # Get a list of timestamps of all queueing requests, then convert it to a DateTime object queuetime_strs = [ self.correct_map.get_queuetime_str(answer_id) for answer_id in self.correct_map if self.correct_map.is_queued(answer_id) ] queuetimes = [ datetime.strptime(qt_str, xqueue_interface.dateformat).replace(tzinfo=UTC) for qt_str in queuetime_strs ] return max(queuetimes) def grade_answers(self, answers): """ Grade student responses. Called by capa_module.submit_problem. `answers` is a dict of all the entries from request.POST, but with the first part of each key removed (the string before the first "_"). Thus, for example, input_ID123 -> ID123, and input_fromjs_ID123 -> fromjs_ID123 Calls the Response for each question in this problem, to do the actual grading. """ # if answers include File objects, convert them to filenames. self.student_answers = convert_files_to_filenames(answers) new_cmap = self.get_grade_from_current_answers(answers) self.correct_map = new_cmap return self.correct_map def supports_rescoring(self): """ Checks that the current problem definition permits rescoring. More precisely, it checks that there are no response types in the current problem that are not fully supported (yet) for rescoring. This includes responsetypes for which the student's answer is not properly stored in state, i.e. file submissions. At present, we have no way to know if an existing response was actually a real answer or merely the filename of a file submitted as an answer. It turns out that because rescoring is a background task, limiting it to responsetypes that don't support file submissions also means that the responsetypes are synchronous. This is convenient as it permits rescoring to be complete when the rescoring call returns. """ return all('filesubmission' not in responder.allowed_inputfields for responder in self.responders.values()) def get_grade_from_current_answers(self, student_answers): """ Gets the grade for the currently-saved problem state, but does not save it to the block. For new student_answers being graded, `student_answers` is a dict of all the entries from request.POST, but with the first part of each key removed (the string before the first "_"). Thus, for example, input_ID123 -> ID123, and input_fromjs_ID123 -> fromjs_ID123. For rescoring, `student_answers` is None. Calls the Response for each question in this problem, to do the actual grading. """ # old CorrectMap oldcmap = self.correct_map # start new with empty CorrectMap newcmap = CorrectMap() # Call each responsetype instance to do actual grading for responder in self.responders.values(): # File objects are passed only if responsetype explicitly allows # for file submissions. But we have no way of knowing if # student_answers contains a proper answer or the filename of # an earlier submission, so for now skip these entirely. # TODO: figure out where to get file submissions when rescoring. if 'filesubmission' in responder.allowed_inputfields and student_answers is None: _ = self.capa_system.i18n.ugettext raise Exception(_(u"Cannot rescore problems with possible file submissions")) # use 'student_answers' only if it is provided, and if it might contain a file # submission that would not exist in the persisted "student_answers". if 'filesubmission' in responder.allowed_inputfields and student_answers is not None: results = responder.evaluate_answers(student_answers, oldcmap) else: results = responder.evaluate_answers(self.student_answers, oldcmap) newcmap.update(results) return newcmap def get_question_answers(self): """ Returns a dict of answer_ids to answer values. If we cannot generate an answer (this sometimes happens in customresponses), that answer_id is not included. Called by "show answers" button JSON request (see capa_module) """ # dict of (id, correct_answer) answer_map = dict() for response in self.responders.keys(): results = self.responder_answers[response] answer_map.update(results) # include solutions from <solution>...