Esempio n. 1
0
def create_data_portal(asset_finder, tempdir, sim_params, sids,
                       trading_calendar, adjustment_reader=None):
    if sim_params.data_frequency == "daily":
        daily_path = write_daily_data(tempdir, sim_params, sids,
                                      trading_calendar)

        equity_daily_reader = BcolzDailyBarReader(daily_path)

        return DataPortal(
            asset_finder, trading_calendar,
            first_trading_day=equity_daily_reader.first_trading_day,
            equity_daily_reader=equity_daily_reader,
            adjustment_reader=adjustment_reader
        )
    else:
        minutes = trading_calendar.minutes_in_range(
            sim_params.first_open,
            sim_params.last_close
        )

        minute_path = write_minute_data(trading_calendar, tempdir, minutes,
                                        sids)

        equity_minute_reader = BcolzMinuteBarReader(minute_path)

        return DataPortal(
            asset_finder, trading_calendar,
            first_trading_day=equity_minute_reader.first_trading_day,
            equity_minute_reader=equity_minute_reader,
            adjustment_reader=adjustment_reader
        )
    def from_files(cls, pricing_path):
        """
        Create a loader from a bcolz equity pricing dir and a SQLite
        adjustments path.

        Parameters
        ----------
        pricing_path : str
            Path to a bcolz directory written by a BcolzDailyBarWriter.
        """
        return cls(BcolzDailyBarReader(pricing_path), )
Esempio n. 3
0
    def test_unadjusted_get_value_no_data(self):
        table = self.bcolz_daily_bar_ctable
        reader = BcolzDailyBarReader(table)
        # before
        with self.assertRaises(NoDataBeforeDate):
            reader.get_value(2, Timestamp('2015-06-08', tz='UTC'), 'close')

        # after
        with self.assertRaises(NoDataAfterDate):
            reader.get_value(4, Timestamp('2015-06-16', tz='UTC'), 'close')
Esempio n. 4
0
def create_data_portal_from_trade_history(asset_finder, trading_calendar,
                                          tempdir, sim_params, trades_by_sid):
    if sim_params.data_frequency == "daily":
        path = os.path.join(tempdir.path, "testdaily.bcolz")
        writer = BcolzDailyBarWriter(
            path, trading_calendar,
            sim_params.start_session,
            sim_params.end_session
        )
        writer.write(
            trades_by_sid_to_dfs(trades_by_sid, sim_params.sessions),
        )

        equity_daily_reader = BcolzDailyBarReader(path)

        return DataPortal(
            asset_finder, trading_calendar,
            first_trading_day=equity_daily_reader.first_trading_day,
            daily_reader=equity_daily_reader,
        )
    else:
        minutes = trading_calendar.minutes_in_range(
            sim_params.first_open,
            sim_params.last_close
        )

        length = len(minutes)
        assets = {}

        for sidint, trades in iteritems(trades_by_sid):
            opens = np.zeros(length)
            highs = np.zeros(length)
            lows = np.zeros(length)
            closes = np.zeros(length)
            volumes = np.zeros(length)

            for trade in trades:
                # put them in the right place
                idx = minutes.searchsorted(trade.dt)

                opens[idx] = trade.open_price * 1000
                highs[idx] = trade.high * 1000
                lows[idx] = trade.low * 1000
                closes[idx] = trade.close_price * 1000
                volumes[idx] = trade.volume

            assets[sidint] = pd.DataFrame({
                "open": opens,
                "high": highs,
                "low": lows,
                "close": closes,
                "volume": volumes,
                "dt": minutes
            }).set_index("dt")

        write_bcolz_minute_data(
            trading_calendar,
            sim_params.sessions,
            tempdir.path,
            assets
        )

        equity_minute_reader = BcolzMinuteBarReader(tempdir.path)

        return DataPortal(
            asset_finder, trading_calendar,
            first_trading_day=equity_minute_reader.first_trading_day,
            equity_minute_reader=equity_minute_reader,
        )
    def transaction_sim(self, **params):
        """This is a utility method that asserts expected
        results for conversion of orders to transactions given a
        trade history
        """
        trade_count = params['trade_count']
        trade_interval = params['trade_interval']
        order_count = params['order_count']
        order_amount = params['order_amount']
        order_interval = params['order_interval']
        expected_txn_count = params['expected_txn_count']
        expected_txn_volume = params['expected_txn_volume']

        # optional parameters
        # ---------------------
        # if present, alternate between long and short sales
        alternate = params.get('alternate')

