def __get_nearby_agent_ids(self, radius=None):
     if radius is None:
         radius = self.radius
     player_location = carlautil.transform_to_location_ndarray(
         self.player_transform)
     """When there are road above / below ego vehicle,
     then we don't want to include them."""
     upperbound_z = 4
     lowerbound_z = -4
     other_ids = util.map_to_ndarray(lambda v: v.id, self.other_vehicles)
     other_locations = util.map_to_ndarray(
         lambda v: carlautil.transform_to_location_ndarray(v.get_transform(
         )), self.other_vehicles)
     distances = np.linalg.norm(other_locations - player_location, axis=1)
     z_displacements = other_locations[:, -1] - player_location[-1]
     df = pd.DataFrame({
         'ids': other_ids,
         'distances': distances,
         'z_displacements': z_displacements
     })
     df = df[df['distances'] < radius]
     df = df[df['z_displacements'].between(lowerbound_z,
                                           upperbound_z,
                                           inclusive=False)]
     df.sort_values('distances', inplace=True)
     return df['ids'].to_numpy()
Esempio n. 2
0
    def extract_junction_points(self, tlight_find_radius=25.):
        carla_topology = self.carla_map.get_topology()
        junctions = carlautil.get_junctions_from_topology_graph(carla_topology)
        tlights = util.filter_to_list(lambda a: 'traffic_light' in a.type_id,
                                      self.carla_world.get_actors())
        tlight_distances = np.zeros((
            len(tlights),
            len(junctions),
        ))
        f = lambda j: carlautil.location_to_ndarray(j.bounding_box.location)
        junction_locations = util.map_to_ndarray(f, junctions)

        g = lambda tl: carlautil.transform_to_location_ndarray(tl.
                                                               get_transform())
        tlight_locations = util.map_to_ndarray(g, tlights)

        for idx, junction in enumerate(junctions):
            tlight_distances[:, idx] = np.linalg.norm(tlight_locations -
                                                      junction_locations[idx],
                                                      axis=1)

        is_controlled_junction = (tlight_distances < tlight_find_radius).any(
            axis=0)
        is_uncontrolled_junction = np.logical_not(is_controlled_junction)
        controlled_junction_locations \
                = junction_locations[is_controlled_junction]
        uncontrolled_junction_locations \
                = junction_locations[is_uncontrolled_junction]
        return util.AttrDict(controlled=controlled_junction_locations,
                             uncontrolled=uncontrolled_junction_locations)
Esempio n. 3
0
    def __init__(self, carla_world, carla_map, debug=False):
        """

        Parameters
        ----------
        carla_world : carla.World
        carla_map : carla.Map
        debug : bool

        """
        super().__init__(carla_world, carla_map, debug=debug)
        """Generate slope topology of the map"""
        # get waypoints
        wps = self.carla_map.generate_waypoints(4.0)

        def h(wp):
            l = wp.transform.location
            pitch = wp.transform.rotation.pitch
            return np.array([l.x, l.y, l.z, pitch])

        loc_and_pitch_of_wps = util.map_to_ndarray(h, wps)
        self.wp_locations = loc_and_pitch_of_wps[:, :-1]
        self.wp_pitches = loc_and_pitch_of_wps[:, -1]
        self.wp_pitches = self.wp_pitches % 360.
        self.wp_is_sloped = np.logical_and(
            self.SLOPE_DEGREES < self.wp_pitches,
            self.wp_pitches < self.SLOPE_UDEGREES)
        """Generate intersection topology of the map"""
        # get nodes in graph
        topology = self.carla_map.get_topology()
        G = nx.Graph()
        G.add_edges_from(topology)
        tlights = util.filter_to_list(lambda a: 'traffic_light' in a.type_id,
                                      self.carla_world.get_actors())
        junctions = carlautil.get_junctions_from_topology_graph(G)

        tlight_distances = np.zeros((
            len(tlights),
            len(junctions),
        ))
        f = lambda j: carlautil.location_to_ndarray(j.bounding_box.location)
        junction_locations = util.map_to_ndarray(f, junctions)

        g = lambda tl: carlautil.transform_to_location_ndarray(tl.
                                                               get_transform())
        tlight_locations = util.map_to_ndarray(g, tlights)

        for idx, junction in enumerate(junctions):
            tlight_distances[:, idx] = np.linalg.norm(tlight_locations -
                                                      junction_locations[idx],
                                                      axis=1)

        is_controlled_junction = (tlight_distances <
                                  self.TLIGHT_FIND_RADIUS).any(axis=0)
        is_uncontrolled_junction = np.logical_not(is_controlled_junction)
        self.controlled_junction_locations \
                = junction_locations[is_controlled_junction]
        self.uncontrolled_junction_locations \
                = junction_locations[is_uncontrolled_junction]
Esempio n. 4
0
    def __process_lidar_snapshots(self, frames):
        """Add semantic LIDAR points from measurements to collection of points
        with __sensor_transform_at_t0 as the origin.

