def coxeter_matrix(t): """ Returns the Coxeter matrix of type t. EXAMPLES:: sage: coxeter_matrix(['A', 4]) [1 3 2 2] [3 1 3 2] [2 3 1 3] [2 2 3 1] sage: coxeter_matrix(['B', 4]) [1 3 2 2] [3 1 3 2] [2 3 1 4] [2 2 4 1] sage: coxeter_matrix(['C', 4]) [1 3 2 2] [3 1 3 2] [2 3 1 4] [2 2 4 1] sage: coxeter_matrix(['D', 4]) [1 3 2 2] [3 1 3 3] [2 3 1 2] [2 3 2 1] :: sage: coxeter_matrix(['E', 6]) [1 2 3 2 2 2] [2 1 2 3 2 2] [3 2 1 3 2 2] [2 3 3 1 3 2] [2 2 2 3 1 3] [2 2 2 2 3 1] :: sage: coxeter_matrix(['F', 4]) [1 3 2 2] [3 1 4 2] [2 4 1 3] [2 2 3 1] :: sage: coxeter_matrix(['G', 2]) [1 6] [6 1] """ ct = CartanType(t) cf = coxeter_matrix_as_function(ct) index_set = ct.index_set() MS = MatrixSpace(ZZ, len(index_set)) m = MS(0) for i in range(len(index_set)): for j in range(len(index_set)): m[i, j] = cf(index_set[i], index_set[j]) return m
def __init__(self, cartan_type, as_dual_of=None): """ TESTS:: sage: R = RootSystem(['A',3]) sage: R Root system of type ['A', 3] """ self._cartan_type = CartanType(cartan_type) # Duality # The root system can be defined as dual of another root system. This will # only affects the pretty printing if as_dual_of is None: self.dual_side = False self.dual = RootSystem(self._cartan_type.dual(), as_dual_of=self) # still fails for CartanType G2xA1 try: self.dual = RootSystem(self._cartan_type.dual(), as_dual_of=self) except StandardError: pass else: self.dual_side = True self.dual = as_dual_of
def DynkinDiagram(*args): """ INPUT: - ``ct`` - a Cartan Type Returns a Dynkin diagram for type ct. The edge multiplicities are encoded as edge labels. This uses the convention in Kac / Fulton Harris, Representation theory / Wikipedia (http://en.wikipedia.org/wiki/Dynkin_diagram). That is for i != j:: j --k--> i <==> a_ij = -k <==> -scalar(coroot[i], root[j]) = k <==> multiple arrows point from the longer root to the shorter one EXAMPLES:: sage: DynkinDiagram(['A', 4]) O---O---O---O 1 2 3 4 A4 sage: DynkinDiagram(['A',1],['A',1]) O 1 O 2 A1xA1 sage: R = RootSystem("A2xB2xF4") sage: DynkinDiagram(R) O---O 1 2 O=>=O 3 4 O---O=>=O---O 5 6 7 8 A2xB2xF4 SEE ALSO: :func:`CartanType` for a general discussion on Cartan types and in particular node labeling conventions. """ if len(args) == 0: return DynkinDiagram_class() ct = CartanType(*args) if hasattr(ct, "dynkin_diagram"): return ct.dynkin_diagram() else: raise ValueError, "Dynkin diagram data not yet hardcoded for type %s"%ct
def ascii_art(self, label=lambda i: i, node=None): """ Return a ascii art representation of the extended Dynkin diagram. EXAMPLES:: sage: print CartanType(['C',5,1]).ascii_art(label = lambda x: x+2) O=>=O---O---O---O=<=O 2 3 4 5 6 7 sage: print CartanType(['C',3,1]).ascii_art() O=>=O---O=<=O 0 1 2 3 sage: print CartanType(['C',2,1]).ascii_art() O=>=O=<=O 0 1 2 sage: print CartanType(['C',1,1]).ascii_art() O<=>O 0 1 """ if node is None: node = self._ascii_art_node n = self.n from cartan_type import CartanType if n == 1: return CartanType(["A", 1, 1]).ascii_art(label, node) ret = node(label(0)) + "=>=" + "---".join( node(label(i)) for i in range(1, n)) ret += "=<=" + node(label(n)) + '\n' ret += "".join("{!s:4}".format(label(i)) for i in range(n + 1)) return ret
def ascii_art(self, label = lambda x: x): """ Returns a ascii art representation of the extended Dynkin diagram EXAMPLES:: sage: print CartanType(['C',5,1]).ascii_art(label = lambda x: x+2) O=>=O---O---O---O=<=O 2 3 4 5 6 7 sage: print CartanType(['C',3,1]).ascii_art() O=>=O---O=<=O 0 1 2 3 sage: print CartanType(['C',2,1]).ascii_art() O=>=O=<=O 0 1 2 sage: print CartanType(['C',1,1]).ascii_art() O<=>O 0 1 """ n = self.n from cartan_type import CartanType if n == 1: return CartanType(["A",1,1]).ascii_art(label) if self.global_options('mark_special_node') in ['printing', 'both']: special_str = self.global_options('special_node_str') else: special_str = 'O' ret = "%s=>=O"%special_str + (n-2)*"---O"+"=<=O\n%s "%label(0) ret += " ".join("%s"%label(i) for i in range(1,n+1)) return ret
def coxeter_matrix_as_function(t): """ Returns the coxeter matrix associated to the Cartan type t. EXAMPLES:: sage: from sage.combinat.root_system.coxeter_matrix import coxeter_matrix_as_function sage: f = coxeter_matrix_as_function(['A',4]) sage: matrix([[f(i,j) for j in range(1,5)] for i in range(1,5)]) [1 3 2 2] [3 1 3 2] [2 3 1 3] [2 2 3 1] """ a = CartanType(t).dynkin_diagram() scalarproducts_to_order = { 0: 2, 1: 3, 2: 4, 3: 6 # 4 should be infinity } return lambda i, j: 1 if i == j else scalarproducts_to_order[a[i, j] * a[ j, i]]
def ascii_art(self, label=lambda x: x): """ Returns a ascii art representation of the extended Dynkin diagram EXAMPLES:: sage: print CartanType(['C',5,1]).ascii_art(label = lambda x: x+2) O=>=O---O---O---O=<=O 2 3 4 5 6 7 sage: print CartanType(['C',3,1]).ascii_art() O=>=O---O=<=O 0 1 2 3 sage: print CartanType(['C',2,1]).ascii_art() O=>=O=<=O 0 1 2 sage: print CartanType(['C',1,1]).ascii_art() O<=>O 0 1 """ n = self.n from cartan_type import CartanType if n == 1: return CartanType(["A", 1, 1]).ascii_art(label) ret = "O=>=O" + (n - 2) * "---O" + "=<=O\n%s " % label(0) ret += " ".join("%s" % label(i) for i in range(1, n + 1)) return ret
def ascii_art(self, label=lambda x: x): """ Returns a ascii art representation of the extended Dynkin diagram EXAMPLES:: sage: print CartanType(['B',3,1]).ascii_art() O 0 | | O---O=>=O 1 2 3 sage: print CartanType(['B',5,1]).ascii_art(label = lambda x: x+2) O 2 | | O---O---O---O=>=O 3 4 5 6 7 sage: print CartanType(['B',2,1]).ascii_art(label = lambda x: x+2) O=>=O=<=O 2 4 3 sage: print CartanType(['B',1,1]).ascii_art(label = lambda x: x+2) O<=>O 2 3 """ n = self.n from cartan_type import CartanType if n == 1: return CartanType(["A", 1, 1]).ascii_art(label) if n == 2: return CartanType(["C", 2, 1]).relabel({ 0: 0, 1: 2, 2: 1 }).ascii_art(label) if self.global_options('mark_special_node') in ['printing', 'both']: special_str = self.global_options('special_node_str') else: special_str = 'O' ret = " %s %s\n |\n |\n" % (special_str, label(0)) ret += (n - 2) * "O---" + "O=>=O\n" ret += " ".join("%s" % label(i) for i in range(1, n + 1)) return ret
def WeylDim(ct, coeffs): """ The Weyl Dimension Formula. INPUT: - ``type`` - a Cartan type - ``coeffs`` - a list of nonnegative integers The length of the list must equal the rank type[1]. A dominant weight hwv is constructed by summing the fundamental weights with coefficients from this list. The dimension of the irreducible representation of the semisimple complex Lie algebra with highest weight vector hwv is returned. EXAMPLES: For `SO(7)`, the Cartan type is `B_3`, so:: sage: WeylDim(['B',3],[1,0,0]) # standard representation of SO(7) 7 sage: WeylDim(['B',3],[0,1,0]) # exterior square 21 sage: WeylDim(['B',3],[0,0,1]) # spin representation of spin(7) 8 sage: WeylDim(['B',3],[1,0,1]) # sum of the first and third fundamental weights 48 sage: [WeylDim(['F',4],x) for x in [1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] [52, 1274, 273, 26] sage: [WeylDim(['E', 6], x) for x in [0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 2], [0, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [2, 0, 0, 0, 0, 0]] [1, 78, 27, 351, 351, 351, 27, 650, 351] """ ct = CartanType(ct) lattice = RootSystem(ct).ambient_space() rank = ct.rank() fw = lattice.fundamental_weights() hwv = lattice.sum(coeffs[i] * fw[i + 1] for i in range(min(rank, len(coeffs)))) return lattice.weyl_dimension(hwv)
def WeylDim(ct, coeffs): """ The Weyl Dimension Formula. INPUT: - ``type`` - a Cartan type - ``coeffs`` - a list of nonnegative integers The length of the list must equal the rank type[1]. A dominant weight hwv is constructed by summing the fundamental weights with coefficients from this list. The dimension of the irreducible representation of the semisimple complex Lie algebra with highest weight vector hwv is returned. EXAMPLES: For `SO(7)`, the Cartan type is `B_3`, so:: sage: WeylDim(['B',3],[1,0,0]) # standard representation of SO(7) 7 sage: WeylDim(['B',3],[0,1,0]) # exterior square 21 sage: WeylDim(['B',3],[0,0,1]) # spin representation of spin(7) 8 sage: WeylDim(['B',3],[1,0,1]) # sum of the first and third fundamental weights 48 sage: [WeylDim(['F',4],x) for x in [1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] [52, 1274, 273, 26] sage: [WeylDim(['E', 6], x) for x in [0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 2], [0, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1], [2, 0, 0, 0, 0, 0]] [1, 78, 27, 351, 351, 351, 27, 650, 351] """ ct = CartanType(ct) lattice = RootSystem(ct).ambient_space() rank = ct.rank() fw = lattice.fundamental_weights() hwv = lattice.sum(coeffs[i]*fw[i+1] for i in range(min(rank, len(coeffs)))) return lattice.weyl_dimension(hwv)
