Esempio n. 1
0
def compute_recon_power_spectrum(fishcast,z,b=-1.,b2=-1.,bs=-1.,N=None):
   '''
   Returns the reconstructed power spectrum, following Stephen's paper.
   '''
   if b == -1.: b = compute_b(fishcast,z)
   if b2 == -1: b2 = 8*(b-1)/21
   if bs == -1: bs = -2*(b-1)/7
   noise = 1/compute_n(fishcast,z)
   if fishcast.experiment.HI: noise = castorinaPn(z)
   if N is None: N = 1/compute_n(fishcast,z)
   f = fishcast.cosmo.scale_independent_growth_factor_f(z) 
    
   bL1 = b-1.
   bL2 = b2-8*(b-1)/21
   bLs = bs+2*(b-1)/7
    
   K,MU = fishcast.k,fishcast.mu
   h = fishcast.params['h']
   klin = np.logspace(np.log10(min(K)),np.log10(max(K)),fishcast.Nk)
   mulin = MU.reshape((fishcast.Nk,fishcast.Nmu))[0,:]
   plin = np.array([fishcast.cosmo.pk_cb_lin(k*h,z)*h**3. for k in klin])
    
   zelda = Zeldovich_Recon(klin,plin,R=15,N=2000,jn=5)

   kSparse,p0ktable,p2ktable,p4ktable = zelda.make_pltable(f,ngauss=3,kmin=min(K),kmax=max(K),nk=200,method='RecSym')
   bias_factors = np.array([1, bL1, bL1**2, bL2, bL1*bL2, bL2**2, bLs, bL1*bLs, bL2*bLs, bLs**2,0,0,0])
   p0Sparse = np.sum(p0ktable*bias_factors, axis=1)
   p2Sparse = np.sum(p2ktable*bias_factors, axis=1)
   p4Sparse = np.sum(p4ktable*bias_factors, axis=1)
   p0,p2,p4 = Spline(kSparse,p0Sparse)(klin),Spline(kSparse,p2Sparse)(klin),Spline(kSparse,p4Sparse)(klin)
   l0,l2,l4 = legendre(0),legendre(2),legendre(4)
   Pk = lambda mu: p0*l0(mu) + p2*l2(mu) + p4*l4(mu)
   result = np.array([Pk(mu) for mu in mulin]).T
   return result.flatten() + N
Esempio n. 2
0
 def nonnorm_Wg(z):
    result = fishcast.cosmo.Hubble(z)
    try:
       number_density = compute_n(fishcast,z)
    except:
       if X == Y and X == 'k': number_density = 10
       else: raise Exception('Attemped to integrate outside of \
                              specificed n(z) range')
    if fishcast.experiment.HI: number_density = castorinaPn(z)
    result *= number_density * dchidz(z) * chi(z)**2 
    return result
Esempio n. 3
0
def compute_real_space_cross_power(fishcast, X, Y, z, gamma=1., b=-1., 
                                   b2=-1,bs=-1,alpha0=-1,alphax=0,N=None):
   '''
   Wrapper function for CLEFT. Returns P_XY where X,Y = k or g
   as a function of k.
   '''
   if b == -1.: b = compute_b(fishcast,z)
   if b2 == -1: b2 = 8*(b-1)/21
   if bs == -1: bs = -2*(b-1)/7
   if alpha0 == -1: alpha0 = 1.22 + 0.24*b**2*(z-5.96) 
   if N == None: 
      N = 1/compute_n(fishcast,z)
      if fishcast.experiment.HI: N = castorinaPn(z)
   bk = (1+gamma)/2-1
   h = fishcast.params['h']
   
   K = fishcast.k
    
   klin = np.array([K[i*fishcast.Nmu] for i in range(fishcast.Nk)])
   plin = np.array([fishcast.cosmo.pk_cb_lin(k*h,z)*h**3. for k in klin])
    
    
   ######################################################################################################## 
   if fishcast.linear:
      print('IMPLEMENT STUFF HERE')
    
   if X == Y and X == 'k': 
      plin = np.array([fishcast.cosmo.pk_lin(k*h,z)*h**3. for k in klin])
      cleft = CLEFT(klin,plin,cutoff=2.)
      cleft.make_ptable(kmin=min(klin),kmax=max(klin),nk=fishcast.Nk)
      kk,pmm = cleft.combine_bias_terms_pk(0,0,0,0,0,0) 
      if z>10: pmm=np.array([fishcast.cosmo.pk(k*h,z)*h**3. for k in klin])
      return interp1d(kk, pmm, kind='linear', bounds_error=False, fill_value=0.)
    
   cleft = CLEFT(klin,plin,cutoff=2.)
   cleft.make_ptable(kmin=min(klin),kmax=max(klin),nk=fishcast.Nk)
   
   bL1 = b-1.
   bL2 = b2 - 8*(b-1)/21 
   bLs = bs + 2*(b-1)/7
    
    
   if X == Y and X == 'g':
      kk,pgg = cleft.combine_bias_terms_pk(bL1,bL2,bLs,alpha0,0,N) 
      return interp1d(kk, pgg, kind='linear', bounds_error=False, fill_value=0.) 
   