        Parameters
        ==========
        frames : list of int
            The frames to merge LIDAR measurements to collection
            sorted by ascending order.
        """
        if not frames:
            return
        collection_of_points = []
        collection_of_labels = []
        collection_of_object_ids = []
        for frame in frames:
            lidar_measurement = self.__lidar_feeds[frame]
            raw_data = lidar_measurement.raw_data
            mtx = np.array(lidar_measurement.transform.get_matrix())
            data = np.frombuffer(
                raw_data,
                dtype=np.dtype([
                    ("x", np.float32),
                    ("y", np.float32),
                    ("z", np.float32),
                    ("CosAngle", np.float32),
                    ("ObjIdx", np.uint32),
                    ("ObjTag", np.uint32),
                ]),
            )
            points = np.array([data["x"], data["y"], data["z"]]).T
            labels = data["ObjTag"]
            object_ids = data["ObjIdx"]
            self.__lidar_snapshot_to_populate_vehicle_visibility(
                lidar_measurement, points, labels, object_ids)
            points = self.__add_1_to_points(points)
            points = points @ mtx.T
            points = points[:, :3]
            collection_of_points.append(points)
            collection_of_labels.append(labels)
            collection_of_object_ids.append(object_ids)
        if self.__sensor_loc_at_t0 is None:
            lidar_measurement = self.__lidar_feeds[frames[0]]
            loc = carlautil.transform_to_location_ndarray(
                lidar_measurement.transform)
            self.__sensor_loc_at_t0 = loc
        else:
            collection_of_points = [self.__overhead_points
                                    ] + collection_of_points
            collection_of_labels = [self.__overhead_labels
                                    ] + collection_of_labels
            collection_of_object_ids = [self.__overhead_ids
                                        ] + collection_of_object_ids
        self.__overhead_points = np.concatenate(collection_of_points)
        self.__overhead_labels = np.concatenate(collection_of_labels)
        self.__overhead_ids = np.concatenate(collection_of_object_ids)
 def old_get_nearby_agent_ids(self, radius=None):
     """Gets all IDs of other vehicles that are radius away from ego vehicle and
     returns IDs sorted by nearest to player first.
     
     TODO: don't include other vehicles below / above th ego vehicle
     TODO: delete
     """
     if radius is None:
         radius = self.radius
     player_location = carlautil.transform_to_location_ndarray(
         self.player_transform)
     other_ids = util.map_to_ndarray(lambda v: v.id, self.other_vehicles)
     other_locations = util.map_to_ndarray(
         lambda v: carlautil.transform_to_location_ndarray(v.get_transform(
         )), self.other_vehicles)
     distances = np.linalg.norm(other_locations - player_location, axis=1)
     df = pd.DataFrame({'ids': other_ids, 'distances': distances})
     df = df[df['distances'] < radius]
     df.sort_values('distances', inplace=True)
     return df['ids'].to_numpy()
    def __init__(self,
                 frame,
                 phi,
                 world,
                 other_vehicles,
                 player_transforms,
                 others_transforms,
                 player_bbox,
                 other_id_ordering=None,
                 radius=200):
        """
        1. generates a history of player and other vehicle position coordinates
           of size len(player_transforms)

        Parameters
        ----------
        frame : int
            Frame ID of observation
        world : carla.World
        other_vehicles : list of carla.Vehicle
        player_transform : collections.deque of carla.Transform
            Collection of transforms of player
            Ordered by timestep where last in deque is current timestep
        others_transforms : collections.deque of (dict of int : carla.Trajectory)
            Collection of transforms of other vehicles by vehicle ID
            Ordered by timestep where last in deque is current timestep
        A : int
            Number of vehicles in observation, including ego vehicle. Must be A > 1.
        other_id_ordering : list of int
            IDs of other (not player) vehicles (not walkers).
            All IDs in other_id_ordering belong to some vehicle ID
        radius : int
        """
        _, _, self.T_past, _ = tensoru.shape(self.phi.S_past_world_frame)
        self.B, self.A, self.T, self.D = tensoru.shape(
            self.phi.S_future_world_frame)
        self.B, self.H, self.W, self.C = tensoru.shape(
            self.phi.overhead_features)
        assert (len(player_transforms) == len(others_transforms))
        assert (self.A > 0)

        # player_transform : carla.Transform
        # transform of current player
        self.player_transform = player_transforms[-1]