def ascii_art(self, label=lambda x: x): """ Returns a ascii art representation of the extended Dynkin diagram EXAMPLES:: sage: print CartanType(['B',3,1]).ascii_art() O 0 | | O---O=>=O 1 2 3 sage: print CartanType(['B',5,1]).ascii_art(label = lambda x: x+2) O 2 | | O---O---O---O=>=O 3 4 5 6 7 sage: print CartanType(['B',2,1]).ascii_art(label = lambda x: x+2) O=>=O=<=O 2 4 3 sage: print CartanType(['B',1,1]).ascii_art(label = lambda x: x+2) O<=>O 2 3 """ n = self.n from cartan_type import CartanType if n == 1: return CartanType(["A", 1, 1]).ascii_art(label) if n == 2: return CartanType(["C", 2, 1]).relabel({ 0: 0, 1: 2, 2: 1 }).ascii_art(label) ret = " O %s\n |\n |\n" % label(0) ret += (n - 2) * "O---" + "O=>=O\n" ret += " ".join("%s" % label(i) for i in range(1, n + 1)) return ret
def coxeter_matrix(t): """ Returns the Coxeter matrix of type t. EXAMPLES:: sage: coxeter_matrix(['A', 4]) [1 3 2 2] [3 1 3 2] [2 3 1 3] [2 2 3 1] sage: coxeter_matrix(['B', 4]) [1 3 2 2] [3 1 3 2] [2 3 1 4] [2 2 4 1] sage: coxeter_matrix(['C', 4]) [1 3 2 2] [3 1 3 2] [2 3 1 4] [2 2 4 1] sage: coxeter_matrix(['D', 4]) [1 3 2 2] [3 1 3 3] [2 3 1 2] [2 3 2 1] :: sage: coxeter_matrix(['E', 6]) [1 2 3 2 2 2] [2 1 2 3 2 2] [3 2 1 3 2 2] [2 3 3 1 3 2] [2 2 2 3 1 3] [2 2 2 2 3 1] :: sage: coxeter_matrix(['F', 4]) [1 3 2 2] [3 1 4 2] [2 4 1 3] [2 2 3 1] :: sage: coxeter_matrix(['G', 2]) [1 6] [6 1] """ return CartanType(t).coxeter_matrix()
def __classcall__(cls, cartan_type, as_dual_of=None): """ Straighten arguments to enable unique representation .. seealso:: :class:`UniqueRepresentation` TESTS:: sage: RootSystem(["A",3]) is RootSystem(CartanType(["A",3])) True sage: RootSystem(["B",3], as_dual_of=None) is RootSystem("B3") True """ return super(RootSystem, cls).__classcall__(cls, CartanType(cartan_type), as_dual_of)
def coxeter_matrix_as_function(t): """ Returns the coxeter matrix, as a function INPUT: - ``t`` -- a Cartan type EXAMPLES:: sage: from sage.combinat.root_system.coxeter_matrix import coxeter_matrix_as_function sage: f = coxeter_matrix_as_function(['A',4]) sage: matrix([[f(i,j) for j in range(1,5)] for i in range(1,5)]) [1 3 2 2] [3 1 3 2] [2 3 1 3] [2 2 3 1] """ t = CartanType(t) m = t.coxeter_matrix() index_set = t.index_set() reverse = dict((index_set[i], i) for i in range(len(index_set))) return lambda i,j: m[reverse[i], reverse[j]]
def coxeter_matrix_as_function(t): """ Returns the Coxeter matrix, as a function INPUT: - ``t`` -- a Cartan type EXAMPLES:: sage: from sage.combinat.root_system.coxeter_matrix import coxeter_matrix_as_function sage: f = coxeter_matrix_as_function(['A',4]) sage: matrix([[f(i,j) for j in range(1,5)] for i in range(1,5)]) [1 3 2 2] [3 1 3 2] [2 3 1 3] [2 2 3 1] """ t = CartanType(t) m = t.coxeter_matrix() index_set = t.index_set() reverse = dict((index_set[i], i) for i in range(len(index_set))) return lambda i,j: m[reverse[i], reverse[j]]
def __init__(self, cartan_type, as_dual_of=None): """ TESTS:: sage: R = RootSystem(['A',3]) sage: R Root system of type ['A', 3] """ self._cartan_type = CartanType(cartan_type) # Duality # The root system can be defined as dual of another root system. This will # only affects the pretty printing if as_dual_of is None: self.dual_side = False # still fails for CartanType G2xA1 try: self.dual = RootSystem(self._cartan_type.dual(), as_dual_of=self); except Exception: pass else: self.dual_side = True self.dual = as_dual_of
class RootSystem(UniqueRepresentation, SageObject): r""" A class for root systems. EXAMPLES: We construct the root system for type `B_3`:: sage: R=RootSystem(['B',3]); R Root system of type ['B', 3] ``R`` models the root system abstractly. It comes equipped with various realizations of the root and weight lattices, where all computations take place. Let us play first with the root lattice:: sage: space = R.root_lattice() sage: space Root lattice of the Root system of type ['B', 3] It is the free `\ZZ`-module `\bigoplus_i \ZZ.\alpha_i` spanned by the simple roots:: sage: space.base_ring() Integer Ring sage: list(space.basis()) [alpha[1], alpha[2], alpha[3]] Let us do some computations with the simple roots:: sage: alpha = space.simple_roots() sage: alpha[1] + alpha[2] alpha[1] + alpha[2] There is a canonical pairing between the root lattice and the coroot lattice:: sage: R.coroot_lattice() Coroot lattice of the Root system of type ['B', 3] We construct the simple coroots, and do some computations (see comments about duality below for some caveat):: sage: alphacheck = space.simple_coroots() sage: list(alphacheck) [alphacheck[1], alphacheck[2], alphacheck[3]] We can carry over the same computations in any of the other realizations of the root lattice, like the root space `\bigoplus_i \QQ.\alpha_i`, the weight lattice `\bigoplus_i \ZZ.\Lambda_i`, the weight space `\bigoplus_i \QQ.\Lambda_i`. For example:: sage: space = R.weight_space() sage: space Weight space over the Rational Field of the Root system of type ['B', 3] :: sage: space.base_ring() Rational Field sage: list(space.basis()) [Lambda[1], Lambda[2], Lambda[3]] :: sage: alpha = space.simple_roots() sage: alpha[1] + alpha[2] Lambda[1] + Lambda[2] - 2*Lambda[3] The fundamental weights are the dual basis of the coroots:: sage: Lambda = space.fundamental_weights() sage: Lambda[1] Lambda[1] :: sage: alphacheck = space.simple_coroots() sage: list(alphacheck) [alphacheck[1], alphacheck[2], alphacheck[3]] :: sage: [Lambda[i].scalar(alphacheck[1]) for i in space.index_set()] [1, 0, 0] sage: [Lambda[i].scalar(alphacheck[2]) for i in space.index_set()] [0, 1, 0] sage: [Lambda[i].scalar(alphacheck[3]) for i in space.index_set()] [0, 0, 1] Let us use the simple reflections. In the weight space, they work as in the *number game*: firing the node `i` on an element `x` adds `c` times the simple root `\alpha_i`, where `c` is the coefficient of `i` in `x`:: sage: s = space.simple_reflections() sage: Lambda[1].simple_reflection(1) -Lambda[1] + Lambda[2] sage: Lambda[2].simple_reflection(1) Lambda[2] sage: Lambda[3].simple_reflection(1) Lambda[3] sage: (-2*Lambda[1] + Lambda[2] + Lambda[3]).simple_reflection(1) 2*Lambda[1] - Lambda[2] + Lambda[3] It can be convenient to manipulate the simple reflections themselves:: sage: s = space.simple_reflections() sage: s[1](Lambda[1]) -Lambda[1] + Lambda[2] sage: s[1](Lambda[2]) Lambda[2] sage: s[1](Lambda[3]) Lambda[3] The root system may also come equipped with an ambient space, that is a simultaneous realization of the weight lattice and the coroot lattice in a Euclidean vector space. This is implemented on a type by type basis, and is not always available. When the coefficients permit it, this is also available as an ambient lattice. TODO: Demo: signed permutations realization of type B The root system is aware of its dual root system:: sage: R.dual Dual of root system of type ['B', 3] R.dual is really the root system of type `C_3`:: sage: R.dual.cartan_type() ['C', 3] And the coroot lattice that we have been manipulating before is really implemented as the root lattice of the dual root system:: sage: R.dual.root_lattice() Coroot lattice of the Root system of type ['B', 3] In particular, the coroots for the root lattice are in fact the roots of the coroot lattice:: sage: list(R.root_lattice().simple_coroots()) [alphacheck[1], alphacheck[2], alphacheck[3]] sage: list(R.coroot_lattice().simple_roots()) [alphacheck[1], alphacheck[2], alphacheck[3]] sage: list(R.dual.root_lattice().simple_roots()) [alphacheck[1], alphacheck[2], alphacheck[3]] The coweight lattice and space are defined similarly. Note that, to limit confusion, all the output have been tweaked appropriately. .. seealso:: - :mod:`sage.combinat.root_system` - :class:`RootSpace` - :class:`WeightSpace` - :class:`AmbientSpace` - :class:`~sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations` - :class:`~sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations` TESTS:: sage: R = RootSystem(['C',3]) sage: TestSuite(R).run() sage: L = R.ambient_space() sage: s = L.simple_reflections() # this used to break the testsuite below due to caching an unpicklable method sage: s = L.simple_projections() # todo: not implemented sage: TestSuite(L).run() sage: L = R.root_space() sage: s = L.simple_reflections() sage: TestSuite(L).run() :: sage: for T in CartanType.samples(crystalographic=True): # long time (13s on sage.math, 2012) ... TestSuite(RootSystem(T)).run() """ @staticmethod def __classcall__(cls, cartan_type, as_dual_of=None): """ Straighten arguments to enable unique representation .. seealso:: :class:`UniqueRepresentation` TESTS:: sage: RootSystem(["A",3]) is RootSystem(CartanType(["A",3])) True sage: RootSystem(["B",3], as_dual_of=None) is RootSystem("B3") True """ return super(RootSystem, cls).