def predict(): img = request.files['image'] path = "./static/{}".format(img.filename) img.save(path) caption = caption_it.caption_this_image(path) print(caption) example_sent = caption stop_words = set(stopwords.words('english')) word_tokens = word_tokenize(example_sent) filtered_sentence = [w for w in word_tokens if not w in stop_words] filtered_sentence = [] for w in word_tokens: if w not in stop_words: filtered_sentence.append(w) print(word_tokens) print(filtered_sentence) os.remove(path) return jsonify(msg=caption, tags=filtered_sentence)
def marks(): if request.method == 'POST': f = request.files['userfile'] path = "./static/{}".format(f.filename) f.save(path) caption = caption_it.caption_this_image(path) caption1 = "in the entered image " + caption text_to_speech(caption1) diction = {'image': path, 'caption': caption} return render_template('index.html', your_result=diction)
def cap(): if request.method == 'POST': f = request.files['userfile'] path = "./static/{}".format(f.filename) f.save(path) caption = caption_it.caption_this_image(path) result_dic = {'image': path, 'caption': caption} return render_template("index.html", your_result=result_dic)