def compute_attr_one_pixel_target(x, net, spatial_coords, method, **kwargs): # x is a single input tensor, i.e. shape (batch_size,channel_size,H,W)=(1,1,28,28) from captum.attr import LayerGradCam, Deconvolution, GuidedBackprop if 'target' in kwargs: target = kwargs['target'] if 'wrapper_output' in kwargs: output_mode = kwargs['wrapper_output'] else: output_mode = 'yg_pixel' idx,idy = spatial_coords wnet = WrapperNet(net, output_mode=output_mode, spatial_coords=(idx,idy)) if method=='gradCAM': xai = LayerGradCam(wnet, wnet.main_net.channel_adj) elif method=='deconv': xai = Deconvolution(wnet) elif method=='GuidedBP': xai = GuidedBackprop(wnet) if method in ['gradCAM', 'deconv', 'GuidedBP']: attr = xai.attribute(x, target=target ) elif method == 'layerAct': attr = xai.attribute(x) attr = attr[0][0].clone().detach().cpu().numpy() return attr
def heatmaps(args): print('heatmaps') PROJECT_ID = args['PROJECT_ID'] CKPT_DIR, PROJECT_DIR, MODEL_DIR, LOGGER_DIR, load_model = folder_check(PROJECT_ID, CKPT_DIR='checkpoint') XAI_DIR = os.path.join(PROJECT_DIR,'XAI') if not os.path.exists(XAI_DIR): os.mkdir(XAI_DIR) from .sampler import Pytorch_GPT_MNIST_Sampler samp = Pytorch_GPT_MNIST_Sampler(compenv_mode=None, growth_mode=None) from .model import ResGPTNet34 net = ResGPTNet34(nG0=samp.gen.nG0, Nj=samp.gen.N_neighbor) net = torch.load(MODEL_DIR) net.output_mode = 'prediction_only' net.to(device=device) net.eval() x, y0, yg0, ys0 = samp.get_sample_batch(class_indices=np.array(range(10)), device=device) x.requires_grad=True attrs = {} SAVE_DIR = os.path.join(XAI_DIR, 'heatmaps.y0.jpeg') from captum.attr import LayerGradCam, Deconvolution, GuidedBackprop # ShapleyValueSampling xai = LayerGradCam(net, net.channel_adj) attr = xai.attribute(x, target=y0).clone().detach().cpu().numpy() attrs['gradCAM'] = attr xai = Deconvolution(net) attr = xai.attribute(x, target=y0).clone().detach().cpu().numpy() attrs['deconv'] = attr xai = GuidedBackprop(net) attr = xai.attribute(x, target=y0).clone().detach().cpu().numpy() attrs['GuidedBP'] = attr arrange_heatmaps(x.clone().detach().cpu().numpy() , attrs, save_dir=SAVE_DIR)
IntegratedGradients.get_name(): ConfigParameters( params={ "n_steps": NumberConfig(value=25, limit=(2, None)), "method": StrEnumConfig(limit=SUPPORTED_METHODS, value="gausslegendre"), }, post_process={"n_steps": int}, ), FeatureAblation.get_name(): ConfigParameters(params={ "perturbations_per_eval": NumberConfig(value=1, limit=(1, 100)) }, ), Deconvolution.get_name(): ConfigParameters(params={}), Occlusion.get_name(): ConfigParameters( params={ "sliding_window_shapes": StrConfig(value=""), "strides": StrConfig(value=""), "perturbations_per_eval": NumberConfig(value=1, limit=(1, 100)), }, post_process={ "sliding_window_shapes": _str_to_tuple, "strides": _str_to_tuple, "perturbations_per_eval": int, }, ), GuidedBackprop.get_name():
def measure_model( model_version, dataset, out_folder, weights_dir, device, method=METHODS["gradcam"], sample_images=50, step=1, ): invTrans = get_inverse_normalization_transformation() data_dir = os.path.join("data") if model_version == "resnet18": model = create_resnet18_model(num_of_classes=NUM_OF_CLASSES[dataset]) elif model_version == "resnet50": model = create_resnet50_model(num_of_classes=NUM_OF_CLASSES[dataset]) elif model_version == "densenet": model = create_densenet121_model( num_of_classes=NUM_OF_CLASSES[dataset]) else: model = create_efficientnetb0_model( num_of_classes=NUM_OF_CLASSES[dataset]) model.load_state_dict(torch.load(weights_dir)) # print(model) model.eval() model.to(device) test_dataset = CustomDataset( dataset=dataset, transformer=get_default_transformation(), data_type="test", root_dir=data_dir, step=step, ) data_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=4) try: image_ids = random.sample(range(0, test_dataset.