__classcall__(cls, CartanType(cartan_type), as_dual_of) def __init__(self, cartan_type, as_dual_of=None): """ TESTS:: sage: R = RootSystem(['A',3]) sage: R Root system of type ['A', 3] """ self._cartan_type = CartanType(cartan_type) # Duality # The root system can be defined as dual of another root system. This will # only affects the pretty printing if as_dual_of is None: self.dual_side = False self.dual = RootSystem(self._cartan_type.dual(), as_dual_of=self); # still fails for CartanType G2xA1 try: self.dual = RootSystem(self._cartan_type.dual(), as_dual_of=self); except: pass else: self.dual_side = True self.dual = as_dual_of def _test_root_lattice_realizations(self, **options): """ Runs tests on all the root lattice realizations of this root system. EXAMPLES:: sage: RootSystem(["A",3])._test_root_lattice_realizations() See also :class:`TestSuite`. """ tester = self._tester(**options) options.pop('tester', None) from sage.misc.sage_unittest import TestSuite TestSuite(self.root_lattice()).run(**options) TestSuite(self.root_space()).run(**options) TestSuite(self.weight_lattice()).run(**options) TestSuite(self.weight_space()).run(**options) if self.cartan_type().is_affine(): TestSuite(self.weight_lattice(extended=True)).run(**options) TestSuite(self.weight_space(extended=True)).run(**options) if self.ambient_lattice() is not None: TestSuite(self.ambient_lattice()).run(**options) if self.ambient_space() is not None: TestSuite(self.ambient_space()).run(**options) def _repr_(self): """ EXAMPLES:: sage: RootSystem(['A',3]) # indirect doctest Root system of type ['A', 3] sage: RootSystem(['B',3]).dual # indirect doctest Dual of root system of type ['B', 3] """ if self.dual_side: return "Dual of root system of type %s"%self.dual.cartan_type() else: return "Root system of type %s"%self.cartan_type() def cartan_type(self): """ Returns the Cartan type of the root system. EXAMPLES:: sage: R = RootSystem(['A',3]) sage: R.cartan_type() ['A', 3] """ return self._cartan_type @cached_method def dynkin_diagram(self): """ Returns the Dynkin diagram of the root system. EXAMPLES:: sage: R = RootSystem(['A',3]) sage: R.dynkin_diagram() O---O---O 1 2 3 A3 """ return self.cartan_type().dynkin_diagram() @cached_method def cartan_matrix(self): """ EXAMPLES:: sage: RootSystem(['A',3]).cartan_matrix() [ 2 -1 0] [-1 2 -1] [ 0 -1 2] """ return self.cartan_type().cartan_matrix() def index_set(self): """ EXAMPLES:: sage: RootSystem(['A',3]).index_set() [1, 2, 3] """ return self.cartan_type().index_set() @cached_method def is_finite(self): """ Returns True if self is a finite root system. EXAMPLES:: sage: RootSystem(["A",3]).is_finite() True sage: RootSystem(["A",3,1]).is_finite() False """ return self.cartan_type().is_finite() @cached_method def is_irreducible(self): """ Returns True if self is an irreducible root system. EXAMPLES:: sage: RootSystem(['A', 3]).is_irreducible() True sage: RootSystem("A2xB2").is_irreducible() False """ return self.cartan_type().is_irreducible() def __cmp__(self, other): """ EXAMPLES:: sage: r1 = RootSystem(['A',3]) sage: r2 = RootSystem(['B',3]) sage: r1 == r1 True sage: r1 == r2 False """ if self.__class__ != other.__class__: return cmp(self.__class__, other.__class__) if self._cartan_type != other._cartan_type: return cmp(self._cartan_type, other._cartan_type) return 0 def root_lattice(self): """ Returns the root lattice associated to self. EXAMPLES:: sage: RootSystem(['A',3]).root_lattice() Root lattice of the Root system of type ['A', 3] """ return self.root_space(ZZ) @cached_method def root_space(self, base_ring=QQ): """ Returns the root space associated to self. EXAMPLES:: sage: RootSystem(['A',3]).root_space() Root space over the Rational Field of the Root system of type ['A', 3] """ return RootSpace(self, base_ring) def root_poset(self, restricted=False, facade=False): r""" Returns the (restricted) root poset associated to ``self``. The elements are given by the positive roots (resp. non-simple, positive roots), and `\alpha \leq \beta` iff `\beta - \alpha` is a non-negative linear combination of simple roots. INPUT: - ``restricted`` -- (default:False) if True, only non-simple roots are considered. - ``facade`` -- (default:False) passes facade option to the poset generator. EXAMPLES:: sage: Phi = RootSystem(['A',2]).root_poset(); Phi Finite poset containing 3 elements sage: Phi.cover_relations() [[alpha[1], alpha[1] + alpha[2]], [alpha[2], alpha[1] + alpha[2]]] sage: Phi = RootSystem(['A',3]).root_poset(restricted=True); Phi Finite poset containing 3 elements sage: Phi.cover_relations() [[alpha[1] + alpha[2], alpha[1] + alpha[2] + alpha[3]], [alpha[2] + alpha[3], alpha[1] + alpha[2] + alpha[3]]] sage: Phi = RootSystem(['B',2]).root_poset(); Phi Finite poset containing 4 elements sage: Phi.cover_relations() [[alpha[1], alpha[1] + alpha[2]], [alpha[2], alpha[1] + alpha[2]], [alpha[1] + alpha[2], alpha[1] + 2*alpha[2]]] """ return self.root_lattice().root_poset(restricted=restricted,facade=facade) def coroot_lattice(self): """ Returns the coroot lattice associated to self. EXAMPLES:: sage: RootSystem(['A',3]).coroot_lattice() Coroot lattice of the Root system of type ['A', 3] """ return self.dual.root_lattice() def coroot_space(self, base_ring=QQ): """ Returns the coroot space associated to self. EXAMPLES:: sage: RootSystem(['A',3]).coroot_space() Coroot space over the Rational Field of the Root system of type ['A', 3] """ return self.dual.root_space(base_ring) @cached_method def weight_lattice(self, extended = False): """ Returns the weight lattice associated to self. .. see also:: - :meth:`weight_space` - :meth:`coweight_space`, :meth:`coweight_lattice` - :class:`~sage.combinat.root_system.WeightSpace` EXAMPLES:: sage: RootSystem(['A',3]).weight_lattice() Weight lattice of the Root system of type ['A', 3] sage: RootSystem(['A',3,1]).weight_space(extended = True) Extended weight space over the Rational Field of the Root system of type ['A', 3, 1] """ return WeightSpace(self, ZZ, extended = extended) @cached_method def weight_space(self, base_ring=QQ, extended = False): """ Returns the weight space associated to self. .. see also:: - :meth:`weight_lattice` - :meth:`coweight_space`, :meth:`coweight_lattice` - :class:`~sage.combinat.root_system.WeightSpace` EXAMPLES:: sage: RootSystem(['A',3]).weight_space() Weight space over the Rational Field of the Root system of type ['A', 3] sage: RootSystem(['A',3,1]).weight_space(extended = True) Extended weight space over the Rational Field of the Root system of type ['A', 3, 1] """ return WeightSpace(self, base_ring, extended = extended) def coweight_lattice(self, extended = False): """ Returns the coweight lattice associated to self. This is the weight lattice of the dual root system. .. see also:: - :meth:`coweight_space` - :meth:`weight_space`, :meth:`weight_lattice` - :class:`~sage.combinat.root_system.WeightSpace` EXAMPLES:: sage: RootSystem(['A',3]).coweight_lattice() Coweight lattice of the Root system of type ['A', 3] sage: RootSystem(['A',3,1]).coweight_lattice(extended = True) Extended coweight lattice of the Root system of type ['A', 3, 1] """ return self.dual.weight_lattice(extended = extended) def coweight_space(self, base_ring=QQ, extended = False): """ Returns the coweight space associated to self. This is the weight space of the dual root system. .. see also:: - :meth:`coweight_lattice` - :meth:`weight_space`, :meth:`weight_lattice` - :class:`~sage.combinat.root_system.WeightSpace` EXAMPLES:: sage: RootSystem(['A',3]).coweight_space() Coweight space over the Rational Field of the Root system of type ['A', 3] sage: RootSystem(['A',3,1]).coweight_space(extended=True) Extended coweight space over the Rational Field of the Root system of type ['A', 3, 1] """ return self.dual.weight_space(base_ring, extended = extended) def ambient_lattice(self): r""" Returns the usual ambient lattice for this root_system, if it exists and is implemented, and None otherwise. This is a `\ZZ`-module, endowed with its canonical euclidean scalar product, which embeds simultaneously the root lattice and the coroot lattice (what about the weight lattice?) EXAMPLES:: sage: RootSystem(['A',4]).ambient_lattice() Ambient lattice of the Root system of type ['A', 4] :: sage: RootSystem(['B',4]).ambient_lattice() sage: RootSystem(['C',4]).ambient_lattice() sage: RootSystem(['D',4]).ambient_lattice() sage: RootSystem(['E',6]).ambient_lattice() sage: RootSystem(['F',4]).ambient_lattice() sage: RootSystem(['G',2]).ambient_lattice() """ return self.ambient_space(ZZ) @cached_method def ambient_space(self, base_ring=QQ): r""" Returns the usual ambient space for this root_system, if it is implemented, and None otherwise. This is a `\QQ`-module, endowed with its canonical euclidean scalar product, which embeds simultaneously the root lattice and the coroot lattice (what about the weight lattice?). An alternative base ring can be provided as an option; it must contain the smallest ring over which the ambient space can be defined (`\ZZ` or `\QQ`, depending on the type). EXAMPLES:: sage: RootSystem(['A',4]).ambient_space() Ambient space of the Root system of type ['A', 4] :: sage: RootSystem(['B',4]).ambient_space() Ambient space of the Root system of type ['B', 4] :: sage: RootSystem(['C',4]).ambient_space() Ambient space of the Root system of type ['C', 4] :: sage: RootSystem(['D',4]).ambient_space() Ambient space of the Root system of type ['D', 4] :: sage: RootSystem(['E',6]).ambient_space() Ambient space of the Root system of type ['E', 6] :: sage: RootSystem(['F',4]).ambient_space() Ambient space of the Root system of type ['F', 4] :: sage: RootSystem(['G',2]).ambient_space() Ambient space of the Root system of type ['G', 2] """ # Intention: check that the ambient_space is implemented and that # base_ring contains the smallest base ring for this ambient space if not hasattr(self.cartan_type(),"AmbientSpace"): return None AmbientSpace = self.cartan_type().AmbientSpace if base_ring == ZZ and AmbientSpace.smallest_base_ring() == QQ: return None return AmbientSpace(self, base_ring)