</solution> stanzas for entry in self.tree.xpath("//" + "|//".join(solution_tags)): answer = etree.tostring(entry) if answer: answer_map[entry.get('id')] = contextualize_text(answer, self.context) log.debug('answer_map = %s', answer_map) return answer_map def get_answer_ids(self): """ Return the IDs of all the responses -- these are the keys used for the dicts returned by grade_answers and get_question_answers. (Though get_question_answers may only return a subset of these. """ answer_ids = [] for response in self.responders.keys(): results = self.responder_answers[response] answer_ids.append(results.keys()) return answer_ids def find_correct_answer_text(self, answer_id): """ Returns the correct answer(s) for the provided answer_id as a single string. Arguments:: answer_id (str): a string like "98e6a8e915904d5389821a94e48babcf_13_1" Returns: str: A string containing the answer or multiple answers separated by commas. """ xml_elements = self.tree.xpath('//*[@id="' + answer_id + '"]') if not xml_elements: return xml_element = xml_elements[0] answer_text = xml_element.xpath('@answer') if answer_text: return answer_id[0] if xml_element.tag == 'optioninput': return xml_element.xpath('@correct')[0] return ', '.join(xml_element.xpath('*[@correct="true"]/text()')) def find_question_label(self, answer_id): """ Obtain the most relevant question text for a particular answer. E.g. in a problem like "How much is 2+2?" "Two"/"Three"/"More than three", this function returns the "How much is 2+2?" text. It uses, in order: - the question prompt, if the question has one - the <p> or <label> element which precedes the choices (skipping descriptive elements) - a text like "Question 5" if no other name could be found Arguments:: answer_id: a string like "98e6a8e915904d5389821a94e48babcf_13_1" Returns: a string with the question text """ _ = self.capa_system.i18n.ugettext # Some questions define a prompt with this format: >>This is a prompt<< prompt = self.problem_data[answer_id].get('label') if prompt: question_text = prompt.striptags() else: # If no prompt, then we must look for something resembling a question ourselves # # We have a structure like: # # <p /> # <optionresponse id="a0effb954cca4759994f1ac9e9434bf4_2"> # <optioninput id="a0effb954cca4759994f1ac9e9434bf4_3_1" /> # <optionresponse> # # Starting from answer (the optioninput in this example) we go up and backwards xml_elems = self.tree.xpath('//*[@id="' + answer_id + '"]') assert len(xml_elems) == 1 xml_elem = xml_elems[0].getparent() # Get the element that probably contains the question text questiontext_elem = xml_elem.getprevious() # Go backwards looking for a <p> or <label>, but skip <description> because it doesn't # contain the question text. # # E.g if we have this: # <p /> <description /> <optionresponse /> <optionresponse /> # # then from the first optionresponse we'll end with the <p>. # If we start in the second optionresponse, we'll find another response in the way, # stop early, and instead of a question we'll report "Question 2". SKIP_ELEMS = ['description'] LABEL_ELEMS = ['p', 'label'] while questiontext_elem is not None and questiontext_elem.tag in SKIP_ELEMS: questiontext_elem = questiontext_elem.getprevious() if questiontext_elem is not None and questiontext_elem.tag in LABEL_ELEMS: question_text = questiontext_elem.text else: # For instance 'd2e35c1d294b4ba0b3b1048615605d2a_2_1' contains 2, # which is used in question number 1 (see example XML in comment above) # There's no question 0 (question IDs start at 1, answer IDs at 2) question_nr = int(answer_id.split('_')[-2]) - 1 question_text = _("Question {0}").format(question_nr) return question_text def find_answer_text(self, answer_id, current_answer): """ Process a raw answer text to make it more meaningful. E.g. in a choice problem like "How much is 2+2?" "Two"/"Three"/"More than three", this function will transform "choice_1" (which is the internal response given by many capa methods) to the human version, e.g. "More than three". If the answers are multiple (e.g. because they're from a multiple choice problem), this will join them with a comma. If passed a normal string which is already the answer, it doesn't change it. TODO merge with response_a11y_data? Arguments: answer_id: a string like "98e6a8e915904d5389821a94e48babcf_13_1" current_answer: a data structure as found in `LoncapaProblem.student_answers` which represents the best response we have until now Returns: a string with the human version of the response """ if isinstance(current_answer, list): # Multiple answers. This case happens e.g. in multiple choice problems answer_text = ", ".join( self.find_answer_text(answer_id, answer) for answer in current_answer ) elif isinstance(current_answer, basestring) and current_answer.startswith('choice_'): # Many problem (e.g. checkbox) report "choice_0" "choice_1" etc. # Here we transform it elems = self.tree.xpath('//*[@id="{answer_id}"]//*[@name="{choice_number}"]'.format( answer_id=answer_id, choice_number=current_answer )) assert len(elems) == 1 choicegroup = elems[0].getparent() input_cls = inputtypes.registry.get_class_for_tag(choicegroup.tag) choices_map = dict(input_cls.extract_choices(choicegroup, self.capa_system.i18n, text_only=True)) answer_text = choices_map[current_answer] elif isinstance(current_answer, basestring): # Already a string with the