Esempio n. 1
0
def test_rotation_axis():
    body = cpt.RectangularParallelepiped(resolution=(4, 4, 4),
                                         center=(0, 0, -1),
                                         name="body")
    body.add_translation_dof(name="Sway")
    body.add_rotation_dof(axis=cpt.Axis(point=(0, 0, 0), vector=(0, 0, 1)),
                          name="Yaw")

    l = 2.0
    body.add_rotation_dof(axis=cpt.Axis(point=(l, 0, 0), vector=(0, 0, 1)),
                          name="other_rotation")

    assert np.allclose(body.dofs['other_rotation'],
                       (body.dofs['Yaw'] - l * body.dofs['Sway']))

    problems = [
        cpt.RadiationProblem(body=body, radiating_dof=dof, omega=1.0)
        for dof in body.dofs
    ]
    solver = cpt.Nemoh()
    results = solver.solve_all(problems, keep_details=True)
    dataset = cpt.assemble_dataset(results)

    sources = {result.radiating_dof: result.sources for result in results}
    assert np.allclose(sources['other_rotation'],
                       sources['Yaw'] - l * sources['Sway'],
                       atol=1e-4)

    potential = {result.radiating_dof: result.potential for result in results}
    assert np.allclose(potential['other_rotation'],
                       potential['Yaw'] - l * potential['Sway'],
                       atol=1e-4)

    A_m = dataset['added_mass'].sel(radiating_dof="other_rotation",
                                    influenced_dof="other_rotation").data
    A = dataset['added_mass'].sel(radiating_dof=["Yaw", "Sway"],
                                  influenced_dof=["Yaw", "Sway"]).data
    P = np.array([1, -l])
    assert np.isclose(A_m, P.T @ A @ P)
Esempio n. 2
0
def test_sum_of_dofs():
    body1 = cpt.Sphere(radius=1.0,
                       ntheta=3,
                       nphi=12,
                       center=(0, 0, -3),
                       name="body1")
    body1.add_translation_dof(name="Heave")

    body2 = cpt.Sphere(radius=1.0,
                       ntheta=3,
                       nphi=8,
                       center=(5, 3, -1.5),
                       name="body2")
    body2.add_translation_dof(name="Heave")

    both = body1 + body2
    both.add_translation_dof(name="Heave")

    problems = [
        cpt.RadiationProblem(body=both, radiating_dof=dof, omega=1.0)
        for dof in both.dofs
    ]
    solver = cpt.Nemoh()
    results = solver.solve_all(problems)
    dataset = cpt.assemble_dataset(results)

    both_added_mass = dataset['added_mass'].sel(radiating_dof="Heave",
                                                influenced_dof="Heave").data
    body1_added_mass = dataset['added_mass'].sel(
        radiating_dof="body1__Heave", influenced_dof="body1__Heave").data
    body2_added_mass = dataset['added_mass'].sel(
        radiating_dof="body2__Heave", influenced_dof="body2__Heave").data

    assert np.allclose(both_added_mass,
                       body1_added_mass + body2_added_mass,
                       rtol=1e-2)
# Generate the mesh of a sphere
full_sphere = cpt.Sphere(
    radius=3,
    center=(0, 0, 0),  # Size and positions
    ntheta=20,
    nphi=20,  # Fineness of the mesh
)
full_sphere.add_translation_dof(name="Heave")

# Keep only the immersed part of the mesh
sphere = full_sphere.keep_immersed_part(inplace=False)
sphere.add_translation_dof(name="Heave")

# Set up and solve problem
solver = cpt.Nemoh(use_symmetries=False)

diffraction_problem = cpt.DiffractionProblem(body=sphere,
                                             wave_direction=0.0,
                                             omega=2.0)
diffraction_result = solver.solve(diffraction_problem)

radiation_problem = cpt.RadiationProblem(body=sphere,
                                         radiating_dof="Heave",
                                         omega=2.0)
radiation_result = solver.solve(radiation_problem)

# Define a mesh of the free surface and compute the free surface elevation
free_surface = cpt.FreeSurface(x_range=(-50, 50),
                               y_range=(-50, 50),
                               nx=150,
Esempio n. 4
0
    [(0, 0, 1) for face in sphere.mesh.faces]
)

# Bulging of the sphere,
# that is a deformation vector normal to the body at all faces.
# We can simply point to the normal vectors of the mesh for that.
sphere.dofs["Bulge"] = sphere.mesh.faces_normals

# Shearing of the sphere in the x direction.
# The deformation vector on a face is computed from the position of the face.
sphere.dofs["x-shear"] = np.array(
    [(np.cos(np.pi*z/2), 0, 0) for x, y, z in sphere.mesh.faces_centers]
)

# SOLVE DIFFRACTION PROBLEMS
solver = cpt.Nemoh()

# Solve the problem for β=0 (incoming wave in the x direction).
problem_1 = cpt.DiffractionProblem(body=sphere, wave_direction=0, omega=1.0)
result_1 = solver.solve(problem_1)

# Solve the problem for β=π/2 (incoming wave in the y direction).
problem_2 = cpt.DiffractionProblem(body=sphere, wave_direction=np.pi/2, omega=1.0)
result_2 = solver.solve(problem_2)

# Print the generalized diffraction forces
# for the three dofs we defined
# for both values of the wave_direction β.
for result in [result_1, result_2]:
    print(f"Angle: {result.wave_direction:.2f}")
    for dof in sphere.dofs:
Esempio n. 5
0
#!/usr/bin/env python

import capytaine as cpt

# Generate the mesh of a cylinder
cylinder = cpt.HorizontalCylinder(
    length=10.0,
    radius=1.0,  # Dimensions
    center=(0, 0, -2),  # Position
    nr=1,
    nx=8,
    ntheta=6,  # Fineness of the mesh
)

# Use Nemoh to compute the influence matrices
solver = cpt.Nemoh(hierarchical_matrices=False)
S, K = solver.build_matrices(cylinder.mesh, cylinder.mesh, wavenumber=1.0)

# Plot the absolute value of the matrix V
#
import matplotlib.pyplot as plt
plt.imshow(abs(S))
plt.colorbar()
plt.title("$|S|$")
plt.tight_layout()
plt.show()
Esempio n. 6
0
import logging
from pathlib import Path

import numpy as np
from numpy import pi

import capytaine as cpt
from capytaine.ui.vtk import Animation

logging.basicConfig(level=logging.INFO, format='%(levelname)-8s: %(message)s')

bem_solver = cpt.Nemoh(linear_solver="gmres")


def generate_boat() -> cpt.FloatingBody:
    boat = cpt.FloatingBody.from_file("boat_200.mar",
                                      file_format="mar",
                                      name="pirate ship")
    boat.rotate_z(pi)
    boat.add_all_rigid_body_dofs()
    boat.keep_immersed_part()

    # The computation of the RAO requires the values of the inertia matrix and the hydrostatic stiffness matrix.
    # They need to be computed independently.
    boat.mass = boat.add_dofs_labels_to_matrix([[1e4, 0, 0, 0, 0, 0],
                                                [0, 1e4, 0, 0, 0, 0],
                                                [0, 0, 1e4, 0, 0, 0],
                                                [0, 0, 0, 1e7, 0, 2e5],
                                                [0, 0, 0, 0, 4e7, 0],
                                                [0, 0, 0, 2e5, 0, 5e7]])
    boat.hydrostatic_stiffness = boat.add_dofs_labels_to_matrix(