class RootSystem(UniqueRepresentation, SageObject): r""" A class for root systems. EXAMPLES: We construct the root system for type `B_3`:: sage: R=RootSystem(['B',3]); R Root system of type ['B', 3] ``R`` models the root system abstractly. It comes equipped with various realizations of the root and weight lattices, where all computations take place. Let us play first with the root lattice:: sage: space = R.root_lattice() sage: space Root lattice of the Root system of type ['B', 3] This is the free `\ZZ`-module `\bigoplus_i \ZZ.\alpha_i` spanned by the simple roots:: sage: space.base_ring() Integer Ring sage: list(space.basis()) [alpha[1], alpha[2], alpha[3]] Let us do some computations with the simple roots:: sage: alpha = space.simple_roots() sage: alpha[1] + alpha[2] alpha[1] + alpha[2] There is a canonical pairing between the root lattice and the coroot lattice:: sage: R.coroot_lattice() Coroot lattice of the Root system of type ['B', 3] We construct the simple coroots, and do some computations (see comments about duality below for some caveat):: sage: alphacheck = space.simple_coroots() sage: list(alphacheck) [alphacheck[1], alphacheck[2], alphacheck[3]] We can carry over the same computations in any of the other realizations of the root lattice, like the root space `\bigoplus_i \QQ.\alpha_i`, the weight lattice `\bigoplus_i \ZZ.\Lambda_i`, the weight space `\bigoplus_i \QQ.\Lambda_i`. For example:: sage: space = R.weight_space() sage: space Weight space over the Rational Field of the Root system of type ['B', 3] :: sage: space.base_ring() Rational Field sage: list(space.basis()) [Lambda[1], Lambda[2], Lambda[3]] :: sage: alpha = space.simple_roots() sage: alpha[1] + alpha[2] Lambda[1] + Lambda[2] - 2*Lambda[3] The fundamental weights are the dual basis of the coroots:: sage: Lambda = space.fundamental_weights() sage: Lambda[1] Lambda[1] :: sage: alphacheck = space.simple_coroots() sage: list(alphacheck) [alphacheck[1], alphacheck[2], alphacheck[3]] :: sage: [Lambda[i].scalar(alphacheck[1]) for i in space.index_set()] [1, 0, 0] sage: [Lambda[i].scalar(alphacheck[2]) for i in space.index_set()] [0, 1, 0] sage: [Lambda[i].scalar(alphacheck[3]) for i in space.index_set()] [0, 0, 1] Let us use the simple reflections. In the weight space, they work as in the *number game*: firing the node `i` on an element `x` adds `c` times the simple root `\alpha_i`, where `c` is the coefficient of `i` in `x`:: sage: s = space.simple_reflections() sage: Lambda[1].simple_reflection(1) -Lambda[1] + Lambda[2] sage: Lambda[2].simple_reflection(1) Lambda[2] sage: Lambda[3].simple_reflection(1) Lambda[3] sage: (-2*Lambda[1] + Lambda[2] + Lambda[3]).simple_reflection(1) 2*Lambda[1] - Lambda[2] + Lambda[3] It can be convenient to manipulate the simple reflections themselves:: sage: s = space.simple_reflections() sage: s[1](Lambda[1]) -Lambda[1] + Lambda[2] sage: s[1](Lambda[2]) Lambda[2] sage: s[1](Lambda[3]) Lambda[3] .. RUBRIC:: Ambient spaces The root system may also come equipped with an ambient space. This is a `\QQ`-module, endowed with its canonical Euclidean scalar product, which admits simultaneous embeddings of the (extended) weight and the (extended) coweight lattice, and therefore the root and the coroot lattice. This is implemented on a type by type basis for the finite crystalographic root systems following Bourbaki's conventions and is extended to the affine cases. Coefficients permitting, this is also available as an ambient lattice. .. SEEALSO:: :meth:`ambient_space` and :meth:`ambient_lattice` for details In finite type `A`, we recover the natural representation of the symmetric group as group of permutation matrices:: sage: RootSystem(["A",2]).ambient_space().weyl_group().simple_reflections() Finite family {1: [0 1 0] [1 0 0] [0 0 1], 2: [1 0 0] [0 0 1] [0 1 0]} In type `B`, `C`, and `D`, we recover the natural representation of the Weyl group as groups of signed permutation matrices:: sage: RootSystem(["B",3]).ambient_space().weyl_group().simple_reflections() Finite family {1: [0 1 0] [1 0 0] [0 0 1], 2: [1 0 0] [0 0 1] [0 1 0], 3: [ 1 0 0] [ 0 1 0] [ 0 0 -1]} In (untwisted) affine types `A`, ..., `D`, one can recover from the ambient space the affine permutation representation, in window notation. Let us consider the ambient space for affine type `A`:: sage: L = RootSystem(["A",2,1]).ambient_space(); L Ambient space of the Root system of type ['A', 2, 1] Define the "identity" by an appropriate vector at level -3:: sage: e = L.basis(); Lambda = L.fundamental_weights() sage: id = e[0] + 2*e[1] + 3*e[2] - 3*Lambda[0] The corresponding permutation is obtained by projecting it onto the classical ambient space:: sage: L.classical() Ambient space of the Root system of type ['A', 2] sage: L.classical()(id) (1, 2, 3) Here is the orbit of the identity under the action of the finite group:: sage: W = L.weyl_group() sage: S3 = [ w.action(id) for w in W.classical() ] sage: [L.classical()(x) for x in S3] [(1, 2, 3), (2, 1, 3), (3, 1, 2), (3, 2, 1), (1, 3, 2), (2, 3, 1)] And the action of `s_0` on these yields:: sage: s = W.simple_reflections() sage: [L.classical()(s[0].action(x)) for x in S3] [(0, 2, 4), (0, 1, 5), (-1, 1, 6), (-2, 2, 6), (-1, 3, 4), (-2, 3, 5)] .. RUBRIC:: Dual root systems The root system is aware of its dual root system:: sage: R.dual Dual of root system of type ['B', 3] R.dual is really the root system of type `C_3`:: sage: R.dual.cartan_type() ['C', 3] And the coroot lattice that we have been manipulating before is really implemented as the root lattice of the dual root system:: sage: R.dual.root_lattice() Coroot lattice of the Root system of type ['B', 3] In particular, the coroots for the root lattice are in fact the roots of the coroot lattice:: sage: list(R.root_lattice().simple_coroots()) [alphacheck[1], alphacheck[2], alphacheck[3]] sage: list(R.coroot_lattice().simple_roots()) [alphacheck[1], alphacheck[2], alphacheck[3]] sage: list(R.dual.root_lattice().simple_roots()) [alphacheck[1], alphacheck[2], alphacheck[3]] The coweight lattice and space are defined similarly. Note that, to limit confusion, all the output have been tweaked appropriately. .. seealso:: - :mod:`sage.combinat.root_system` - :class:`RootSpace` - :class:`WeightSpace` - :class:`AmbientSpace` - :class:`~sage.combinat.root_system.root_lattice_realizations.RootLatticeRealizations` - :class:`~sage.combinat.root_system.weight_lattice_realizations.WeightLatticeRealizations` TESTS:: sage: R = RootSystem(['C',3]) sage: TestSuite(R).run() sage: L = R.ambient_space() sage: s = L.simple_reflections() # this used to break the testsuite below due to caching an unpicklable method sage: s = L.simple_projections() # todo: not implemented sage: TestSuite(L).run() sage: L = R.root_space() sage: s = L.simple_reflections() sage: TestSuite(L).run() :: sage: for T in CartanType.samples(crystalographic=True): # long time (13s on sage.math, 2012) ... TestSuite(RootSystem(T)).run() """ @staticmethod def __classcall__(cls, cartan_type, as_dual_of=None): """ Straighten arguments to enable unique representation .. seealso:: :class:`UniqueRepresentation` TESTS:: sage: RootSystem(["A",3]) is RootSystem(CartanType(["A",3])) True sage: RootSystem(["B",3], as_dual_of=None) is RootSystem("B3") True """ return super(RootSystem, cls).