        # if present, expect transaction amounts to match orders exactly.
        complete_fill = params.get('complete_fill')

        asset1 = self.asset_finder.retrieve_asset(1)
        metadata = make_simple_equity_info([asset1.sid], self.start, self.end)
        with TempDirectory() as tempdir, \
                tmp_trading_env(equities=metadata,
                                load=self.make_load_function()) as env:

            if trade_interval < timedelta(days=1):
                sim_params = factory.create_simulation_parameters(
                    start=self.start,
                    end=self.end,
                    data_frequency="minute"
                )

                minutes = self.trading_calendar.minutes_window(
                    sim_params.first_open,
                    int((trade_interval.total_seconds() / 60) * trade_count)
                    + 100)

                price_data = np.array([10.1] * len(minutes))
                assets = {
                    asset1.sid: pd.DataFrame({
                        "open": price_data,
                        "high": price_data,
                        "low": price_data,
                        "close": price_data,
                        "volume": np.array([100] * len(minutes)),
                        "dt": minutes
                    }).set_index("dt")
                }

                write_bcolz_minute_data(
                    self.trading_calendar,
                    self.trading_calendar.sessions_in_range(
                        self.trading_calendar.minute_to_session_label(
                            minutes[0]
                        ),
                        self.trading_calendar.minute_to_session_label(
                            minutes[-1]
                        )
                    ),
                    tempdir.path,
                    iteritems(assets),
                )

                equity_minute_reader = BcolzMinuteBarReader(tempdir.path)

                data_portal = DataPortal(
                    env.asset_finder, self.trading_calendar,
                    first_trading_day=equity_minute_reader.first_trading_day,
                    minute_reader=equity_minute_reader,
                )
            else:
                sim_params = factory.create_simulation_parameters(
                    data_frequency="daily"
                )

                days = sim_params.sessions

                assets = {
                    1: pd.DataFrame({
                        "open": [10.1] * len(days),
                        "high": [10.1] * len(days),
                        "low": [10.1] * len(days),
                        "close": [10.1] * len(days),
                        "volume": [100] * len(days),
                        "day": [day.value for day in days]
                    }, index=days)
                }

                path = os.path.join(tempdir.path, "testdata.bcolz")
                BcolzDailyBarWriter(path, self.trading_calendar, days[0],
                                    days[-1]).write(
                    assets.items()
                )

                equity_daily_reader = BcolzDailyBarReader(path)

                data_portal = DataPortal(
                    env.asset_finder, self.trading_calendar,
                    first_trading_day=equity_daily_reader.first_trading_day,
                    daily_reader=equity_daily_reader,
                )

            if "default_slippage" not in params or \
               not params["default_slippage"]:
                slippage_func = FixedSlippage()
            else:
                slippage_func = None

            blotter = Blotter(sim_params.data_frequency, slippage_func)

            start_date = sim_params.first_open

            if alternate:
                alternator = -1
            else:
                alternator = 1

            tracker = PerformanceTracker(sim_params, self.trading_calendar,
                                         self.env)

            # replicate what tradesim does by going through every minute or day
            # of the simulation and processing open orders each time
            if sim_params.data_frequency == "minute":
                ticks = minutes
            else:
                ticks = days

            transactions = []

            order_list = []
            order_date = start_date
            for tick in ticks:
                blotter.current_dt = tick
                if tick >= order_date and len(order_list) < order_count:
                    # place an order
                    direction = alternator ** len(order_list)
                    order_id = blotter.order(
                        asset1,
                        order_amount * direction,
                        MarketOrder())
                    order_list.append(blotter.orders[order_id])
                    order_date = order_date + order_interval
                    # move after market orders to just after market next
                    # market open.
                    if order_date.hour >= 21:
                        if order_date.minute >= 00:
                            order_date = order_date + timedelta(days=1)
                            order_date = order_date.replace(hour=14, minute=30)
                else:
                    bar_data = BarData(
                        data_portal=data_portal,
                        simulation_dt_func=lambda: tick,
                        data_frequency=sim_params.data_frequency,
                        trading_calendar=self.trading_calendar,
                        restrictions=NoRestrictions(),
                    )
                    txns, _, closed_orders = blotter.get_transactions(bar_data)
                    for txn in txns:
                        tracker.process_transaction(txn)
                        transactions.append(txn)

                    blotter.prune_orders(closed_orders)

            for i in range(order_count):
                order = order_list[i]
                self.assertEqual(order.asset, asset1)
                self.assertEqual(order.amount, order_amount * alternator ** i)

            if complete_fill:
                self.assertEqual(len(transactions), len(order_list))

            total_volume = 0
            for i in range(len(transactions)):
                txn = transactions[i]
                total_volume += txn.amount
                if complete_fill:
                    order = order_list[i]
                    self.assertEqual(order.amount, txn.amount)

            self.assertEqual(total_volume, expected_txn_volume)

            self.assertEqual(len(transactions), expected_txn_count)

            cumulative_pos = tracker.position_tracker.positions[asset1]
            if total_volume == 0:
                self.assertIsNone(cumulative_pos)
            else:
                self.assertEqual(total_volume, cumulative_pos.amount)

            # the open orders should not contain the asset.
            oo = blotter.open_orders
            self.assertNotIn(
                asset1,
                oo,
                "Entry is removed when no open orders"
            )