answer answer_text = current_answer else: raise NotImplementedError() return answer_text def do_targeted_feedback(self, tree): """ Implements targeted-feedback in-place on <multiplechoiceresponse> -- choice-level explanations shown to a student after submission. Does nothing if there is no targeted-feedback attribute. """ _ = self.capa_system.i18n.ugettext # Note that the modifications has been done, avoiding problems if called twice. if hasattr(self, 'has_targeted'): return self.has_targeted = True # pylint: disable=attribute-defined-outside-init for mult_choice_response in tree.xpath('//multiplechoiceresponse[@targeted-feedback]'): show_explanation = mult_choice_response.get('targeted-feedback') == 'alwaysShowCorrectChoiceExplanation' # Grab the first choicegroup (there should only be one within each <multiplechoiceresponse> tag) choicegroup = mult_choice_response.xpath('./choicegroup[@type="MultipleChoice"]')[0] choices_list = list(choicegroup.iter('choice')) # Find the student answer key that matches our <choicegroup> id student_answer = self.student_answers.get(choicegroup.get('id')) expl_id_for_student_answer = None # Keep track of the explanation-id that corresponds to the student's answer # Also, keep track of the solution-id solution_id = None choice_correctness_for_student_answer = _('Incorrect') for choice in choices_list: if choice.get('name') == student_answer: expl_id_for_student_answer = choice.get('explanation-id') if choice.get('correct') == 'true': choice_correctness_for_student_answer = _('Correct') if choice.get('correct') == 'true': solution_id = choice.get('explanation-id') # Filter out targetedfeedback that doesn't correspond to the answer the student selected # Note: following-sibling will grab all following siblings, so we just want the first in the list targetedfeedbackset = mult_choice_response.xpath('./following-sibling::targetedfeedbackset') if len(targetedfeedbackset) != 0: targetedfeedbackset = targetedfeedbackset[0] targetedfeedbacks = targetedfeedbackset.xpath('./targetedfeedback') # find the legend by id in choicegroup.html for aria-describedby problem_legend_id = str(choicegroup.get('id')) + '-legend' for targetedfeedback in targetedfeedbacks: screenreadertext = etree.Element("span") targetedfeedback.insert(0, screenreadertext) screenreadertext.set('class', 'sr') screenreadertext.text = choice_correctness_for_student_answer targetedfeedback.set('role', 'group') targetedfeedback.set('aria-describedby', problem_legend_id) # Don't show targeted feedback if the student hasn't answer the problem # or if the target feedback doesn't match the student's (incorrect) answer if not self.done or targetedfeedback.get('explanation-id') != expl_id_for_student_answer: targetedfeedbackset.remove(targetedfeedback) # Do not displace the solution under these circumstances if not show_explanation or not self.done: continue # The next element should either be <solution> or <solutionset> next_element = targetedfeedbackset.getnext() parent_element = tree solution_element = None if next_element is not None and next_element.tag == 'solution': solution_element = next_element elif next_element is not None and next_element.tag == 'solutionset': solutions = next_element.xpath('./solution') for solution in solutions: if solution.get('explanation-id') == solution_id: parent_element = next_element solution_element = solution # If could not find the solution element, then skip the remaining steps below if solution_element is None: continue # Change our correct-choice explanation from a "solution explanation" to within # the set of targeted feedback, which means the explanation will render on the page # without the student clicking "Show Answer" or seeing a checkmark next to the correct choice parent_element.remove(solution_element) # Add our solution instead to the targetedfeedbackset and change its tag name solution_element.tag = 'targetedfeedback' targetedfeedbackset.append(solution_element) def get_html(self): """ Main method called externally to get the HTML to be rendered for this capa Problem. """ self.do_targeted_feedback(self.tree) html = contextualize_text(etree.tostring(self._extract_html(self.tree)), self.context) return html def handle_input_ajax(self, data): """ InputTypes can support specialized AJAX calls. Find the correct input and pass along the correct data Also, parse out the dispatch from the get so that it can be passed onto the input type nicely """ # pull out the id input_id = data['input_id'] if self.inputs[input_id]: dispatch = data['dispatch'] return self.inputs[input_id].handle_ajax(dispatch, data) else: log.warning("Could not find matching input for id: %s", input_id) return {} # ======= Private Methods Below ======== def _process_includes(self): """ Handle any <include file="foo"> tags by reading in the specified file and inserting it into our XML tree. Fail gracefully if debugging. """ includes = self.tree.findall('.