__classcall__(cls, CartanType(cartan_type), as_dual_of) def __init__(self, cartan_type, as_dual_of=None): """ TESTS:: sage: R = RootSystem(['A',3]) sage: R Root system of type ['A', 3] """ self._cartan_type = CartanType(cartan_type) # Duality # The root system can be defined as dual of another root system. This will # only affects the pretty printing if as_dual_of is None: self.dual_side = False self.dual = RootSystem(self._cartan_type.dual(), as_dual_of=self); # still fails for CartanType G2xA1 try: self.dual = RootSystem(self._cartan_type.dual(), as_dual_of=self); except StandardError: pass else: self.dual_side = True self.dual = as_dual_of def _test_root_lattice_realizations(self, **options): """ Runs tests on all the root lattice realizations of this root system. EXAMPLES:: sage: RootSystem(["A",3])._test_root_lattice_realizations() See also :class:`TestSuite`. """ tester = self._tester(**options) options.pop('tester', None) from sage.misc.sage_unittest import TestSuite TestSuite(self.root_lattice()).run(**options) TestSuite(self.root_space()).run(**options) TestSuite(self.weight_lattice()).run(**options) TestSuite(self.weight_space()).run(**options) if self.cartan_type().is_affine(): TestSuite(self.weight_lattice(extended=True)).run(**options) TestSuite(self.weight_space(extended=True)).run(**options) if self.ambient_lattice() is not None: TestSuite(self.ambient_lattice()).run(**options) if self.ambient_space() is not None: TestSuite(self.ambient_space()).run(**options) def _repr_(self): """ EXAMPLES:: sage: RootSystem(['A',3]) # indirect doctest Root system of type ['A', 3] sage: RootSystem(['B',3]).dual # indirect doctest Dual of root system of type ['B', 3] """ if self.dual_side: return "Dual of root system of type %s"%self.dual.cartan_type() else: return "Root system of type %s"%self.cartan_type() def cartan_type(self): """ Returns the Cartan type of the root system. EXAMPLES:: sage: R = RootSystem(['A',3]) sage: R.cartan_type() ['A', 3] """ return self._cartan_type @cached_method def dynkin_diagram(self): """ Returns the Dynkin diagram of the root system. EXAMPLES:: sage: R = RootSystem(['A',3]) sage: R.dynkin_diagram() O---O---O 1 2 3 A3 """ return self.cartan_type().dynkin_diagram() @cached_method def cartan_matrix(self): """ EXAMPLES:: sage: RootSystem(['A',3]).cartan_matrix() [ 2 -1 0] [-1 2 -1] [ 0 -1 2] """ return self.cartan_type().cartan_matrix() def index_set(self): """ EXAMPLES:: sage: RootSystem(['A',3]).index_set() [1, 2, 3] """ return self.cartan_type().index_set() @cached_method def is_finite(self): """ Returns True if self is a finite root system. EXAMPLES:: sage: RootSystem(["A",3]).is_finite() True sage: RootSystem(["A",3,1]).is_finite() False """ return self.cartan_type().is_finite() @cached_method def is_irreducible(self): """ Returns True if self is an irreducible root system. EXAMPLES:: sage: RootSystem(['A', 3]).is_irreducible() True sage: RootSystem("A2xB2").is_irreducible() False """ return self.cartan_type().is_irreducible() def __cmp__(self, other): """ EXAMPLES:: sage: r1 = RootSystem(['A',3]) sage: r2 = RootSystem(['B',3]) sage: r1 == r1 True sage: r1 == r2 False """ if self.__class__ != other.__class__: return cmp(self.__class__, other.__class__) if self._cartan_type != other._cartan_type: return cmp(self._cartan_type, other._cartan_type) return 0 def root_lattice(self): """ Returns the root lattice associated to self. EXAMPLES:: sage: RootSystem(['A',3]).root_lattice() Root lattice of the Root system of type ['A', 3] """ return self.root_space(ZZ) @cached_method def root_space(self, base_ring=QQ): """ Returns the root space associated to self. EXAMPLES:: sage: RootSystem(['A',3]).root_space() Root space over the Rational Field of the Root system of type ['A', 3] """ return RootSpace(self, base_ring) def root_poset(self, restricted=False, facade=False): r""" Returns the (restricted) root poset associated to ``self``. The elements are given by the positive roots (resp. non-simple, positive roots), and `\alpha \leq \beta` iff `\beta - \alpha` is a non-negative linear combination of simple roots. INPUT: - ``restricted`` -- (default:False) if True, only non-simple roots are considered. - ``facade`` -- (default:False) passes facade option to the poset generator. EXAMPLES:: sage: Phi = RootSystem(['A',2]).root_poset(); Phi Finite poset containing 3 elements sage: Phi.cover_relations() [[alpha[1], alpha[1] + alpha[2]], [alpha[2], alpha[1] + alpha[2]]] sage: Phi = RootSystem(['A',3]).root_poset(restricted=True); Phi Finite poset containing 3 elements sage: Phi.cover_relations() [[alpha[1] + alpha[2], alpha[1] + alpha[2] + alpha[3]], [alpha[2] + alpha[3], alpha[1] + alpha[2] + alpha[3]]] sage: Phi = RootSystem(['B',2]).root_poset(); Phi Finite poset containing 4 elements sage: Phi.cover_relations() [[alpha[1], alpha[1] + alpha[2]], [alpha[2], alpha[1] + alpha[2]], [alpha[1] + alpha[2], alpha[1] + 2*alpha[2]]] """ return self.root_lattice().root_poset(restricted=restricted,facade=facade) def coroot_lattice(self): """ Returns the coroot lattice associated to self. EXAMPLES:: sage: RootSystem(['A',3]).coroot_lattice() Coroot lattice of the Root system of type ['A', 3] """ return self.dual.root_lattice() def coroot_space(self, base_ring=QQ): """ Returns the coroot space associated to self. EXAMPLES:: sage: RootSystem(['A',3]).coroot_space() Coroot space over the Rational Field of the Root system of type ['A', 3] """ return self.dual.root_space(base_ring) @cached_method def weight_lattice(self, extended = False): """ Returns the weight lattice associated to self. .. see also:: - :meth:`weight_space` - :meth:`coweight_space`, :meth:`coweight_lattice` - :class:`~sage.combinat.root_system.WeightSpace` EXAMPLES:: sage: RootSystem(['A',3]).weight_lattice() Weight lattice of the Root system of type ['A', 3] sage: RootSystem(['A',3,1]).weight_space(extended = True) Extended weight space over the Rational Field of the Root system of type ['A', 3, 1] """ return WeightSpace(self, ZZ, extended = extended) @cached_method def weight_space(self, base_ring=QQ, extended = False): """ Returns the weight space associated to self. .. see also:: - :meth:`weight_lattice` - :meth:`coweight_space`, :meth:`coweight_lattice` - :class:`~sage.combinat.root_system.WeightSpace` EXAMPLES:: sage: RootSystem(['A',3]).weight_space() Weight space over the Rational Field of the Root system of type ['A', 3] sage: RootSystem(['A',3,1]).weight_space(extended = True) Extended weight space over the Rational Field of the Root system of type ['A', 3, 1] """ return WeightSpace(self, base_ring, extended = extended) def coweight_lattice(self, extended = False): """ Returns the coweight lattice associated to self. This is the weight lattice of the dual root system. .. see also:: - :meth:`coweight_space` - :meth:`weight_space`, :meth:`weight_lattice` - :class:`~sage.combinat.root_system.WeightSpace` EXAMPLES:: sage: RootSystem(['A',3]).coweight_lattice() Coweight lattice of the Root system of type ['A', 3] sage: RootSystem(['A',3,1]).coweight_lattice(extended = True) Extended coweight lattice of the Root system of type ['A', 3, 1] """ return self.dual.weight_lattice(extended = extended) def coweight_space(self, base_ring=QQ, extended = False): """ Returns the coweight space associated to self. This is the weight space of the dual root system. .. see also:: - :meth:`coweight_lattice` - :meth:`weight_space`, :meth:`weight_lattice` - :class:`~sage.combinat.root_system.WeightSpace` EXAMPLES:: sage: RootSystem(['A',3]).coweight_space() Coweight space over the Rational Field of the Root system of type ['A', 3] sage: RootSystem(['A',3,1]).coweight_space(extended=True) Extended coweight space over the Rational Field of the Root system of type ['A', 3, 1] """ return self.dual.weight_space(base_ring, extended = extended) def ambient_lattice(self): r""" Return the ambient lattice for this root_system. This is the ambient space, over `\ZZ`. .. SEEALSO:: - :meth:`ambient_space` - :meth:`root_lattice` - :meth:`weight_lattice` EXAMPLES:: sage: RootSystem(['A',4]).ambient_lattice() Ambient lattice of the Root system of type ['A', 4] sage: RootSystem(['A',4,1]).ambient_lattice() Ambient lattice of the Root system of type ['A', 4, 1] Except in type A, only an ambient space can be realized:: sage: RootSystem(['B',4]).ambient_lattice() sage: RootSystem(['C',4]).ambient_lattice() sage: RootSystem(['D',4]).ambient_lattice() sage: RootSystem(['E',6]).ambient_lattice() sage: RootSystem(['F',4]).ambient_lattice() sage: RootSystem(['G',2]).ambient_lattice() """ return self.ambient_space(ZZ) @cached_method def ambient_space(self, base_ring=QQ): r""" Return the usual ambient space for this root_system. INPUT: - ``base_ring`` -- a base ring (default: `\QQ`) This is a ``base_ring``-module, endowed with its canonical Euclidean scalar product, which admits simultaneous embeddings into the weight and the coweight lattice, and therefore the root and the coroot lattice, and preserves scalar products between elements of the coroot lattice and elements of the root or weight lattice (and dually). There is no mechanical way to define the ambient space just from the Cartan matrix. Instead is is constructed from hard coded type by type data, according to the usual Bourbaki conventions. Such data is provided for all the finite (crystalographic) types. From this data, ambient spaces can be built as well for dual types, reducible types and affine types. When no data is available, or if the base ring is not large enough, None is returned. .. WARNING:: for affine types .. SEEALSO:: - The section on ambient spaces in :class:`RootSystem` - :meth:`ambient_lattice` - :class:`~sage.combinat.root_system.ambient_space.AmbientSpace` - :class:`~sage.combinat.root_system.ambient_space.type_affine.AmbientSpace` - :meth:`root_space` - :meth:`weight:space` EXAMPLES:: sage: RootSystem(['A',4]).ambient_space() Ambient space of the Root system of type ['A', 4] :: sage: RootSystem(['B',4]).ambient_space() Ambient space of the Root system of type ['B', 4] :: sage: RootSystem(['C',4]).ambient_space() Ambient space of the Root system of type ['C', 4] :: sage: RootSystem(['D',4]).ambient_space() Ambient