Esempio n. 1
0
def refresh_user_level(current_user_id):
    with app.app_context():
        db.init_app(app)
        db.create_all()

        # get all articles in the curated table for this user
        user_curated_article_levels = UserSortedContent.query.filter_by(user_id=current_user_id).all()

        # calculate standard deviaion of the user level
        sqd_deviations = 0
        for entry in user_curated_article_levels:
            level = (Content.query.filter_by(id=entry.content_id).first()).level
            sqd_deviations += level ** 2
        if len(user_curated_article_levels) > 0:
            std_deviation = (sqd_deviations / len(user_curated_article_levels)) ** 0.5
        else:
            std_deviation = 0

        # add user skill to the user_lang_skill table
        user = UserLangSkill.query.filter_by(user_id=current_user_id).first()
        if std_deviation > 0:
            # user = UserLangSkill(user_id=current_user_id, language_id=815, skill=std_deviation)
            user.skill = std_deviation
            db.session.add(user)
            db.session.commit()
            return 0
        else:
            return -1
Esempio n. 2
0
def refresh_content_level(current_user_id):
    with app.app_context():
        db.init_app(app)
        db.create_all()

        # clear user_sorted_content table
        user_content = UserSortedContent.query.filter_by(user_id=current_user_id).all()
        for item in user_content:
            db.session.delete(item)
        db.session.commit()

        #only curate for all articles
        content_text = Content.query.all()

        # pickled_classifier = User.query.filter_by(id=current_user_id).first().classifier
        # g.classifier = pickle.loads(pickled_classifier)

        # pickled_feature_set = User.query.filter_by(id=current_user_id).first().feature_set
        # g.feature_set = pickle.loads(pickled_feature_set)
        classifier = get_classifier(current_user_id)
        feature_set = get_feature_set(current_user_id)

        # classify and create as a new entry
        for content_item in content_text:
            result = classify(content_item.body, classifier, feature_set)
            # print(result)
            # only the suitable entries are added
            if result == 0:
                article_entry = UserSortedContent(user_id=current_user_id, content_id=content_item.id, sortedSkill=result)
                db.session.add(article_entry)
        # commit the change
        db.session.commit()
Esempio n. 3
0
def get_db():
    """Connect to the application's configured database. The connection
    is unique for each request and will be reused if this is called
    again.
    """
    if 'db' not in g:
        db.init_app(current_app)
        g.db = db
    return g.db
Esempio n. 4
0
def get_feature_set(user_id):
    # Retrieve classifier from db
    with app.app_context():
        db.init_app(app)
        db.create_all()
        pickled_feature_set = User.query.filter_by(
            id=user_id).first().feature_set
        feature_set = pickle.loads(pickled_feature_set)
        return feature_set
Esempio n. 5
0
def get_classifier(user_id):
    # Retrieve classifier from db
    with app.app_context():
        db.init_app(app)
        db.create_all()
        pickled_classifier = User.query.filter_by(
            id=user_id).first().classifier
        classifier = pickle.loads(pickled_classifier)
        return classifier
def delete_entries():
    with app.app_context():
        db.init_app(app)
        db.create_all()
        user = User.query.filter_by(username='******').first()
        if user:
            user_id = user.id
        # Query DB for user Progress entries. While true, delete.
        entry = Progress.query.filter_by(user_id=user_id).first()
        while entry:
            db.session.delete(entry)
            entry = Progress.query.filter_by(user_id=user_id).first()
        db.session.delete(user)
        db.session.commit()
def create_entries():
    with app.app_context():
        db.init_app(app)
        db.create_all()

        # Create test user
        password = global_bcrypt.generate_password_hash('password').decode(
            'utf-8')
        user = User(username='******',
                    email='*****@*****.**',
                    password=password)
        db.session.add(user)
        db.session.commit()