//include') for inc in includes: filename = inc.get('file').decode('utf-8') if filename is not None: try: # open using LoncapaSystem OSFS filestore ifp = self.capa_system.filestore.open(filename) except Exception as err: log.warning( 'Error %s in problem xml include: %s', err, etree.tostring(inc, pretty_print=True) ) log.warning( 'Cannot find file %s in %s', filename, self.capa_system.filestore ) # if debugging, don't fail - just log error # TODO (vshnayder): need real error handling, display to users if not self.capa_system.DEBUG: raise else: continue try: # read in and convert to XML incxml = etree.XML(ifp.read()) except Exception as err: log.warning( 'Error %s in problem xml include: %s', err, etree.tostring(inc, pretty_print=True) ) log.warning('Cannot parse XML in %s', (filename)) # if debugging, don't fail - just log error # TODO (vshnayder): same as above if not self.capa_system.DEBUG: raise else: continue # insert new XML into tree in place of include parent = inc.getparent() parent.insert(parent.index(inc), incxml) parent.remove(inc) log.debug('Included %s into %s', filename, self.problem_id) def _extract_system_path(self, script): """ Extracts and normalizes additional paths for code execution. For now, there's a default path of data/course/code; this may be removed at some point. script : ?? (TODO) """ DEFAULT_PATH = ['code'] # Separate paths by :, like the system path. raw_path = script.get('system_path', '').split(":") + DEFAULT_PATH # find additional comma-separated modules search path path = [] for dir in raw_path: if not dir: continue # path is an absolute path or a path relative to the data dir dir = os.path.join(self.capa_system.filestore.root_path, dir) # Check that we are within the filestore tree. reldir = os.path.relpath(dir, self.capa_system.filestore.root_path) if ".." in reldir: log.warning("Ignoring Python directory outside of course: %r", dir) continue abs_dir = os.path.normpath(dir) path.append(abs_dir) return path def _extract_context(self, tree): """ Extract content of <script>...</script> from the problem.xml file, and exec it in the context of this problem. Provides ability to randomize problems, and also set variables for problem answer checking. Problem XML goes to Python execution context. Runs everything in script tags. """ context = {} context['seed'] = self.seed context['anonymous_student_id'] = self.capa_system.anonymous_student_id all_code = '' python_path = [] for script in tree.findall('.//script'): stype = script.get('type') if stype: if 'javascript' in stype: continue # skip javascript if 'perl' in stype: continue # skip perl # TODO: evaluate only python for d in self._extract_system_path(script): if d not in python_path and os.path.exists(d): python_path.append(d) XMLESC = {"'": "'", """: '"'} code = unescape(script.text, XMLESC) all_code += code extra_files = [] if all_code: # An asset named python_lib.zip can be imported by Python code. zip_lib = self.capa_system.get_python_lib_zip() if zip_lib is not None: extra_files.append(("python_lib.zip", zip_lib)) python_path.append("python_lib.zip") try: safe_exec( all_code, context, random_seed=self.seed, python_path=python_path, extra_files=extra_files, cache=self.capa_system.cache, slug=self.problem_id, unsafely=self.capa_system.can_execute_unsafe_code(), ) except Exception as err: log.exception("Error while execing script code: " + all_code) msg = Text("Error while executing script code: %s" % str(err)) raise responsetypes.LoncapaProblemError(msg) # Store code source in context, along with the Python path needed to run it correctly. context['script_code'] = all_code context['python_path'] = python_path context['extra_files'] = extra_files or None return context def _extract_html(self, problemtree): # private """ Main (private) function which converts Problem XML tree to HTML. Calls itself recursively. Returns Element tree of XHTML representation of problemtree. Calls render_html of Response instances to render responses into XHTML. Used by get_html. """ if not isinstance(problemtree.tag, basestring): # Comment and ProcessingInstruction nodes are not Elements, # and we're ok leaving those behind. # BTW: etree gives us no good way to distinguish these things # other than to examine .tag to see if it's a string. :( return if (problemtree.tag == 'script' and problemtree.get('type') and 'javascript' in problemtree.get('type')): # leave javascript