space of the Root system of type ['D', 4] :: sage: RootSystem(['E',6]).ambient_space() Ambient space of the Root system of type ['E', 6] :: sage: RootSystem(['F',4]).ambient_space() Ambient space of the Root system of type ['F', 4] :: sage: RootSystem(['G',2]).ambient_space() Ambient space of the Root system of type ['G', 2] An alternative base ring can be provided as an option:: sage: e = RootSystem(['B',3]).ambient_space(RR) sage: TestSuite(e).run() It should contain the smallest ring over which the ambient space can be defined (`\ZZ` in type `A` or `\QQ` otherwise). Otherwise ``None`` is returned:: sage: RootSystem(['B',2]).ambient_space(ZZ) The base ring should also be totally ordered. In practice, only `\ZZ` and `\QQ` are really supported at this point, but you are welcome to experiment:: sage: e = RootSystem(['G',2]).ambient_space(RR) sage: TestSuite(e).run() Failure in _test_root_lattice_realization: Traceback (most recent call last): ... AssertionError: 2.00000000000000 != 2.00000000000000 ------------------------------------------------------------ The following tests failed: _test_root_lattice_realization """ if not hasattr(self.cartan_type(),"AmbientSpace"): return None AmbientSpace = self.cartan_type().AmbientSpace if not base_ring.has_coerce_map_from(AmbientSpace.smallest_base_ring(self.cartan_type())): return None return AmbientSpace(self, base_ring)
def DynkinDiagram(*args): r""" Return a Dynkin diagram for type ``ct``. INPUT: - ``ct`` -- a Cartan Type The edge multiplicities are encoded as edge labels. This uses the convention in Hong and Kang, Kac, Fulton Harris, and crystals. This is the **opposite** convention in Bourbaki and Wikipedia's Dynkin diagram (:wikipedia:`Dynkin_diagram`). That is for `i \neq j`:: i <--k-- j <==> a_ij = -k <==> -scalar(coroot[i], root[j]) = k <==> multiple arrows point from the longer root to the shorter one For example, in type `C_2`, we have:: sage: C2 = DynkinDiagram(['C',2]); C2 O=<=O 1 2 C2 sage: C2.cartan_matrix() [ 2 -2] [-1 2] However Bourbaki would have the Cartan matrix as: .. MATH:: \begin{bmatrix} 2 & -1 \\ -2 & 2 \end{bmatrix}. EXAMPLES:: sage: DynkinDiagram(['A', 4]) O---O---O---O 1 2 3 4 A4 sage: DynkinDiagram(['A',1],['A',1]) O 1 O 2 A1xA1 sage: R = RootSystem("A2xB2xF4") sage: DynkinDiagram(R) O---O 1 2 O=>=O 3 4 O---O=>=O---O 5 6 7 8 A2xB2xF4 .. SEEALSO:: :func:`CartanType` for a general discussion on Cartan types and in particular node labeling conventions. """ if len(args) == 0: return DynkinDiagram_class() ct = CartanType(*args) if hasattr(ct, "dynkin_diagram"): return ct.dynkin_diagram() else: raise ValueError, "Dynkin diagram data not yet hardcoded for type %s" % ct
class RootSystem(UniqueRepresentation, SageObject): r""" A class for root systems. EXAMPLES: We construct the root system for type `B_3`:: sage: R=RootSystem(['B',3]); R Root system of type ['B', 3] ``R`` models the root system abstractly. It comes equipped with various realizations of the root and weight lattices, where all computation take place. Let us play first with the root lattice:: sage: space = R.root_lattice() sage: space Root lattice of the Root system of type ['B', 3] It is the free `\ZZ`-module `\bigoplus_i \ZZ.\alpha_i` spanned by the simple roots:: sage: space.base_ring() Integer Ring sage: list(space.basis()) [alpha[1], alpha[2], alpha[3]] Let us do some computations with the simple roots:: sage: alpha = space.simple_roots() sage: alpha[1] + alpha[2] alpha[1] + alpha[2] There is a canonical pairing between the root lattice and the coroot lattice:: sage: R.coroot_lattice() Coroot lattice of the Root system of type ['B', 3] We construct the simple coroots, and do some computations (see comments about duality below for some caveat):: sage: alphacheck = space.simple_coroots() sage: list(alphacheck) [alphacheck[1], alphacheck[2], alphacheck[3]] We can carry over the same computations in any of the other realizations of the root lattice, like the root space `\bigoplus_i \QQ.\alpha_i`, the weight lattice `\bigoplus_i \ZZ.\Lambda_i`, the weight space `\bigoplus_i \QQ.\Lambda_i`. For example:: sage: space = R.weight_space() sage: space Weight space over the Rational Field of the Root system of type ['B', 3] :: sage: space.base_ring() Rational Field sage: list(space.basis()) [Lambda[1], Lambda[2], Lambda[3]] :: sage: alpha = space.simple_roots() sage: alpha[1] + alpha[2] Lambda[1] + Lambda[2] - 2*Lambda[3] The fundamental weights are the dual basis of the coroots:: sage: Lambda = space.fundamental_weights() sage: Lambda[1] Lambda[1] :: sage: alphacheck = space.simple_coroots() sage: list(alphacheck) [alphacheck[1], alphacheck[2], alphacheck[3]] :: sage: [Lambda[i].scalar(alphacheck[1]) for i in space.index_set()] [1, 0, 0] sage: [Lambda[i].scalar(alphacheck[2]) for i in space.index_set()] [0, 1, 0] sage: [Lambda[i].scalar(alphacheck[3]) for i in space.index_set()] [0, 0, 1] Let us use the simple reflections. In the weight space, they work as in the *number game*: firing the node `i` on an element `x` adds `c` times the simple root `\alpha_i`, where `c` is the coefficient of `i` in `x`:: sage: s = space.simple_reflections() sage: Lambda[1].simple_reflection(1) -Lambda[1] + Lambda[2] sage: Lambda[2].simple_reflection(1) Lambda[2] sage: Lambda[3].simple_reflection(1) Lambda[3] sage: (-2*Lambda[1] + Lambda[2] + Lambda[3]).simple_reflection(1) 2*Lambda[1] - Lambda[2] + Lambda[3] It can be convenient to manipulate the simple reflections themselves:: sage: s = space.simple_reflections() sage: s[1](Lambda[1]) -Lambda[1] + Lambda[2] sage: s[1](Lambda[2]) Lambda[2] sage: s[1](Lambda[3]) Lambda[3] The root system may also come equipped with an ambient space, that is a simultaneous realization of the weight lattice and the coroot lattice in a Euclidean vector space. This is implemented on a type by type basis, and is not always available. When the coefficients permit it, this is also available as an ambient lattice. TODO: Demo: signed permutations realization of type B The root system is aware of its dual root system:: sage: R.dual Dual of root system of type ['B', 3] R.dual is really the root system of type `C_3`:: sage: R.dual.cartan_type() ['C', 3] And the coroot lattice that we have been manipulating before is really implemented as the root lattice of the dual root system:: sage: R.dual.root_lattice() Coroot lattice of the Root system of type ['B', 3] In particular, the coroots for the root lattice are in fact the roots of the coroot lattice:: sage: list(R.root_lattice().simple_coroots()) [alphacheck[1], alphacheck[2], alphacheck[3]] sage: list(R.coroot_lattice().simple_roots()) [alphacheck[1], alphacheck[2], alphacheck[3]] sage: list(R.dual.root_lattice().simple_roots()) [alphacheck[1], alphacheck[2], alphacheck[3]] The coweight lattice and space are defined similarly. Note that, to limit confusion, all the output have been tweaked appropriately. TESTS:: sage: R = RootSystem(['C',3]) sage: R == loads(dumps(R)) True sage: L = R.ambient_space() sage: s = L.simple_reflections() sage: s = L.simple_projections() # todo: not implemented sage: L == loads(dumps(L)) True sage: L = R.root_space() sage: s = L.simple_reflections() sage: L == loads(dumps(L)) True :: sage: for T in CartanType.samples(finite=True,crystalographic=True): ... TestSuite(RootSystem(T)).run() """ @staticmethod def __classcall__(cls, cartan_type, as_dual_of=None): return super(RootSystem, cls).__classcall__(cls, CartanType(cartan_type), as_dual_of) def __init__(self, cartan_type, as_dual_of=None): """ TESTS:: sage: R = RootSystem(['A',3]) sage: R Root system of type ['A', 3] """ self._cartan_type = CartanType(cartan_type) # Duality # The root system can be defined as dual of another root system. This will # only affects the pretty printing if as_dual_of is None: self.dual_side = False self.dual = RootSystem(self._cartan_type.dual(), as_dual_of=self); # still fails for CartanType G2xA1 try: self.dual = RootSystem(self._cartan_type.dual(), as_dual_of=self); except: pass else: self.dual_side = True self.dual = as_dual_of def _test_root_lattice_realizations(self, **options): """ Runs tests on all the root lattice realizations of this root system. EXAMPLES:: sage: RootSystem(["A",3])._test_root_lattice_realizations() See also :class:`TestSuite`. """ tester = self._tester(**options) options.pop('tester', None) from sage.misc.sage_unittest import TestSuite TestSuite(self.root_lattice()).run(**options) TestSuite(self.root_space()).run(**options) TestSuite(self.weight_lattice()).run(**options) TestSuite(self.weight_space()).run(**options) if self.ambient_lattice() is not None: TestSuite(self.ambient_lattice()).run(**options) if self.ambient_space() is not None: TestSuite(self.ambient_space()).run(**options) def _repr_(self): """ EXAMPLES:: sage: RootSystem(['A',3]) Root system of type ['A', 3] """ if self.dual_side: return "Dual of root system of type %s"%self.dual.cartan_type() else: return "Root system of type %s"%self.cartan_type() def cartan_type(self): """ Returns the Cartan type of the root system. EXAMPLES:: sage: R = RootSystem(['A',3]) sage: R.cartan_type() ['A', 3] """ return self._cartan_type @cached_method def dynkin_diagram(self): """ Returns the Dynkin diagram of the root system. EXAMPLES:: sage: R = RootSystem(['A',3]) sage: R.dynkin_diagram() O---O---O 1 2 3 A3 """ return self.cartan_type().dynkin_diagram() @cached_method def cartan_matrix(self): """ EXAMPLES:: sage: RootSystem(['A',3]).cartan_matrix() [ 2 -1 0] [-1 2 -1] [ 0 -1 2] """ return self.cartan_type().cartan_matrix() def index_set(self): """ EXAMPLES:: sage: RootSystem(['A',3]).index_set() [1, 2, 3] """ return self.cartan_type().index_set() @cached_method def is_finite(self): """ Returns True if self is a finite root system. EXAMPLES:: sage: RootSystem(["A",3]).is_finite() True sage: RootSystem(["A",3,1]).is_finite() False """ return self.cartan_type().is_finite() @cached_method def is_irreducible(self): """ Returns True if self is an irreducible root system. EXAMPLES:: sage: RootSystem(['A', 3]).is_irreducible() True sage: RootSystem("A2xB2").is_irreducible() False """ return self.cartan_type().is_irreducible() def __cmp__(self, other): """ EXAMPLES:: sage: r1 = RootSystem(['A',3]) sage: r2 = RootSystem(['B',3]) sage: r1 == r1 True sage: r1 == r2 False """ if self.