   # if neither of the above cases are true, return Pkg
   kk = cleft.pktable[:,0]
   pkg = cleft.pktable[:,1]+0.5*(bL1+bk)*cleft.pktable[:,2]+bL1*bk*cleft.pktable[:,3]+\
         0.5*bL2*cleft.pktable[:,4]+0.5*bk*bL2*cleft.pktable[:,5]+0.5*bLs*cleft.pktable[:,7]+\
         0.5*bk*bLs*cleft.pktable[:,8]+alphax*kk**2*cleft.pktable[:,11]
   return interp1d(kk, pkg, kind='linear', bounds_error=False, fill_value=0.) 
Esempio n. 4
0
    def PNoiseShot(self, z, Tb):
        """21cm shot noise power spectrum.

        Parameters
        ----------
        z : float
            Redshift.
        Tb : float
            Mean 21cm brightness temperature (your choice of units).

        Returns
        -------
        pn : float or array
            Shot noise power spectrum, in Mpc^3 times square of input Tb units.
        """
        return Tb**2 * castorinaPn(z) / (self.C['h'])**3
Esempio n. 5
0
 def PNoiseShot(self, z, Tb):
     return Tb**2 * castorinaPn(z) / (self.C['h'])**3
Esempio n. 6
0
 def Nz(z):
    if X == Y and X == 'k': return 0
    if not fishcast.experiment.HI: return 1/compute_n(fishcast,z) * N/N_fid
    else: return castorinaPn(z) * N/N_fid
Esempio n. 7
0
def compute_lensing_Cell(fishcast, X, Y, zmin=None, zmax=None,zmid=None,gamma=1., 
                         b=-1,b2=-1,bs=-1, alpha0=-1,alphax=0.,N=-1,
                         noise=False,Nzsteps=100,Nzeff='auto',maxDz=0.2):
   '''
   Calculates C^XY_l using the Limber approximation where X,Y = 'k' or 'g'. 
   Returns an array of length len(fishcast.ell). If X=Y=k, use CLASS with 
   HaloFit to calculate the lensing convergence. 
   ---------------------------------------------------------------------
   noise: if True returns the projected shot noise. 
   (replaces P -> 1/n)

   Nzsteps: number of integration points
   ---------------------------------------------------------------------
   '''
   if X == Y and X == 'k' and zmin is None and zmax is None: 
      lmin,lmax = int(min(fishcast.ell)),int(max(fishcast.ell))
      Cphiphi = fishcast.cosmo.raw_cl(lmax)['pp'][lmin:]
      return 0.25*fishcast.ell**2*(fishcast.ell+1)**2*Cphiphi*((1+gamma)/2)**2

   if zmin is None or zmax is None: raise Exception('Must specify zmin and zmax')
   if zmid is None: zmid = (zmin+zmax)/2
    
   b_fid = compute_b(fishcast,zmid)  
   b2_fid = 8*(b_fid-1)/21
   bs_fid = -2*(b_fid-1)/7
   alpha0_fid = 1.22 + 0.24*b_fid**2*(zmid-5.96) 
   N_fid = 1/compute_n(fishcast,zmid)
   if fishcast.experiment.HI: N_fid = castorinaPn(zmid)
        
   if b == -1: b = b_fid
   if b2 == -1: b2 = b2_fid
   if bs == -1: bs = bs_fid
   if alpha0 == -1: alpha0 = alpha0_fid
   if N == -1: N = N_fid
       
   z_star = 1098
   chi = lambda z: (1.+z)*fishcast.cosmo.angular_distance(z)*fishcast.params['h']
   def dchidz(z): 
      if z <= 0.02: return (chi(z+0.01)-chi(z))/0.01
      return (-chi(z+0.02)+8*chi(z+0.01)-8*chi(z-0.01)+chi(z-0.02))/0.12 
   chi_star = chi(z_star)  