intact. return deepcopy(problemtree) if problemtree.tag in html_problem_semantics: return problemid = problemtree.get('id') # my ID if problemtree.tag in inputtypes.registry.registered_tags(): # If this is an inputtype subtree, let it render itself. response_data = self.problem_data[problemid] status = 'unsubmitted' msg = '' hint = '' hintmode = None input_id = problemtree.get('id') answervariable = None if problemid in self.correct_map: pid = input_id # If we're withholding correctness, don't show adaptive hints either. # Note that regular, "demand" hints will be shown, if the course author has added them to the problem. if not self.capa_module.correctness_available(): status = 'submitted' else: # If the the problem has not been saved since the last submit set the status to the # current correctness value and set the message as expected. Otherwise we do not want to # display correctness because the answer may have changed since the problem was graded. if not self.has_saved_answers: status = self.correct_map.get_correctness(pid) msg = self.correct_map.get_msg(pid) hint = self.correct_map.get_hint(pid) hintmode = self.correct_map.get_hintmode(pid) answervariable = self.correct_map.get_property(pid, 'answervariable') value = '' if self.student_answers and problemid in self.student_answers: value = self.student_answers[problemid] if input_id not in self.input_state: self.input_state[input_id] = {} # do the rendering state = { 'value': value, 'status': status, 'id': input_id, 'input_state': self.input_state[input_id], 'answervariable': answervariable, 'response_data': response_data, 'has_saved_answers': self.has_saved_answers, 'feedback': { 'message': msg, 'hint': hint, 'hintmode': hintmode, } } input_type_cls = inputtypes.registry.get_class_for_tag(problemtree.tag) # save the input type so that we can make ajax calls on it if we need to self.inputs[input_id] = input_type_cls(self.capa_system, problemtree, state) return self.inputs[input_id].get_html() # let each Response render itself if problemtree in self.responders: overall_msg = self.correct_map.get_overall_message() return self.responders[problemtree].render_html( self._extract_html, response_msg=overall_msg ) # let each custom renderer render itself: if problemtree.tag in customrender.registry.registered_tags(): renderer_class = customrender.registry.get_class_for_tag(problemtree.tag) renderer = renderer_class(self.capa_system, problemtree) return renderer.get_html() # otherwise, render children recursively, and copy over attributes tree = etree.Element(problemtree.tag) for item in problemtree: item_xhtml = self._extract_html(item) if item_xhtml is not None: tree.append(item_xhtml) if tree.tag in html_transforms: tree.tag = html_transforms[problemtree.tag]['tag'] else: # copy attributes over if not innocufying for (key, value) in problemtree.items(): tree.set(key, value) tree.text = problemtree.text tree.tail = problemtree.tail return tree def _preprocess_problem(self, tree, minimal_init): # private """ Assign IDs to all the responses Assign sub-IDs to all entries (textline, schematic, etc.) Annoted correctness and value In-place transformation Also create capa Response instances for each responsetype and save as self.responders Obtain all responder answers and save as self.responder_answers dict (key = response) """ response_id = 1 problem_data = {} self.responders = {} for response in tree.xpath('//' + "|//".join(responsetypes.registry.registered_tags())): responsetype_id = self.problem_id + "_" + str(response_id) # create and save ID for this response response.set('id', responsetype_id) response_id += 1 answer_id = 1 input_tags = inputtypes.registry.registered_tags() inputfields = tree.xpath( "|".join(['//' + response.tag + '[@id=$id]//' + x for x in input_tags]), id=responsetype_id ) # assign one answer_id for each input type for entry in inputfields: entry.attrib['response_id'] = str(response_id) entry.attrib['answer_id'] = str(answer_id) entry.attrib['id'] = "%s_%i_%i" % (self.problem_id, response_id, answer_id) answer_id = answer_id + 1 self.response_a11y_data(response, inputfields, responsetype_id, problem_data) # instantiate capa Response responsetype_cls = responsetypes.registry.get_class_for_tag(response.tag) responder = responsetype_cls( response, inputfields, self.context, self.capa_system, self.capa_module, minimal_init ) # save in list in self self.responders[response] = responder if not minimal_init: # get responder answers (do this only once, since there may be a performance cost, # eg with externalresponse) self.responder_answers = {} for response in self.responders.keys(): try: self.responder_answers[response] = self.responders[response].get_answers() except: log.debug('responder %s failed to properly return get_answers()', self.responders[response]) # FIXME raise # <solution>...