__class__ != other.__class__: return cmp(self.__class__, other.__class__) if self._cartan_type != other._cartan_type: return cmp(self._cartan_type, other._cartan_type) return 0 def root_lattice(self): """ Returns the root lattice associated to self. EXAMPLES:: sage: RootSystem(['A',3]).root_lattice() Root lattice of the Root system of type ['A', 3] """ return self.root_space(ZZ) @cached_method def root_space(self, base_ring=QQ): """ Returns the root space associated to self. EXAMPLES:: sage: RootSystem(['A',3]).root_space() Root space over the Rational Field of the Root system of type ['A', 3] """ return RootSpace(self, base_ring) def root_poset(self, restricted=False): r""" Returns the (restricted) root poset associated to ``self``. The elements are given by the positive roots (resp. non-simple, positive roots), and `\alpha \leq \beta` iff `\beta - \alpha` is a non-negative linear combination of simple roots. INPUT: - restricted -- (default:False) if True, only non-simple roots are considered. EXAMPLES:: sage: Phi = RootSystem(['A',2]).root_poset(); Phi Finite poset containing 3 elements sage: Phi.cover_relations() [[alpha[1], alpha[1] + alpha[2]], [alpha[2], alpha[1] + alpha[2]]] sage: Phi = RootSystem(['A',3]).root_poset(restricted=True); Phi Finite poset containing 3 elements sage: Phi.cover_relations() [[alpha[1] + alpha[2], alpha[1] + alpha[2] + alpha[3]], [alpha[2] + alpha[3], alpha[1] + alpha[2] + alpha[3]]] sage: Phi = RootSystem(['B',2]).root_poset(); Phi Finite poset containing 4 elements sage: Phi.cover_relations() [[alpha[1], alpha[1] + alpha[2]], [alpha[2], alpha[1] + alpha[2]], [alpha[1] + alpha[2], alpha[1] + 2*alpha[2]]] """ return self.root_lattice().root_poset(restricted=restricted) def coroot_lattice(self): """ Returns the coroot lattice associated to self. EXAMPLES:: sage: RootSystem(['A',3]).coroot_lattice() Coroot lattice of the Root system of type ['A', 3] """ return self.dual.root_lattice() def coroot_space(self, base_ring=QQ): """ Returns the coroot space associated to self. EXAMPLES:: sage: RootSystem(['A',3]).coroot_space() Coroot space over the Rational Field of the Root system of type ['A', 3] """ return self.dual.root_space(base_ring) def weight_lattice(self): """ Returns the weight lattice associated to self. EXAMPLES:: sage: RootSystem(['A',3]).weight_lattice() Weight lattice of the Root system of type ['A', 3] """ return self.weight_space(ZZ) @cached_method def weight_space(self, base_ring=QQ): """ Returns the weight space associated to self. EXAMPLES:: sage: RootSystem(['A',3]).weight_space() Weight space over the Rational Field of the Root system of type ['A', 3] """ return WeightSpace(self, base_ring) def coweight_lattice(self): """ Returns the coweight lattice associated to self. EXAMPLES:: sage: RootSystem(['A',3]).coweight_lattice() Coweight lattice of the Root system of type ['A', 3] """ return self.dual.weight_lattice() def coweight_space(self, base_ring=QQ): """ Returns the weight space associated to self. EXAMPLES:: sage: RootSystem(['A',3]).coweight_space() Coweight space over the Rational Field of the Root system of type ['A', 3] """ return self.dual.weight_space(base_ring) def ambient_lattice(self): r""" Returns the usual ambient lattice for this root_system, if it exists and is implemented, and None otherwise. This is a `\ZZ`-module, endowed with its canonical euclidean scalar product, which embeds simultaneously the root lattice and the coroot lattice (what about the weight lattice?) EXAMPLES:: sage: RootSystem(['A',4]).ambient_lattice() Ambient lattice of the Root system of type ['A', 4] :: sage: RootSystem(['B',4]).ambient_lattice() sage: RootSystem(['C',4]).ambient_lattice() sage: RootSystem(['D',4]).ambient_lattice() sage: RootSystem(['E',6]).ambient_lattice() sage: RootSystem(['F',4]).ambient_lattice() sage: RootSystem(['G',2]).ambient_lattice() """ return self.ambient_space(ZZ) @cached_method def ambient_space(self, base_ring=QQ): r""" Returns the usual ambient space for this root_system, if it is implemented, and None otherwise. This is a `\QQ`-module, endowed with its canonical euclidean scalar product, which embeds simultaneously the root lattice and the coroot lattice (what about the weight lattice?). An alternative base ring can be provided as an option; it must contain the smallest ring over which the ambient space can be defined (`\ZZ` or `\QQ`, depending on the type). EXAMPLES:: sage: RootSystem(['A',4]).ambient_space() Ambient space of the Root system of type ['A', 4] :: sage: RootSystem(['B',4]).ambient_space() Ambient space of the Root system of type ['B', 4] :: sage: RootSystem(['C',4]).ambient_space() Ambient space of the Root system of type ['C', 4] :: sage: RootSystem(['D',4]).ambient_space() Ambient space of the Root system of type ['D', 4] :: sage: RootSystem(['E',6]).ambient_space() Ambient space of the Root system of type ['E', 6] :: sage: RootSystem(['F',4]).ambient_space() Ambient space of the Root system of type ['F', 4] :: sage: RootSystem(['G',2]).ambient_space() Ambient space of the Root system of type ['G', 2] """ # Intention: check that the ambient_space is implemented and that # base_ring contains the smallest base ring for this ambient space if not hasattr(self.cartan_type(),"AmbientSpace"): return None AmbientSpace = self.cartan_type().AmbientSpace if base_ring == ZZ and AmbientSpace.smallest_base_ring() == QQ: return None return AmbientSpace(self, base_ring)
def __classcall__(cls, cartan_type, as_dual_of=None): return super(RootSystem, cls).__classcall__(cls, CartanType(cartan_type), as_dual_of)
def DynkinDiagram(*args): r""" Return a Dynkin diagram for type ``ct``. INPUT: - ``ct`` -- a Cartan Type The edge multiplicities are encoded as edge labels. This uses the convention in Hong and Kang, Kac, Fulton Harris, and crystals. This is the **opposite** convention in Bourbaki and Wikipedia's Dynkin diagram (:wikipedia:`Dynkin_diagram`). That is for `i \neq j`:: i <--k-- j <==> a_ij = -k <==> -scalar(coroot[i], root[j]) = k <==> multiple arrows point from the shorter root to the longer one For example, in type `C_2`, we have:: sage: C2 = DynkinDiagram(['C',2]); C2 O=<=O 1 2 C2 sage: C2.cartan_matrix() [ 2 -2] [-1 2] However Bourbaki would have the Cartan matrix as: .. MATH:: \begin{bmatrix} 2 & -1 \\ -2 & 2 \end{bmatrix}. EXAMPLES:: sage: DynkinDiagram(['A', 4]) O---O---O---O 1 2 3 4 A4 sage: DynkinDiagram(['A',1],['A',1]) O 1 O 2 A1xA1 sage: R = RootSystem("A2xB2xF4") sage: DynkinDiagram(R) O---O 1 2 O=>=O 3 4 O---O=>=O---O 5 6 7 8 A2xB2xF4 .. SEEALSO:: :func:`CartanType` for a general discussion on Cartan types and in particular node labeling conventions. """ if len(args) == 0: return DynkinDiagram_class() ct = CartanType(*args) if hasattr(ct, "dynkin_diagram"): return ct.dynkin_diagram() else: raise ValueError, "Dynkin diagram data not yet hardcoded for type %s"%ct