        # player_positions_world : ndarray of shape (len(player_transforms), 3)
        self.player_positions_world = carlautil.transforms_to_location_ndarray(
            self.player_transforms)
        # player_positions_local : ndarray of shape (len(player_transforms), 3)
        self.player_positions_local = self.player_positions_world \
                - carlautil.transform_to_location_ndarray(self.player_transform)
        # player_yaw : float
        self.player_yaw = carlautil.transform_to_yaw(self.player_transform)

        if self.other_id_ordering is None:
            # get list of A agents within radius close to us
            # note that other_id_ordering may have size smaller than A-1
            ids = self.__get_nearby_agent_ids()
            self.other_id_ordering = ids[:self.A - 1]

        if self.other_id_ordering.shape != (0, ):
            others_positions_list = [None] * len(self.others_transforms)
            for idx, others_transform in enumerate(self.others_transforms):
                others_positions_list[idx] = util.map_to_list(
                    lambda aid: carlautil.transform_to_location_ndarray(
                        others_transform[aid]), self.other_id_ordering)

            # agent_positions_world : ndarray of shape (A-1, len(self.others_transforms), 3)
            self.agent_positions_world = np.array(
                others_positions_list).transpose(1, 0, 2)

            others_transform = self.others_transforms[-1]
            # agent_yaws : ndarray of shape (A-1,)
            self.agent_yaws = util.map_to_ndarray(
                lambda aid: carlautil.transform_to_yaw(others_transform[aid]),
                self.other_id_ordering)

            self.n_missing = max(
                self.A - 1 - self.agent_positions_world.shape[0], 0)
            self.has_other_agents = True
        else:
            self.agent_positions_world = np.array([])
            self.agent_yaws = np.array([])
            self.n_missing = self.A - 1
            self.has_other_agents = False

        if self.n_missing > 0:
            faraway_position = carlautil.transform_to_location_ndarray(self.player_transform) \
                    + np.array([0, 300, 0])
            faraway_tile = np.tile(
                faraway_position,
                (self.n_missing, len(self.others_transforms), 1))
            if self.n_missing == self.A - 1:
                self.agent_positions_world = faraway_tile
                self.agent_yaws = np.zeros(self.A - 1)
            else:
                self.agent_positions_world = np.concatenate(
                    (self.agent_positions_world, faraway_tile), axis=0)
                self.agent_yaws = np.concatenate(
                    (self.agent_yaws, np.zeros(self.n_missing)), axis=0)

        # agent_positions_local : ndarray of shape (A-1, len(self.others_transforms), 3)
        self.agent_positions_local = self.agent_positions_world \
                - carlautil.transform_to_location_ndarray(self.player_transform)
    def save_dataset_sample(self, frame, episode, observation,
                            trajectory_feeds, lidar_feeds, player_bbox,
                            lidar_sensor, lidar_params, save_directory,
                            make_sample_name, sample_labels):
        """

        The original PRECOG dataset has these relevant keys:
        - episode : int
        - frame : int
        - lidar_params : dict with keys ['hist_max_per_pixel',
            'val_obstacle', 'meters_max', 'pixels_per_meter']
        - player_future : matrix of shape (20, 3)
        - agent_futures : matrix of shape (4, 20, 3)
        - player_past : matrix of shape (10, 3)
        - agent_pasts : matrix of shape (4, 10, 3)
        - overhead_features : matrix shape (200, 200, 4)

        Parameters
        ----------
        player_bbox : carla.BoundingBox
            Player's bounding box used to get vehicle dimensions.
        lidar_sensor : carla.Sensor
        lidar_params : LidarParams
            Lidar parameters
        save_directory : str
            Directory to save to.
        make_sample_name : lambda frame
            Function to generate name for sample
        sample_labels : SampleLabelMap
        """
        earlier_frame = frame - self.T
        player_transform, other_id_ordering, \
                feed_dict = trajectory_feeds[earlier_frame]
        ## TODO: Maybe add some check to not save samples without other agents.
        # if not observation.has_other_agents:
        #     logging.debug("Could not obtain other agents for this sample. Skipping.")
        #     return
        observation = observation.copy_with_new_ordering(other_id_ordering)
        lidar_measurement = lidar_feeds[earlier_frame]
        player_past = feed_dict.player_past
        agent_pasts = feed_dict.agent_pasts
        player_yaw = feed_dict.player_yaw
        agent_yaws = feed_dict.agent_yaws
        player_future = observation.player_positions_world[1:self.T+1, :3] \
                - carlautil.transform_to_location_ndarray(player_transform)
        agent_futures = observation.agent_positions_world[:, 1:self.T+1, :3] \
                - carlautil.transform_to_location_ndarray(player_transform)
        sample_labels.n_present = observation.n_present

        sample = DrivingSample(episode=episode,
                               frame=frame,
                               lidar_params=lidar_params,
                               sample_labels=sample_labels,
                               save_directory=save_directory,
                               sample_name=make_sample_name(earlier_frame),
                               lidar_measurement=lidar_measurement,
                               player_bbox=player_bbox,
                               player_past=player_past,
                               agent_pasts=agent_pasts,
                               player_future=player_future,
                               agent_futures=agent_futures,
                               player_yaw=player_yaw,
                               agent_yaws=agent_yaws,
                               should_augment=self.should_augment,
                               n_augments=self.n_augments)
        sample.save()