Esempio n. 1
0
    def _get_target_load(self, var: FatigueModel, suffix: str, nlp, controls, index: int):
        if self.model_type() not in nlp.controls:
            raise NotImplementedError(f"Fatigue dynamics without {self.model_type()} controls is not implemented yet")

        val = DynamicsFunctions.get(nlp.controls[f"{self.model_type()}_{suffix}"], controls)[index, :]
        if not self.split_controls:
            if var.scaling < 0:
                val = if_else(lt(val, 0), val, 0)
            else:
                val = if_else(gt(val, 0), val, 0)
        return val / var.scaling
Esempio n. 2
0
 def apply_dynamics(self, target_load, *states):
     ma, mr, mf = states
     # Implementation of Xia dynamics
     c = if_else(
         lt(ma, target_load),
         if_else(gt(mr, target_load - ma), self.LD * (target_load - ma),
                 self.LD * mr),
         self.LR * (target_load - ma),
     )
     ma_dot = c - self.F * ma
     mr_dot = -c + self.R * mf
     mf_dot = self.F * ma - self.R * mf
     return vertcat(ma_dot, mr_dot, mf_dot)
Esempio n. 3
0
    def apply_dynamics(self, target_load, *states):
        # Implementation of modified Xia dynamics
        ma, mr, mf_xia, mf_long = states

        c = if_else(
            lt(ma, target_load),
            if_else(gt(mr, target_load - ma), self.LD * (target_load - ma),
                    self.LD * mr),
            self.LR * (target_load - ma),
        )

        fatigue_load = target_load - self.effort_threshold
        fatigue_dyn = self.effort_factor * if_else(gt(fatigue_load, 0),
                                                   1 - mf_long, -mf_long)

        ma_dot = c - self.F * ma - if_else(gt(fatigue_load, 0), fatigue_dyn, 0)
        mr_dot = -c + self.R * mf_xia - if_else(lt(fatigue_load, 0),
                                                fatigue_dyn, 0)
        mf_dot = self.F * ma - self.R * mf_xia
        mf_long_dot = fatigue_dyn + self.stabilization_factor * (
            1 - ma - mr - mf_xia - mf_long)

        return vertcat(ma_dot, mr_dot, mf_dot, mf_long_dot)
Esempio n. 4
0
def xia_model_dynamic(states, controls, parameters, nlp):
    nbq = nlp["model"].nbQ()
    nbqdot = nlp["model"].nbQdot()
    nb_q_qdot = nbq + nbqdot

    q = states[:nbq]
    qdot = states[nbq:nb_q_qdot]
    active_fibers = states[nb_q_qdot:nb_q_qdot + nlp["nbMuscle"]]
    fatigued_fibers = states[nb_q_qdot + nlp["nbMuscle"]:nb_q_qdot +
                             2 * nlp["nbMuscle"]]
    resting_fibers = states[nb_q_qdot + 2 * nlp["nbMuscle"]:]

    residual_tau = controls[:nlp["nbTau"]]
    activation = controls[nlp["nbTau"]:]
    command = MX()

    comp = 0
    for i in range(nlp["model"].nbMuscleGroups()):
        for k in range(nlp["model"].muscleGroup(i).nbMuscles()):
            develop_factor = (
                nlp["model"].muscleGroup(i).muscle(k).characteristics(
                ).fatigueParameters().developFactor().to_mx())
            recovery_factor = (
                nlp["model"].muscleGroup(i).muscle(k).characteristics(
                ).fatigueParameters().recoveryFactor().to_mx())

            command = vertcat(
                command,
                if_else(
                    lt(active_fibers[comp], activation[comp]),
                    (if_else(
                        gt(resting_fibers[comp],
                           activation[comp] - active_fibers[comp]),
                        develop_factor *
                        (activation[comp] - active_fibers[comp]),
                        develop_factor * resting_fibers[comp],
                    )),
                    recovery_factor * (activation[comp] - active_fibers[comp]),
                ),
            )
            comp += 1
    restingdot = -command + Muscles.r * Muscles.R * fatigued_fibers  # todo r=r when activation=0
    activatedot = command - Muscles.F * active_fibers
    fatiguedot = Muscles.F * active_fibers - Muscles.R * fatigued_fibers

    muscles_states = biorbd.VecBiorbdMuscleState(nlp["nbMuscle"])
    for k in range(nlp["nbMuscle"]):
        muscles_states[k].setActivation(active_fibers[k])
    # todo fix force max

    muscles_tau = nlp["model"].muscularJointTorque(muscles_states, q,
                                                   qdot).to_mx()
    # todo get muscle forces and multiply them by activate [k] and same as muscularJointTorque
    tau = muscles_tau + residual_tau
    dxdt = MX(nlp["nx"], nlp["ns"])

    if "external_forces" in nlp:
        for i, f_ext in enumerate(nlp["external_forces"]):
            qddot = biorbd.Model.ForwardDynamics(nlp["model"], q, qdot, tau,
                                                 f_ext).to_mx()
            dxdt[:, i] = vertcat(qdot, qddot, activatedot, fatiguedot,
                                 restingdot)
    else:
        qddot = biorbd.Model.ForwardDynamics(nlp["model"], q, qdot,
                                             tau).to_mx()
        dxdt = vertcat(qdot, qddot, activatedot, fatiguedot, restingdot)

    return dxdt
Esempio n. 5
0
def if_greater(a, b, if_result, else_result):
    return ca.if_else(ca.gt(a, b), if_result, else_result)