        # Get new user's id
        user = User.query.filter_by(username='******').first()
        user_id = user.id
        print("New user's id: " + str(user_id))
        ''' select everything from the content '''
        articles = Content.query.all()
        ''' Create 500 progress entries for the test user from the
            first 500 entries in the Content table. Rating -1 == too easy,
            0 == just right, 1 == too difficult '''
        for i in range(ARTICLE_CT):
            content = articles[i]
            score = content.level
            # Add appropriate Progress entry
            if score >= 0 and score < EASY:
                entry = Progress(user_id=user_id,
                                 content_id=content.id,
                                 rating=-1,
                                 read_ct=1)
                db.session.add(entry)
            elif score >= 5 and score < JUST_RIGHT:
                entry = Progress(user_id=user_id,
                                 content_id=content.id,
                                 rating=0,
                                 read_ct=1)
                db.session.add(entry)
            else:
                entry = Progress(user_id=user_id,
                                 content_id=content.id,
                                 rating=1,
                                 read_ct=1)
                db.session.add(entry)
        # Commit transactions to DB
        db.session.commit()
def assign_levels():
    with app.app_context():
        db.init_app(app)
        db.create_all()


        ''' select everything from the content
        loop through it to calculate the score
        then add the it back to the database '''
        articles = Content.query.all()

        #for each article
        for article in articles:
            text = str(article.body)
            score = cal_diff(text)
            article.level = score
            # print(article.id, score)
            db.session.add(article)

        # Commit the transactions
        db.session.commit()
Esempio n. 9
0
def create_classifier(user_id, word_ct):
    # Load data
    user_ratings = get_ratings(user_id)

    #print(user_ratings)
    all_words = get_words(user_ratings)

    # Convert all_words to dictionary with word frequency denoted
    all_words = nltk.FreqDist(all_words)

    # Create a list of n most frequent words where n = word_ct
    feature_words = list(all_words.keys())[:word_ct]

    # Create featuresets
    featuresets = create_featuresets(feature_words, user_ratings)

    # Train Naive-Bayes Algorithm
    classifier = nltk.NaiveBayesClassifier.train(featuresets)

    # Pickle the feature set for later use
    saved_dictionary = pickle.dumps(feature_words)

    # Pickle classifier for later use
    saved_classifier = pickle.dumps(classifier)

    # Save feature set and classifier in user's row in DB
    with app.app_context():
        db.init_app(app)
        db.create_all()

        # Get user
        user = User.query.filter_by(id=user_id).first()
        user.feature_set = saved_dictionary
        user.classifier = saved_classifier
        # Commit updates
        db.session.commit()

    #return [classifier, feature_words]
    return
Esempio n. 10
0
def get_ratings(user_id):
    with app.app_context():
        db.init_app(app)
        db.create_all()
        ''' Grab all user's ratings from the database '''
        user_entries = Progress.query.filter_by(user_id=user_id).all()
        ''' Tokenize each piece of content's words and
            create a tuple entry [[word_list], rating]
            ***NOTE: need to add punctuation stripping, accepting
                alpha chars only, etc. to refine features '''
        tokenized_entries = []
        for entry in user_entries:
            ''' Get binary first '''
            tokenized_words_b = Content.query.filter_by(
                id=entry.content_id).first().body.split()
            tokenized_words = []
            ''' Decode from binary to utf8 '''
            for word in tokenized_words_b:
                word = word.decode('utf8')
                word = word.strip('.,!?-*();:\'\"[]{}\\')
                tokenized_words.append(word)
            tokenized_entries.append([tokenized_words, entry.rating])
        return tokenized_entries
Esempio n. 11
0
import os
import json
import sys
proj_dir = os.path.dirname(os.path.abspath(os.path.dirname(__file__)))
sys.path.insert(0, proj_dir)

from cassiopeia.models.models import db, Country, Language
from flask import Flask
from flask_sqlalchemy import SQLAlchemy

# Custom App to load to cassiopeia_prod database, neeed utf8mb4 for emoji support
app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql+mysqlconnector://[email protected]/cassiopeia_prod?charset=utf8mb4'
db.init_app(app)

f = open('all.json', 'r') # From https://restcountries.eu/#api-endpoints-language
buf = f.read()
obj_dict = json.loads(buf)

with app.app_context():
  with db.session.no_autoflush:
    db.create_all()

    language_hash = set()
    for c in obj_dict:
      country = Country(name=c['name'], alpha2code=c['alpha2Code'], alpha3code=c['alpha3Code'], flag_image=c['flag'])

      for l in c['languages']:
        new_language = Language.query.filter(Language.name==l['name']).first()
        if new_language is None:
          new_language = Language(name=l['name'], iso639_1=l['iso639_1'], iso639_2=l['iso639_2'])