   # CMB lensing convergence kernel
   W_k = lambda z: 1.5*(fishcast.params['omega_cdm']+fishcast.params['omega_b'])/\
                   fishcast.params['h']**2*(1/2997.92458)**2*(1+z)*chi(z)*\
                   (chi_star-chi(z))/chi_star
   
   # Galaxy kernel (arbitrary normalization)
   def nonnorm_Wg(z):
      result = fishcast.cosmo.Hubble(z)
      try:
         number_density = compute_n(fishcast,z)
      except:
         if X == Y and X == 'k': number_density = 10
         else: raise Exception('Attemped to integrate outside of \
                                specificed n(z) range')
      if fishcast.experiment.HI: number_density = castorinaPn(z)
      result *= number_density * dchidz(z) * chi(z)**2 
      return result
  
   zs = np.linspace(zmin,zmax,Nzsteps)
   chis = np.array([chi(z) for z in zs])
   Wg = np.array([nonnorm_Wg(z) for z in zs])
   Wg /= simps(Wg,x=chis)
   Wk = np.array([W_k(z) for z in zs])
   if X == Y and X == 'k': kern = Wk**2/chis**2
   elif X == Y and X == 'g': kern = Wg**2/chis**2
   else: kern = Wg*Wk/chis**2
   if Nzeff == 'auto': Nzeff = ceil((zmax-zmin)/maxDz)
   if Nzeff > Nzsteps: Nzeff = Nzsteps
   mask = [(zs < np.linspace(zmin,zmax,Nzeff+1)[1:][i])*\
           (zs >= np.linspace(zmin,zmax,Nzeff+1)[:-1][i]) for i in range(Nzeff)]
   mask[-1][-1] = True
   zeff = np.array([simps(kern*zs*m,x=chis)/simps(kern*m,x=chis) for m in mask])

   bz = lambda z: compute_b(fishcast,z) * b/b_fid
   b2z = lambda z: 8*(compute_b(fishcast,z)-1)/21 * b2/b2_fid
   bsz = lambda z: -2*(compute_b(fishcast,z)-1)/7 * bs/bs_fid
   alpha0z = lambda z: (1.22 + 0.24*compute_b(fishcast,z)**2*(z-5.96)) * alpha0/alpha0_fid
   def Nz(z):
      if X == Y and X == 'k': return 0
      if not fishcast.experiment.HI: return 1/compute_n(fishcast,z) * N/N_fid
      else: return castorinaPn(z) * N/N_fid

   # calculate P_XY 
   if not noise: P = [compute_real_space_cross_power(
                 fishcast, X, Y, zz, gamma=gamma, b=bz(zz), 
                 b2=b2z(zz),bs=bsz(zz),alpha0=alpha0z(zz),alphax=alphax,N=Nz(zz)) for zz in zeff]

   if noise: P = [fishcast.get_f_at_fixed_mu(np.ones(fishcast.Nk*fishcast.Nmu)/\
                  compute_n(fishcast, zz),0) for zz in zeff]
   P = np.array(P)

   def result(ell):
      kval = (ell+0.5)/chis
      integrands = np.array([kern*P[i](kval) for i in range(Nzeff)])*mask
      integrand = np.sum(integrands,axis=0)
      return simps(integrand,x=chis)
   
   return np.array([result(l) for l in fishcast.ell])
Esempio n. 8
0
def compute_tracer_power_spectrum(fishcast, z, b=-1., b2=-1, bs=-1, 
                                  alpha0=-1, alpha2=0, alpha4=0.,alpha6=0.,
                                  N=None,N2=-1,N4=0.,f=-1., A_lin=-1., 
                                  omega_lin=-1., phi_lin=-1.,kIR=0.2,     
                                  moments=False,bL1=None,bL2=None,bLs=None,
                                  one_loop=True):
   '''
   Computes the nonlinear redshift-space power spectrum P(k,mu) [Mpc/h]^3 
   of the matter tracer. Returns an array of length Nk*Nmu. 
   '''
   exp = fishcast.experiment
   if fishcast.recon: 
      return compute_recon_power_spectrum(fishcast,z,b=b,b2=b2,bs=bs,N=N)

   if b == -1.: b = compute_b(fishcast,z)
   if b2 == -1 and exp.b2 is not None: b2 = exp.b2(z) 
   elif b2 == -1: b2 = 8*(b-1)/21
   if bs == -1: bs = -2*(b-1)/7
   if f == -1.: f = fishcast.cosmo.scale_independent_growth_factor_f(z)
   if A_lin == -1.: A_lin = fishcast.A_lin
   if omega_lin == -1.: omega_lin = fishcast.omega_lin
   if phi_lin == -1.: phi_lin = fishcast.phi_lin 
   if alpha0 == -1: alpha0 = 1.22 + 0.24*b**2*(z-5.96) 
   if N is None: N = 1/compute_n(fishcast,z)
   #
   noise = 1/compute_n(fishcast,z)
   if exp.HI: noise = castorinaPn(z) # only keep the shot noise piece
   sigv = exp.sigv
   Hz = fishcast.Hz_fid(z)
   if N2 == -1: N2 = -noise*((1+z)*sigv/fishcast.Hz_fid(z))**2
    