</solution> may not be associated with any specific response; give # IDs for those separately # TODO: We should make the namespaces consistent and unique (e.g. %s_problem_%i). solution_id = 1 for solution in tree.findall('.//solution'): solution.attrib['id'] = "%s_solution_%i" % (self.problem_id, solution_id) solution_id += 1 return problem_data def response_a11y_data(self, response, inputfields, responsetype_id, problem_data): """ Construct data to be used for a11y. Arguments: response (object): xml response object inputfields (list): list of inputfields in a responsetype responsetype_id (str): responsetype id problem_data (dict): dict to be filled with response data """ # if there are no inputtypes then don't do anything if not inputfields: return element_to_be_deleted = None label = '' if len(inputfields) > 1: response.set('multiple_inputtypes', 'true') group_label_tag = response.find('label') group_description_tags = response.findall('description') group_label_tag_id = u'multiinput-group-label-{}'.format(responsetype_id) group_label_tag_text = '' if group_label_tag is not None: group_label_tag.tag = 'p' group_label_tag.set('id', group_label_tag_id) group_label_tag.set('class', 'multi-inputs-group-label') group_label_tag_text = stringify_children(group_label_tag) response.set('multiinput-group-label-id', group_label_tag_id) group_description_ids = [] for index, group_description_tag in enumerate(group_description_tags): group_description_tag_id = u'multiinput-group-description-{}-{}'.format(responsetype_id, index) group_description_tag.tag = 'p' group_description_tag.set('id', group_description_tag_id) group_description_tag.set('class', 'multi-inputs-group-description question-description') group_description_ids.append(group_description_tag_id) if group_description_ids: response.set('multiinput-group_description_ids', ' '.join(group_description_ids)) for inputfield in inputfields: problem_data[inputfield.get('id')] = { 'group_label': group_label_tag_text, 'label': HTML(inputfield.attrib.get('label', '')), 'descriptions': {} } else: # Extract label value from <label> tag or label attribute from inside the responsetype responsetype_label_tag = response.find('label') if responsetype_label_tag is not None: label = stringify_children(responsetype_label_tag) # store <label> tag containing question text to delete # it later otherwise question will be rendered twice element_to_be_deleted = responsetype_label_tag elif 'label' in inputfields[0].attrib: # in this case we have old problems with label attribute and p tag having question in it # we will pick the first sibling of responsetype if its a p tag and match the text with # the label attribute text. if they are equal then we will use this text as question. # Get first <p> tag before responsetype, this <p> may contains the question text. p_tag = response.xpath('preceding-sibling::*[1][self::p]') if p_tag and p_tag[0].text == inputfields[0].attrib['label']: label = stringify_children(p_tag[0]) element_to_be_deleted = p_tag[0] else: # In this case the problems don't have tag or label attribute inside the responsetype # so we will get the first preceding label tag w.r.t to this responsetype. # This will take care of those multi-question problems that are not using --- in their markdown. label_tag = response.xpath('preceding-sibling::*[1][self::label]') if label_tag: label = stringify_children(label_tag[0]) element_to_be_deleted = label_tag[0] # delete label or p element only if inputtype is fully accessible if inputfields[0].tag in ACCESSIBLE_CAPA_INPUT_TYPES and element_to_be_deleted is not None: element_to_be_deleted.getparent().remove(element_to_be_deleted) # Extract descriptions and set unique id on each description tag description_tags = response.findall('description') description_id = 1 descriptions = OrderedDict() for description in description_tags: descriptions[ "description_%s_%i" % (responsetype_id, description_id) ] = HTML(stringify_children(description)) response.remove(description) description_id += 1 problem_data[inputfields[0].get('id')] = { 'label': HTML(label.strip()) if label else '', 'descriptions': descriptions }
class CorrectMapTest(unittest.TestCase): """ Tests to verify that CorrectMap behaves correctly """ def setUp(self): super(CorrectMapTest, self).setUp() self.cmap = CorrectMap() def test_set_input_properties(self): # Set the correctmap properties for two inputs self.cmap.set( answer_id='1_2_1', correctness='correct', npoints=5, msg='Test message', hint='Test