__len__()), sample_images) except ValueError: raise ValueError( f"Image sample number ({sample_images}) exceeded dataset size ({test_dataset.__len__()})." ) classes_map = test_dataset.classes_map print(f"Measuring {model_version} on {dataset} dataset, with {method}") print("-" * 10) pbar = tqdm(total=test_dataset.__len__(), desc="Model test completion") multipy_by_inputs = False if method == METHODS["ig"]: attr_method = IntegratedGradients(model) nt_samples = 8 n_perturb_samples = 3 if method == METHODS["saliency"]: attr_method = Saliency(model) nt_samples = 8 n_perturb_samples = 10 if method == METHODS["gradcam"]: if model_version == "efficientnet": attr_method = GuidedGradCam(model, model._conv_stem) elif model_version == "densenet": attr_method = GuidedGradCam(model, model.features.conv0) else: attr_method = GuidedGradCam(model, model.conv1) nt_samples = 8 n_perturb_samples = 10 if method == METHODS["deconv"]: attr_method = Deconvolution(model) nt_samples = 8 n_perturb_samples = 10 if method == METHODS["gradshap"]: attr_method = GradientShap(model) nt_samples = 8 if model_version == "efficientnet": n_perturb_samples = 3 elif model_version == "densenet": n_perturb_samples = 2 else: n_perturb_samples = 10 if method == METHODS["gbp"]: attr_method = GuidedBackprop(model) nt_samples = 8 n_perturb_samples = 10 if method == "lime": attr_method = Lime(model) nt_samples = 8 n_perturb_samples = 10 feature_mask = torch.tensor(lime_mask).to(device) multipy_by_inputs = True if method == METHODS['ig']: nt = attr_method else: nt = NoiseTunnel(attr_method) scores = [] @infidelity_perturb_func_decorator(multipy_by_inputs=multipy_by_inputs) def perturb_fn(inputs): noise = torch.tensor(np.random.normal(0, 0.003, inputs.shape)).float() noise = noise.to(device) return inputs - noise for input, label in data_loader: pbar.update(1) inv_input = invTrans(input) input = input.to(device) input.requires_grad = True output = model(input) output = F.softmax(output, dim=1) prediction_score, pred_label_idx = torch.topk(output, 1) prediction_score = prediction_score.cpu().detach().numpy()[0][0] pred_label_idx.squeeze_() if method == METHODS['gradshap']: baseline = torch.randn(input.shape) baseline = baseline.to(device) if method == "lime": attributions = attr_method.attribute(input, target=1, n_samples=50) elif method == METHODS['ig']: attributions = nt.attribute( input, target=pred_label_idx, n_steps=25, ) elif method == METHODS['gradshap']: attributions = nt.attribute(input, target=pred_label_idx, baselines=baseline) else: attributions = nt.attribute( input, nt_type="smoothgrad", nt_samples=nt_samples, target=pred_label_idx, ) infid = infidelity(model, perturb_fn, input, attributions, target=pred_label_idx) if method == "lime": sens = sensitivity_max( attr_method.attribute, input, target=pred_label_idx, n_perturb_samples=1, n_samples=200, feature_mask=feature_mask, ) elif method == METHODS['ig']: sens = sensitivity_max( nt.attribute, input, target=pred_label_idx, n_perturb_samples=n_perturb_samples, n_steps=25, ) elif method == METHODS['gradshap']: sens = sensitivity_max(nt.attribute, input, target=pred_label_idx, n_perturb_samples=n_perturb_samples, baselines=baseline) else: sens = sensitivity_max( nt.attribute, input, target=pred_label_idx, n_perturb_samples=n_perturb_samples, ) inf_value = infid.cpu().detach().numpy()[0] sens_value = sens.cpu().detach().numpy()[0] if pbar.n in image_ids: attr_data = attributions.squeeze().cpu().detach().numpy() fig, ax = viz.visualize_image_attr_multiple( np.transpose(attr_data, (1, 2, 0)), np.transpose(inv_input.squeeze().cpu().detach().numpy(), (1, 2, 0)), ["original_image", "heat_map"], ["all", "positive"], titles=["original_image", "heat_map"], cmap=default_cmap, show_colorbar=True, use_pyplot=False, fig_size=(8, 6), ) ax[0].set_xlabel( f"Infidelity: {'{0:.6f}'.format(inf_value)}\n Sensitivity: {'{0:.6f}'.format(sens_value)}" ) fig.suptitle( f"True: {classes_map[str(label.numpy()[0])][0]}, Pred: {classes_map[str(pred_label_idx.item())][0]}\nScore: {'{0:.4f}'.format(prediction_score)}", fontsize=16, ) fig.savefig( os.path.join( out_folder, f"{str(pbar.n)}-{classes_map[str(label.numpy()[0])][0]}-{classes_map[str(pred_label_idx.item())][0]}.png", )) plt.close(fig) # if pbar.n > 25: # break scores.append([inf_value, sens_value]) pbar.close() np.savetxt( os.path.join(out_folder, f"{model_version}-{dataset}-{method}.csv"), np.array(scores), delimiter=",", header="infidelity,sensitivity", ) print(f"Artifacts stored at {out_folder}")
def measure_filter_model( model_version, dataset, out_folder, weights_dir, device, method=METHODS["gradcam"], sample_images=50, step=1, use_infidelity=False, use_sensitivity=False, render=False, ids=None, ): invTrans = get_inverse_normalization_transformation() data_dir = os.path.join("data") if model_version == "resnet18": model = create_resnet18_model(num_of_classes=NUM_OF_CLASSES[dataset]) elif model_version == "resnet50": model = create_resnet50_model(num_of_classes=NUM_OF_CLASSES[dataset]) elif model_version == "densenet": model = create_densenet121_model( num_of_classes=NUM_OF_CLASSES[dataset]) else: model = create_efficientnetb0_model( num_of_classes=NUM_OF_CLASSES[dataset]) model.load_state_dict(torch.load(weights_dir)) # print(model) model.eval() model.to(device) test_dataset = CustomDataset( dataset=dataset, transformer=get_default_transformation(), data_type="test", root_dir=data_dir, step=step, add_filters=True, ids=ids, ) data_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=4) try: image_ids = random.sample(range(0, test_dataset.__len__()), test_dataset.__len__()) except ValueError: raise ValueError( f"Image sample number ({test_dataset.__len__()}) exceeded dataset size ({test_dataset.__len__()})." ) classes_map = test_dataset.classes_map print(f"Measuring {model_version} on {dataset} dataset, with {method}") print("-" * 10) pbar = tqdm(total=test_dataset.__len__(), desc="Model test completion") multipy_by_inputs = False if method == METHODS["ig"]: attr_method = IntegratedGradients(model) nt_samples = 1 n_perturb_samples = 1 if method == METHODS["saliency"]: attr_method = Saliency(model) nt_samples = 8 n_perturb_samples = 2 if method == METHODS["gradcam"]: if model_version == "efficientnet": attr_method = GuidedGradCam(model, model._conv_stem) elif model_version == "densenet": attr_method = GuidedGradCam(model, model.features.conv0) else: attr_method = GuidedGradCam(model, model.conv1) nt_samples = 8 n_perturb_samples = 2 if method == METHODS["deconv"]: attr_method = Deconvolution(model) nt_samples = 8 n_perturb_samples = 2 if method == METHODS["gradshap"]: attr_method = GradientShap(model) nt_samples = 8 n_perturb_samples = 2 if method == METHODS["gbp"]: attr_method = GuidedBackprop(model) nt_samples = 8 n_perturb_samples = 2 if method == "lime": attr_method = Lime(model) nt_samples = 8 n_perturb_samples = 2 feature_mask = torch.tensor(lime_mask).to(device) multipy_by_inputs = True if method == METHODS["ig"]: nt = attr_method else: nt = NoiseTunnel(attr_method) scores = [] @infidelity_perturb_func_decorator(multipy_by_inputs=multipy_by_inputs) def perturb_fn(inputs): noise = torch.tensor(np.random.normal(0, 0.003, inputs.shape)).float() noise = noise.to(device) return inputs - noise OUR_FILTERS = [ "none", "fx_freaky_details 2,10,1,11,0,32,0", "normalize_local 8,10", "fx_boost_chroma 90,0,0", "fx_mighty_details 25,1,25,1,11,0", "sharpen 300", ] idx = 0 filter_count = 0 filter_attrs = {filter_name: [] for filter_name in OUR_FILTERS} predicted_main_class = 0 for input, label in data_loader: pbar.update(1) inv_input = invTrans(input) input = input.to(device) input.requires_grad = True output = model(input) output = F.softmax(output, dim=1) prediction_score, pred_label_idx = torch.topk(output, 1) prediction_score = prediction_score.cpu().detach().numpy()[0][0] pred_label_idx.squeeze_() if OUR_FILTERS[filter_count] == 'none': predicted_main_class = pred_label_idx.item() if method == METHODS["gradshap"]: baseline = torch.randn(input.shape) baseline = baseline.to(device) if method == "lime": attributions = attr_method.attribute(input, target=1, n_samples=50) elif method == METHODS["ig"]: attributions = nt.attribute( input, target=predicted_main_class, n_steps=25, ) elif method == METHODS["gradshap"]: attributions = nt.attribute(input, target=predicted_main_class, baselines=baseline) else: attributions = nt.attribute( input, nt_type="smoothgrad", nt_samples=nt_samples, target=predicted_main_class, ) if use_infidelity: infid = infidelity(model, perturb_fn, input, attributions, target=predicted_main_class) inf_value = infid.cpu().detach().numpy()[0] else: inf_value = 0 if use_sensitivity: if method == "lime": sens = sensitivity_max( attr_method.attribute, input, target=predicted_main_class, n_perturb_samples=1, n_samples=200, feature_mask=feature_mask, ) elif method == METHODS["ig"]: sens = sensitivity_max( nt.attribute, input, target=predicted_main_class, n_perturb_samples=n_perturb_samples, n_steps=25, ) elif method == METHODS["gradshap"]: sens = sensitivity_max( nt.attribute, input, target=predicted_main_class, n_perturb_samples=n_perturb_samples, baselines=baseline, ) else: sens = sensitivity_max( nt.attribute, input, target=predicted_main_class, n_perturb_samples=n_perturb_samples, ) sens_value = sens.cpu().detach().numpy()[0] else: sens_value = 0 # filter_name = test_dataset.data.iloc[pbar.n]["filter"].split(" ")[0] attr_data = attributions.squeeze().cpu().detach().numpy() if render: fig, ax = viz.visualize_image_attr_multiple( np.transpose(attr_data, (1, 2, 0)), np.transpose(inv_input.squeeze().cpu().detach().numpy(), (1, 2, 0)), ["original_image", "heat_map"], ["all", "positive"], titles=["original_image", "heat_map"], cmap=default_cmap, show_colorbar=True, use_pyplot=False, fig_size=(8, 6), ) if use_sensitivity or use_infidelity: ax[0].set_xlabel( f"Infidelity: {'{0:.6f}'.format(inf_value)}\n Sensitivity: {'{0:.6f}'.format(sens_value)}" ) fig.suptitle( f"True: {classes_map[str(label.numpy()[0])][0]}, Pred: {classes_map[str(pred_label_idx.item())][0]}\nScore: {'{0:.4f}'.format(prediction_score)}", fontsize=16, ) fig.savefig( os.path.join( out_folder, f"{str(idx)}-{str(filter_count)}-{str(label.numpy()[0])}-{str(OUR_FILTERS[filter_count])}-{classes_map[str(label.numpy()[0])][0]}-{classes_map[str(pred_label_idx.item())][0]}.png", )) plt.close(fig) # if pbar.n > 25: # break score_for_true_label = output.cpu().detach().numpy( )[0][predicted_main_class] filter_attrs[OUR_FILTERS[filter_count]] = [ np.moveaxis(attr_data, 0, -1), "{0:.8f}".format(score_for_true_label), ] data_range_for_current_set = MAX_ATT_VALUES[model_version][method][ dataset] filter_count += 1 if filter_count >= len(OUR_FILTERS): ssims = [] for rot in OUR_FILTERS: ssims.append("{0:.8f}".format( ssim( filter_attrs["none"][0], filter_attrs[rot][0], win_size=11, data_range=data_range_for_current_set, multichannel=True, ))) ssims.append(filter_attrs[rot][1]) scores.append(ssims) filter_count = 0 predicted_main_class = 0 idx += 1 pbar.close() indexes = [] for filter_name in OUR_FILTERS: indexes.append(str(filter_name) + "-ssim") indexes.append(str(filter_name) + "-score") np.savetxt( os.path.join( out_folder, f"{model_version}-{dataset}-{method}-ssim-with-range.csv"), np.array(scores), delimiter=";", fmt="%s", header=";".join([str(rot) for rot in indexes]), ) print(f"Artifacts stored at {out_folder}")
def __init__(self, model, train_data): model.eval() self.explainer = Deconvolution(model) self.model = model
def evaluation_ten_classes(initiate_or_load_model, config_data, singleton_scope=False, reshape_size=None, FIND_OPTIM_BRANCH_MODEL=False, realtime_update=False, ALLOW_ADHOC_NOPTIM=False): from pipeline.training.training_utils import prepare_save_dirs xai_mode = config_data['xai_mode'] MODEL_DIR, INFO_DIR, CACHE_FOLDER_DIR = prepare_save_dirs(config_data) ############################ VERBOSE = 0 ############################ if not FIND_OPTIM_BRANCH_MODEL: print( 'Using the following the model from (only) continuous training for xai evaluation [%s]' % (str(xai_mode))) net, evaluator = initiate_or_load_model(MODEL_DIR, INFO_DIR, config_data, verbose=VERBOSE) else: BRANCH_FOLDER_DIR = MODEL_DIR[:MODEL_DIR.find('.model')] + '.%s' % ( str(config_data['branch_name_label'])) BRANCH_MODEL_DIR = os.path.join( BRANCH_FOLDER_DIR, '%s.%s.model' % (str(config_data['model_name']), str(config_data['branch_name_label']))) # BRANCH_MODEL_DIR = MODEL_DIR[:MODEL_DIR.find('.model')] + '.%s.model'%(str(config_data['branch_name_label'])) if ALLOW_ADHOC_NOPTIM: # this is intended only for debug runs print('<< [EXY1] ALLOWING ADHOC NOPTIM >>') import shutil shutil.copyfile(BRANCH_MODEL_DIR, BRANCH_MODEL_DIR + '.noptim') if os.path.exists(BRANCH_MODEL_DIR + '.optim'): BRANCH_MODEL_DIR = BRANCH_MODEL_DIR + '.optim' print( ' Using the OPTIMIZED branch model for [%s] xai evaluation: %s' % (str(xai_mode), str(BRANCH_MODEL_DIR))) elif os.path.exists(BRANCH_MODEL_DIR + '.noptim'): BRANCH_MODEL_DIR = BRANCH_MODEL_DIR + '.noptim' print( ' Using the partially optimized branch model for [%s] xai evaluation: %s' % (str(xai_mode), str(BRANCH_MODEL_DIR))) else: raise RuntimeError( 'Attempting to find .optim or .noptim model, but not found.') if VERBOSE >= 250: print( ' """You may see a warning by pytorch for ReLu backward hook. It has been fixed externally, so you can ignore it."""' ) net, evaluator = initiate_or_load_model(BRANCH_MODEL_DIR, INFO_DIR, config_data, verbose=VERBOSE) if xai_mode == 'Saliency': attrmodel = Saliency(net) elif xai_mode == 'IntegratedGradients': attrmodel = IntegratedGradients(net) elif xai_mode == 'InputXGradient': attrmodel = InputXGradient(net) elif xai_mode == 'DeepLift': attrmodel = DeepLift(net) elif xai_mode == 'GuidedBackprop': attrmodel = GuidedBackprop(net) elif xai_mode == 'GuidedGradCam': attrmodel = GuidedGradCam(net, net.select_first_layer()) # first layer elif xai_mode == 'Deconvolution': attrmodel = Deconvolution(net) elif xai_mode == 'GradientShap': attrmodel = GradientShap(net) elif xai_mode == 'DeepLiftShap': attrmodel = DeepLiftShap(net) else: raise RuntimeError('No valid attribution selected.') if singleton_scope: # just to observe a single datapoint, mostly for debugging singleton_scope_oberservation(net, attrmodel, config_data, CACHE_FOLDER_DIR) else: aggregate_evaluation(net, attrmodel, config_data, CACHE_FOLDER_DIR, reshape_size=reshape_size, realtime_update=realtime_update, EVALUATE_BRANCH=FIND_OPTIM_BRANCH_MODEL)