fminax = fmajax fpa = NP.zeros(n_src) ctlgobj = CTLG.Catalog('PS', freq_catalog * 1e9, NP.hstack( (ra_deg.reshape(-1, 1), dec_deg.reshape(-1, 1))), fpeak, spectral_index=spindex, src_shape=NP.hstack( (fmajax.reshape(-1, 1), fminax.reshape(-1, 1), fpa.reshape(-1, 1))), src_shape_units=['arcmin', 'arcmin', 'degree']) fg_str = 'point' skymod = CTLG.SkyModel(ctlgobj) ## Start the observation # PDB.set_trace() # progress = PGB.ProgressBar(widgets=[PGB.Percentage(), PGB.Bar(), PGB.ETA()], maxval=len(bl_chunk)).start() # for i in range(len(bl_chunk)): # outfile = '/data3/t_nithyanandan/project_MWA/multi_baseline_visibilities_'+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(bl_length[baseline_bin_indices[bl_chunk[i]]],bl_length[min(baseline_bin_indices[bl_chunk[i]]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_'+fg_str+'_{0:0d}_'.format(nside)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_part_{0:0d}'.format(i) # ia = RI.InterferometerArray(labels[baseline_bin_indices[bl_chunk[i]]:min(baseline_bin_indices[bl_chunk[i]]+baseline_chunk_size,total_baselines)], bl[baseline_bin_indices[bl_chunk[i]]:min(baseline_bin_indices[bl_chunk[i]]+baseline_chunk_size,total_baselines),:], chans, telescope=telescope, latitude=latitude, A_eff=A_eff, freq_scale='GHz') # ts = time.time() # ia.observing_run(pointing_init, skymod, t_snap, t_obs, chans, bpass, Tsys, lst_init, mode=obs_mode, freq_scale='GHz', brightness_units=flux_unit, memsave=True) # print 'The last chunk of {0:0d} baselines required {1:.1f} minutes'.format(baseline_chunk_size, (time.time()-ts)/60.0) # ia.delay_transform(oversampling_factor-1.0, freq_wts=window) # ia.save(outfile, verbose=True, tabtype='BinTableHDU', overwrite=True) # progress.update(i+1) # progress.finish()
ec = gc.transform_to('icrs') else: ec = SkyCoord(ra=NP.degrees(phi), dec=90.0 - NP.degrees(theta), unit='deg', frame='icrs') spec_parms = None spec_type = 'spectrum' dsm_inspec = NP.asarray(dsm_inspec) catlabel = NP.repeat('DSM', dsm_inspec.shape[0]) dsm_in = SM.SkyModel(catlabel, freqs[chan], NP.hstack((ec.ra.degree.reshape(-1, 1), ec.dec.degree.reshape(-1, 1))), spec_type, spectrum=indata, spec_parms=None) dsm_out_dict = dsm_in.to_healpix(freqs[chan], out_nside, in_units=dsm_units, dsm_out_coords=out_coord, out_units=out_units) dsm_out[:, chan] = dsm_out_dict['spectrum'] if ('csm' in inp_skymodels) or ('CSM' in inp_skymodels): freq_SUMSS = 0.843 # in GHz catalog = NP.loadtxt(SUMSS_file, usecols=(0, 1, 2, 3, 4, 5, 10, 12, 13, 14, 15, 16))