hint', hintmode='always', queuestate={ 'key': 'secretstring', 'time': '20130228100026' } ) self.cmap.set( answer_id='2_2_1', correctness='incorrect', npoints=None, msg=None, hint=None, hintmode=None, queuestate=None ) # Assert that each input has the expected properties self.assertTrue(self.cmap.is_correct('1_2_1')) self.assertFalse(self.cmap.is_correct('2_2_1')) self.assertEqual(self.cmap.get_correctness('1_2_1'), 'correct') self.assertEqual(self.cmap.get_correctness('2_2_1'), 'incorrect') self.assertEqual(self.cmap.get_npoints('1_2_1'), 5) self.assertEqual(self.cmap.get_npoints('2_2_1'), 0) self.assertEqual(self.cmap.get_msg('1_2_1'), 'Test message') self.assertEqual(self.cmap.get_msg('2_2_1'), None) self.assertEqual(self.cmap.get_hint('1_2_1'), 'Test hint') self.assertEqual(self.cmap.get_hint('2_2_1'), None) self.assertEqual(self.cmap.get_hintmode('1_2_1'), 'always') self.assertEqual(self.cmap.get_hintmode('2_2_1'), None) self.assertTrue(self.cmap.is_queued('1_2_1')) self.assertFalse(self.cmap.is_queued('2_2_1')) self.assertEqual(self.cmap.get_queuetime_str('1_2_1'), '20130228100026') self.assertEqual(self.cmap.get_queuetime_str('2_2_1'), None) self.assertTrue(self.cmap.is_right_queuekey('1_2_1', 'secretstring')) self.assertFalse(self.cmap.is_right_queuekey('1_2_1', 'invalidstr')) self.assertFalse(self.cmap.is_right_queuekey('1_2_1', '')) self.assertFalse(self.cmap.is_right_queuekey('1_2_1', None)) self.assertFalse(self.cmap.is_right_queuekey('2_2_1', 'secretstring')) self.assertFalse(self.cmap.is_right_queuekey('2_2_1', 'invalidstr')) self.assertFalse(self.cmap.is_right_queuekey('2_2_1', '')) self.assertFalse(self.cmap.is_right_queuekey('2_2_1', None)) def test_get_npoints(self): # Set the correctmap properties for 4 inputs # 1) correct, 5 points # 2) correct, None points # 3) incorrect, 5 points # 4) incorrect, None points # 5) correct, 0 points self.cmap.set( answer_id='1_2_1', correctness='correct', npoints=5.3 ) self.cmap.set( answer_id='2_2_1', correctness='correct', npoints=None ) self.cmap.set( answer_id='3_2_1', correctness='incorrect', npoints=5 ) self.cmap.set( answer_id='4_2_1', correctness='incorrect', npoints=None ) self.cmap.set( answer_id='5_2_1', correctness='correct', npoints=0 ) # Assert that we get the expected points # If points assigned --> npoints # If no points assigned and correct --> 1 point # If no points assigned and incorrect --> 0 points self.assertEqual(self.cmap.get_npoints('1_2_1'), 5.3) self.assertEqual(self.cmap.get_npoints('2_2_1'), 1) self.assertEqual(self.cmap.get_npoints('3_2_1'), 5) self.assertEqual(self.cmap.get_npoints('4_2_1'), 0) self.assertEqual(self.cmap.get_npoints('5_2_1'), 0) def test_set_overall_message(self): # Default is an empty string string self.assertEqual(self.cmap.get_overall_message(), "") # Set a message that applies to the whole question self.cmap.set_overall_message("Test message") # Retrieve the message self.assertEqual(self.cmap.get_overall_message(), "Test message") # Setting the message to None --> empty string self.cmap.set_overall_message(None) self.assertEqual(self.cmap.get_overall_message(), "") def test_update_from_correctmap(self): # Initialize a CorrectMap with some properties self.cmap.set( answer_id='1_2_1', correctness='correct', npoints=5, msg='Test message', hint='Test hint', hintmode='always', queuestate={ 'key': 'secretstring', 'time': '20130228100026' } ) self.cmap.set_overall_message("Test message") # Create a second cmap, then update it to have the same properties # as the first cmap other_cmap = CorrectMap() other_cmap.update(self.cmap) # Assert that it has all the same properties self.assertEqual( other_cmap.get_overall_message(), self.cmap.get_overall_message() ) self.assertEqual( other_cmap.get_dict(), self.cmap.get_dict() ) def test_update_from_invalid(self): # Should get an exception if we try to update() a CorrectMap # with a non-CorrectMap value invalid_list = [None, "string", 5, datetime.datetime.today()] for invalid in invalid_list: with self.assertRaises(Exception): self.cmap.update(invalid)