def cartan_matrix(t): """ Returns the Cartan matrix corresponding to type t. EXAMPLES:: sage: cartan_matrix(['A', 4]) [ 2 -1 0 0] [-1 2 -1 0] [ 0 -1 2 -1] [ 0 0 -1 2] sage: cartan_matrix(['B', 6]) [ 2 -1 0 0 0 0] [-1 2 -1 0 0 0] [ 0 -1 2 -1 0 0] [ 0 0 -1 2 -1 0] [ 0 0 0 -1 2 -1] [ 0 0 0 0 -2 2] sage: cartan_matrix(['C', 4]) [ 2 -1 0 0] [-1 2 -1 0] [ 0 -1 2 -2] [ 0 0 -1 2] sage: cartan_matrix(['D', 6]) [ 2 -1 0 0 0 0] [-1 2 -1 0 0 0] [ 0 -1 2 -1 0 0] [ 0 0 -1 2 -1 -1] [ 0 0 0 -1 2 0] [ 0 0 0 -1 0 2] sage: cartan_matrix(['E',6]) [ 2 0 -1 0 0 0] [ 0 2 0 -1 0 0] [-1 0 2 -1 0 0] [ 0 -1 -1 2 -1 0] [ 0 0 0 -1 2 -1] [ 0 0 0 0 -1 2] sage: cartan_matrix(['E',7]) [ 2 0 -1 0 0 0 0] [ 0 2 0 -1 0 0 0] [-1 0 2 -1 0 0 0] [ 0 -1 -1 2 -1 0 0] [ 0 0 0 -1 2 -1 0] [ 0 0 0 0 -1 2 -1] [ 0 0 0 0 0 -1 2] sage: cartan_matrix(['E', 8]) [ 2 0 -1 0 0 0 0 0] [ 0 2 0 -1 0 0 0 0] [-1 0 2 -1 0 0 0 0] [ 0 -1 -1 2 -1 0 0 0] [ 0 0 0 -1 2 -1 0 0] [ 0 0 0 0 -1 2 -1 0] [ 0 0 0 0 0 -1 2 -1] [ 0 0 0 0 0 0 -1 2] sage: cartan_matrix(['F', 4]) [ 2 -1 0 0] [-1 2 -1 0] [ 0 -2 2 -1] [ 0 0 -1 2] This is different from MuPAD-Combinat, due to different node convention? :: sage: cartan_matrix(['G', 2]) [ 2 -3] [-1 2] sage: cartan_matrix(['A',1,1]) [ 2 -2] [-2 2] sage: cartan_matrix(['A', 3, 1]) [ 2 -1 0 -1] [-1 2 -1 0] [ 0 -1 2 -1] [-1 0 -1 2] sage: cartan_matrix(['B', 3, 1]) [ 2 0 -1 0] [ 0 2 -1 0] [-1 -1 2 -1] [ 0 0 -2 2] sage: cartan_matrix(['C', 3, 1]) [ 2 -1 0 0] [-2 2 -1 0] [ 0 -1 2 -2] [ 0 0 -1 2] sage: cartan_matrix(['D', 4, 1]) [ 2 0 -1 0 0] [ 0 2 -1 0 0] [-1 -1 2 -1 -1] [ 0 0 -1 2 0] [ 0 0 -1 0 2] sage: cartan_matrix(['E', 6, 1]) [ 2 0 -1 0 0 0 0] [ 0 2 0 -1 0 0 0] [-1 0 2 0 -1 0 0] [ 0 -1 0 2 -1 0 0] [ 0 0 -1 -1 2 -1 0] [ 0 0 0 0 -1 2 -1] [ 0 0 0 0 0 -1 2] sage: cartan_matrix(['E', 7, 1]) [ 2 -1 0 0 0 0 0 0] [-1 2 0 -1 0 0 0 0] [ 0 0 2 0 -1 0 0 0] [ 0 -1 0 2 -1 0 0 0] [ 0 0 -1 -1 2 -1 0 0] [ 0 0 0 0 -1 2 -1 0] [ 0 0 0 0 0 -1 2 -1] [ 0 0 0 0 0 0 -1 2] sage: cartan_matrix(['E', 8, 1]) [ 2 0 0 0 0 0 0 0 -1] [ 0 2 0 -1 0 0 0 0 0] [ 0 0 2 0 -1 0 0 0 0] [ 0 -1 0 2 -1 0 0 0 0] [ 0 0 -1 -1 2 -1 0 0 0] [ 0 0 0 0 -1 2 -1 0 0] [ 0 0 0 0 0 -1 2 -1 0] [ 0 0 0 0 0 0 -1 2 -1] [-1 0 0 0 0 0 0 -1 2] sage: cartan_matrix(['F', 4, 1]) [ 2 -1 0 0 0] [-1 2 -1 0 0] [ 0 -1 2 -1 0] [ 0 0 -2 2 -1] [ 0 0 0 -1 2] sage: cartan_matrix(['G', 2, 1]) [ 2 0 -1] [ 0 2 -3] [-1 -1 2] .. note:: This function is likely to be deprecated in favor of ``CartanType(...).cartan_matrix()``, to avoid polluting the global namespace. """ return CartanType(t).cartan_matrix()
def plot(self, size=[[0], [0]], projection='usual', simple_roots=True, fundamental_weights=True, alcovewalks=[]): r""" Return a graphics object built from a space of weight(space/lattice). There is a different technic to plot if the Cartan type is affine or not. The graphics returned is a Graphics object. This function is experimental, and is subject to short term evolutions. EXAMPLES:: By default, the plot returned has no axes and the ratio between axes is 1. sage: G = RootSystem(['C',2]).weight_lattice().plot() sage: G.axes(True) sage: G.set_aspect_ratio(2) For a non affine Cartan type, the plot method work for type with 2 generators, it will draw the hyperlane(line for this dimension) accrow the fundamentals weights. sage: G = RootSystem(['A',2]).weight_lattice().plot() sage: G = RootSystem(['B',2]).weight_lattice().plot() sage: G = RootSystem(['G',2]).weight_lattice().plot() The plot returned has a size of one fundamental polygon by default. We can ask plot to give a bigger plot by using the argument size sage: G = RootSystem(['G',2,1]).weight_space().plot(size = [[0..1],[-1..1]]) sage: G = RootSystem(['A',2,1]).weight_space().plot(size = [[-1..1],[-1..1]]) A very important argument is the projection which will draw the plot. There are some usual projections is this method. If you want to draw in the plane a very special Cartan type, Sage will ask you to specify the projection. The projection is a matrix over a ring. In practice, calcul over float is a good way to draw. sage: L = RootSystem(['A',2,1]).weight_space() sage: G = L.plot(projection=matrix(RR, [[0,0.5,-0.5],[0,0.866,0.866]])) sage: G = RootSystem(['C',2,1]).weight_space().plot() By default, the plot method draw the simple roots, this can be disabled by setting the argument simple_roots=False sage: G = RootSystem(['A',2]).weight_space().plot(simple_roots=False) By default, the plot method draw the fundamental weights,this can be disabled by setting the argument fundamental_weights=False sage: G = RootSystem(['A',2]).weight_space().plot(fundamental_weights=False, simple_roots=False) There is in a plot an argument to draw alcoves walks. The good way to do this is to use the crystals theory. the plot method contains only the drawing part... sage: L = RootSystem(['A',2,1]).weight_space() sage: G = L.plot(size=[[-1..1],[-1..1]],alcovewalks=[[0,2,0,1,2,1,2,0,2,1]]) """ from sage.plot.all import Graphics from sage.plot.line import line from cartan_type import CartanType from sage.matrix.constructor import matrix from sage.rings.all import QQ, RR from sage.plot.arrow import arrow from sage.plot.point import point # We begin with an empty plot G G = Graphics() ct = self.cartan_type() n = ct.n # Define a set of colors # TODO : Colors in option ? colors = [(0, 1, 0), (1, 0, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 0, 1)] # plot the affine types: if ct.is_affine(): # Check the projection # TODO : try to have usual_projection for main plotable types if projection == 'usual': if ct == CartanType(['A', 2, 1]): projection = matrix( RR, [[0, 0.5, -0.5], [0, 0.866, 0.866]]) elif ct == CartanType(['C', 2, 1]): projection = matrix(QQ, [[0, 1, 1], [0, 0, 1]]) elif ct == CartanType(['G', 2, 1]): projection = matrix(RR, [[0, 0.5, 0], [0, 0.866, 1.732]]) else: raise 'There is no usual projection for this Cartan type, you have to give one in argument' assert (n + 1 == projection.ncols()) assert (2 == projection.nrows()) # Check the size is correct with the lattice assert (len(size) == n) # Select the center of the translated fundamental polygon to plot translation_factors = ct.translation_factors() simple_roots = self.simple_roots() translation_vectors = [ translation_factors[i] * simple_roots[i] for i in ct.classical().index_set() ] initial = [[]] for i in range(n): prod_list = [] for elem in size[i]: for partial_list in initial: prod_list.append([elem] + partial_list) initial = prod_list part_lattice = [] for combinaison in prod_list: elem_lattice = self.zero() for i in range(n): elem_lattice = elem_lattice + combinaison[ i] * translation_vectors[i] part_lattice.append(elem_lattice) # Get the vertices of the fundamental alcove fundamental_weights = self.fundamental_weights() vertices = map(lambda x: (1 / x.level()) * x, fundamental_weights.list()) # Recup the group which act on the fundamental polygon classical = self.weyl_group().classical() for center in part_lattice: for w in classical: # for each center of polygon and each element of classical # parabolic subgroup, we have to draw an alcove. #first, iterate over pairs of fundamental weights, drawing lines border of polygons: for i in range(1, n + 1): for j in range(i + 1, n + 1): p1 = projection * ( (w.action(vertices[i])).to_vector() + center.to_vector()) p2 = projection * ( (w.action(vertices[j])).to_vector() + center.to_vector()) G += line([p1, p2], rgbcolor=(0, 0, 0), thickness=2) #next, get all lines from point to a fundamental weight, that separe different #chanber in a same polygon (important: associate a color with a fundamental weight) pcenter = projection * (center.to_vector()) for i in range(1, n + 1): p3 = projection * ( (w.action(vertices[i])).to_vector() + center.to_vector()) G += line([p3, pcenter], rgbcolor=colors[n - i + 1]) #Draw alcovewalks #FIXME : The good way to draw this is to use the alcoves walks works made in Cristals #The code here just draw like example and import the good things. rho = (1 / self.rho().level()) * self.rho() W = self.weyl_group() for walk in alcovewalks: target = W.from_reduced_word(walk).action(rho) for i in range(len(walk)): walk.pop() origin = W.from_reduced_word(walk).action(rho) G += arrow(projection * (origin.to_vector()), projection * (target.to_vector()), rgbcolor=(0.6, 0, 0.6), width=1, arrowsize=5) target = origin else: # non affine plot # Check the projection # TODO : try to have usual_projection for main plotable types if projection == 'usual': if ct == CartanType(['A', 2]): projection = matrix(RR, [[0.5, -0.5], [0.866, 0.866]]) elif ct == CartanType(['B', 2]): projection = matrix(QQ, [[1, 0], [1, 1]]) elif ct == CartanType(['C', 2]): projection = matrix(QQ, [[1, 1], [0, 1]]) elif ct == CartanType(['G', 2]): projection = matrix(RR, [[0.5, 0], [0.866, 1.732]]) else: raise 'There is no usual projection for this Cartan type, you have to give one in argument' # Get the fundamental weights fundamental_weights = self.fundamental_weights() WeylGroup = self.weyl_group() #Draw not the alcove but the cones delimited by the hyperplanes #The size of the line depend of the fundamental weights. pcenter = projection * (self.zero().to_vector()) for w in WeylGroup: for i in range(1, n + 1): p3 = 3 * projection * ( (w.action(fundamental_weights[i])).to_vector()) G += line([p3, pcenter], rgbcolor=colors[n - i + 1]) #Draw the simple roots if simple_roots: SimpleRoots = self.simple_roots() if ct.is_affine(): G += arrow((0, 0), projection * (SimpleRoots[0].to_vector()), rgbcolor=(0, 0, 0)) for j in range(1, n + 1): G += arrow((0, 0), projection * (SimpleRoots[j].to_vector()), rgbcolor=colors[j]) #Draw the fundamental weights if fundamental_weights: FundWeight = self.fundamental_weights() for j in range(1, n + 1): G += point(projection * (FundWeight[j].to_vector()), rgbcolor=colors[j], pointsize=60) G.set_aspect_ratio(1) G.axes(False) return G