Esempio n. 1
0
    def trace(
        self,
        *,
        model: Model = None,
        batch: Any = None,
        logdir: str = None,
        loader: DataLoader = None,
        method_name: str = "forward",
        mode: str = "eval",
        requires_grad: bool = False,
        fp16: Union[Dict, bool] = None,
        device: Device = "cpu",
        predict_params: dict = None,
    ) -> ScriptModule:
        """
        Traces model using Torch Jit.

        Args:
            model (Model): model to trace
            batch: batch to forward through the model to trace
            logdir (str, optional): If specified,
                the result will be written to the directory
            loader (DataLoader, optional): if batch is not specified, the batch
                will be ``next(iter(loader))``
            method_name (str): model's method name that will be traced
            mode (str): ``train`` or ``eval``
            requires_grad (bool): flag to trace with gradients
            fp16 (Union[Dict, bool]): If not None, then sets
                tracing params to FP16
            device (Device): Torch deivice or a string
            predict_params (dict): additional parameters for model forward
        """
        if batch is None:
            if loader is None:
                raise ValueError(
                    "If batch is not provided the loader must be specified")
            batch = next(iter(loader))

        if model is not None:
            self.model = model
        assert self.model is not None

        if isinstance(fp16, bool) and fp16:
            opt_level = "O1"
        elif isinstance(fp16, bool) and not fp16:
            opt_level = None
        elif isinstance(fp16, dict):
            opt_level = fp16["opt_level"]
        else:
            opt_level = fp16

        if opt_level is not None:
            device = "cuda"
        elif device is None:
            if self.device is None:
                self.device = utils.get_device()
            device = self.device

        result = utils.trace_model(
            model=self.model,
            runner=self,
            batch=batch,
            method_name=method_name,
            mode=mode,
            requires_grad=requires_grad,
            opt_level=opt_level,
            device=device,
            predict_params=predict_params,
        )

        if logdir is not None:
            filename = utils.get_trace_name(
                method_name=method_name,
                mode=mode,
                requires_grad=requires_grad,
                opt_level=opt_level,
            )

            logdir = Path(logdir)
            output: Path = logdir / "trace"
            output.mkdir(exist_ok=True, parents=True)

            out_model = str(output / filename)

            torch.jit.save(result, out_model)

        return result
Esempio n. 2
0
    def trace(
        self,
        *,
        model: Model = None,
        batch: Any = None,
        logdir: str = None,
        loader: DataLoader = None,
        method_name: str = "forward",
        mode: str = "eval",
        requires_grad: bool = False,
        fp16: Union[Dict, bool] = None,
        device: Device = "cpu",
        predict_params: dict = None,
    ) -> ScriptModule:
        """
        Traces model using Torch Jit.

        Args:
            model (Model): model to trace
            batch: batch to forward through the model to trace
            logdir (str, optional): If specified,
                the result will be written to the directory
            loader (DataLoader, optional): if batch is not specified, the batch
                will be ``next(iter(loader))``
            method_name (str): model's method name that will be traced
            mode (str): ``train`` or ``eval``
            requires_grad (bool): flag to trace with gradients
            fp16 (Union[Dict, bool]): If not None, then sets
                tracing params to FP16
            device (Device): Torch device or a string
            predict_params (dict): additional parameters for model forward
        """
        if batch is None:
            if loader is None:
                raise ValueError(
                    "If batch is not provided the loader must be specified"
                )
            batch = next(iter(loader))

        if model is not None:
            self.model = model
        assert self.model is not None

        if isinstance(fp16, bool) and fp16:
            opt_level = "O1"
        elif isinstance(fp16, bool) and not fp16:
            opt_level = None
        elif isinstance(fp16, dict):
            opt_level = fp16["opt_level"]
        else:
            opt_level = fp16

        if opt_level is not None:
            device = "cuda"
        elif device is None:
            if self.device is None:
                self.device = utils.get_device()
            device = self.device

        # Dumping previous state of the model, we will need it to restore
        _device, _is_training, _requires_grad = (
            self.device,
            self.model.training,
            utils.get_requires_grad(self.model),
        )

        self.model.to(device)

        # function to run prediction on batch
        def predict_fn(model, inputs, **kwargs):
            _model = self.model
            self.model = model
            result = self.predict_batch(inputs, **kwargs)
            self.model = _model
            return result

        traced_model = utils.trace_model(
            model=self.model,
            predict_fn=predict_fn,
            batch=batch,
            method_name=method_name,
            mode=mode,
            requires_grad=requires_grad,
            opt_level=opt_level,
            device=device,
            predict_params=predict_params,
        )

        if logdir is not None:
            utils.save_traced_model(
                model=traced_model,
                logdir=logdir,
                method_name=method_name,
                mode=mode,
                requires_grad=requires_grad,
                opt_level=opt_level,
            )

        # Restore previous state of the model
        getattr(self.model, "train" if _is_training else "eval")()
        utils.set_requires_grad(self.model, _requires_grad)
        self.model.to(_device)

        return traced_model
Esempio n. 3
0
def trace_model_from_checkpoint(
    logdir: Path,
    method_name: str,
    checkpoint_name: str,
    stage: str = None,
    loader: Union[str, int] = None,
    mode: str = "eval",
    requires_grad: bool = False,
    opt_level: str = None,
    device: Device = "cpu",
):
    """
    Traces model using created experiment and runner.

    Args:
        logdir (Union[str, Path]): Path to Catalyst logdir with model
        checkpoint_name (str): Name of model checkpoint to use
        stage (str): experiment's stage name
        loader (Union[str, int]): experiment's loader name or its index
        method_name (str): Model's method name that will be
            used as entrypoint during tracing
        mode (str): Mode for model to trace (``train`` or ``eval``)
        requires_grad (bool): Flag to use grads
        opt_level (str): AMP FP16 init level
        device (str): Torch device

    Returns:
        the traced model
    """
    config_path = logdir / "configs" / "_config.json"
    checkpoint_path = logdir / "checkpoints" / f"{checkpoint_name}.pth"
    print("Load config")
    config: Dict[str, dict] = utils.load_config(config_path)
    runner_params = config.get("runner_params", {}) or {}

    # Get expdir name
    config_expdir = Path(config["args"]["expdir"])
    # We will use copy of expdir from logs for reproducibility
    expdir = Path(logdir) / "code" / config_expdir.name

    print("Import experiment and runner from logdir")
    ExperimentType, RunnerType = utils.import_experiment_and_runner(expdir)
    experiment: Experiment = ExperimentType(config)

    print(f"Load model state from checkpoints/{checkpoint_name}.pth")
    if stage is None:
        stage = list(experiment.stages)[0]

    model = experiment.get_model(stage)
    checkpoint = utils.load_checkpoint(checkpoint_path)
    utils.unpack_checkpoint(checkpoint, model=model)

    runner: RunnerType = RunnerType(**runner_params)
    runner.model, runner.device = model, device

    if loader is None:
        loader = 0
    batch = experiment.get_native_batch(stage, loader)

    print("Tracing")
    traced = utils.trace_model(
        model=model,
        runner=runner,
        batch=batch,
        method_name=method_name,
        mode=mode,
        requires_grad=requires_grad,
        opt_level=opt_level,
        device=device,
    )

    print("Done")
    return traced