class CorrectMapTest(unittest.TestCase): """ Tests to verify that CorrectMap behaves correctly """ def setUp(self): super(CorrectMapTest, self).setUp() # lint-amnesty, pylint: disable=super-with-arguments self.cmap = CorrectMap() def test_set_input_properties(self): # Set the correctmap properties for three inputs self.cmap.set( answer_id='1_2_1', correctness='correct', npoints=5, msg='Test message', hint='Test hint', hintmode='always', queuestate={ 'key': 'secretstring', 'time': '20130228100026' } ) self.cmap.set( answer_id='2_2_1', correctness='incorrect', npoints=None, msg=None, hint=None, hintmode=None, queuestate=None ) self.cmap.set( answer_id='3_2_1', correctness='partially-correct', npoints=3, msg=None, hint=None, hintmode=None, queuestate=None ) # Assert that each input has the expected properties assert self.cmap.is_correct('1_2_1') assert not self.cmap.is_correct('2_2_1') assert self.cmap.is_correct('3_2_1') assert self.cmap.is_partially_correct('3_2_1') assert not self.cmap.is_partially_correct('2_2_1') # Intentionally testing an item that's not in cmap. assert not self.cmap.is_partially_correct('9_2_1') assert self.cmap.get_correctness('1_2_1') == 'correct' assert self.cmap.get_correctness('2_2_1') == 'incorrect' assert self.cmap.get_correctness('3_2_1') == 'partially-correct' assert self.cmap.get_npoints('1_2_1') == 5 assert self.cmap.get_npoints('2_2_1') == 0 assert self.cmap.get_npoints('3_2_1') == 3 assert self.cmap.get_msg('1_2_1') == 'Test message' assert self.cmap.get_msg('2_2_1') is None assert self.cmap.get_hint('1_2_1') == 'Test hint' assert self.cmap.get_hint('2_2_1') is None assert self.cmap.get_hintmode('1_2_1') == 'always' assert self.cmap.get_hintmode('2_2_1') is None assert self.cmap.is_queued('1_2_1') assert not self.cmap.is_queued('2_2_1') assert self.cmap.get_queuetime_str('1_2_1') == '20130228100026' assert self.cmap.get_queuetime_str('2_2_1') is None assert self.cmap.is_right_queuekey('1_2_1', 'secretstring') assert not self.cmap.is_right_queuekey('1_2_1', 'invalidstr') assert not self.cmap.is_right_queuekey('1_2_1', '') assert not self.cmap.is_right_queuekey('1_2_1', None) assert not self.cmap.is_right_queuekey('2_2_1', 'secretstring') assert not self.cmap.is_right_queuekey('2_2_1', 'invalidstr') assert not self.cmap.is_right_queuekey('2_2_1', '') assert not self.cmap.is_right_queuekey('2_2_1', None) def test_get_npoints(self): # Set the correctmap properties for 4 inputs # 1) correct, 5 points # 2) correct, None points # 3) incorrect, 5 points # 4) incorrect, None points # 5) correct, 0 points # 4) partially correct, 2.5 points # 5) partially correct, None points self.cmap.set( answer_id='1_2_1', correctness='correct', npoints=5.3 ) self.cmap.set( answer_id='2_2_1', correctness='correct', npoints=None ) self.cmap.set( answer_id='3_2_1', correctness='incorrect', npoints=5 ) self.cmap.set( answer_id='4_2_1', correctness='incorrect', npoints=None ) self.cmap.set( answer_id='5_2_1', correctness='correct', npoints=0 ) self.cmap.set( answer_id='6_2_1', correctness='partially-correct', npoints=2.5 ) self.cmap.set( answer_id='7_2_1', correctness='partially-correct', npoints=None ) # Assert that we get the expected points # If points assigned --> npoints # If no points assigned and correct --> 1 point # If no points assigned and partially correct --> 1 point # If no points assigned and incorrect --> 0 points assert self.cmap.get_npoints('1_2_1') == 5.3 assert self.cmap.get_npoints('2_2_1') == 1 assert self.cmap.get_npoints('3_2_1') == 5 assert self.cmap.get_npoints('4_2_1') == 0 assert self.cmap.get_npoints('5_2_1') == 0 assert self.cmap.get_npoints('6_2_1') == 2.5 assert self.cmap.get_npoints('7_2_1') == 1 def test_set_overall_message(self): # Default is an empty string string assert self.cmap.get_overall_message() == '' # Set a message that applies to the whole question self.cmap.set_overall_message("Test message") # Retrieve the message assert self.cmap.get_overall_message() == 'Test message' # Setting the message to None --> empty string self.cmap.set_overall_message(None) assert self.cmap.get_overall_message() == '' def test_update_from_correctmap(self): # Initialize a CorrectMap with some properties self.cmap.set( answer_id='1_2_1', correctness='correct', npoints=5, msg='Test message', hint='Test hint', hintmode='always', queuestate={ 'key': 'secretstring', 'time': '20130228100026' } ) self.cmap.set_overall_message("Test message") # Create a second cmap, then update it to have the same properties # as the first cmap other_cmap = CorrectMap() other_cmap.update(self.cmap) # Assert that it has all the same properties assert other_cmap.get_overall_message() == self.cmap.get_overall_message() assert other_cmap.get_dict() == self.cmap.get_dict() def test_update_from_invalid(self): # Should get an exception if we try to update() a CorrectMap # with a non-CorrectMap value invalid_list = [None, "string", 5, datetime.datetime.today()] for invalid in invalid_list: with pytest.raises(Exception): self.cmap.update(invalid) def test_set_none_state(self): """ Test that if an invalid state is set to correct map, the state does not update at all. """ invalid_list = [None, "", False, 0] for invalid in invalid_list: self.cmap.set_dict(invalid) assert self.cmap.get_dict() == {}