   K = fishcast.k
   MU = fishcast.mu
   h = fishcast.params['h']
   klin = np.array([K[i*fishcast.Nmu] for i in range(fishcast.Nk)])
   plin = np.array([fishcast.cosmo.pk_cb_lin(k*h,z)*h**3. for k in klin]) 
   plin *= (1. + A_lin * np.sin(omega_lin * klin + phi_lin))

   if fishcast.smooth: plin = get_smoothed_p(fishcast,z)
    
   if fishcast.linear2:
      pmatter = np.repeat(plin,fishcast.Nmu)
      result = pmatter * (b+f*MU**2.)**2.
      result /= 1 - N2*(K*MU)**2/noise 
      result += N   
      return result
    
   if fishcast.linear:
      # If not using velocileptors, use linear theory
      # and approximate RSD with Kaiser.
      pmatter = np.repeat(plin,fishcast.Nmu)
      result = pmatter * (b+f*MU**2.)**2.
      result += N+N2*(K*MU)**2+N4*(K*MU)**4
      result += pmatter*K**2*(alpha0+alpha2*MU**2+alpha4*MU**4)
      return result
   
   if bL1 is None: bL1 = b-1.
   if bL2 is None: bL2 = b2 - 8*(b-1)/21 
   if bLs is None: bLs = bs + 2*(b-1)/7
   
   biases = [bL1,bL2,bLs,0.]
   cterms = [alpha0,alpha2,alpha4,alpha6]
   stoch  = [0,N2,N4]
   pars   = biases + cterms + stoch

   lpt = LPT_RSD(klin,plin,kIR=kIR,one_loop=one_loop,cutoff=2)
   lpt.make_pltable(f,kmin=min(klin),kmax=max(klin),nk=len(klin))
   k,p0,p2,p4 = lpt.combine_bias_terms_pkell(pars)
   if moments: return k,p0,p2,p4
   p0 = np.repeat(p0,fishcast.Nmu) 
   p2 = np.repeat(p2,fishcast.Nmu) 
   p4 = np.repeat(p4,fishcast.Nmu)
   pkmu = p0+0.5*(3*MU**2-1)*p2+0.125*(35*MU**4-30*MU**2+3)*p4 + N
   del lpt
   return pkmu 
Esempio n. 9
0
for name, zs in [("zlow", zlow)]:  #,("zhigh",zhigh)]:
    f = open("background_%s.dat" % (name), 'w')
    f.write(
        "# z distance(z)[Mpc] growth(z)[normalised at z=0] f(z)=dlng/dlna Tspin(z) [mK]  b(z) N(z) [Mpc^3] \n"
    )
    for z in zs:
        print z
        afact = 1. / (1 + z)
        dist = ccl.luminosity_distance(cosmo, afact)  # this is what class has
        gf = ccl.growth_factor(cosmo, afact)
        gr = ccl.growth_rate(cosmo, afact)
        print z, gr
        if z < 10:
            Ts = Tspin(z, OmegaH, OmegaC)
            bias = castorinaBias(z)
            Pn = castorinaPn(z) / h**3  # converting from Mpc/h^3 to Mpc^3
        else:
            Ts = pritchardTSpin(z)
            bias = 1.0
            Pn = 0.0
        f.write("%3.2f %g %g %g %g %g %g  \n" %
                (z, dist, gf, gr, Ts, bias, Pn))
    f.close()
# next write power spectrum
f = open("pk0.dat", "w")
f.write("# k [1/Mpc] Pk [Mpc^3] \n")
for k in np.logspace(-3, 1, 200):
    print k
    f.write("%g %g\n" % (k, ccl.linear_matter_power(cosmo, k, 1.0)))
f.close()
Esempio n. 10
0
def HI_shot(z):
    '''
   PUMA shot noise Mpc^3/h^3 from Emanuele Castorina.
   '''
    return castorinaPn(z)