Esempio n. 1
0
    def test_calculate_impact_without_history(self):
        model = VolatilityVolumeShare(volume_limit=1)
        late_start_asset = self.asset_finder.retrieve_asset(1000)
        early_start_asset = self.asset_finder.retrieve_asset(1001)

        cases = [
            # History will look for data before the start date.
            (pd.Timestamp('2006-01-05 11:35AM', tz='UTC'), early_start_asset),
            # Start day of the futures contract; no history yet.
            (pd.Timestamp('2006-02-10 11:35AM', tz='UTC'), late_start_asset),
            # Only a week's worth of history data.
            (pd.Timestamp('2006-02-17 11:35AM', tz='UTC'), late_start_asset),
        ]

        for minute, asset in cases:
            data = self.create_bardata(simulation_dt_func=lambda: minute)

            order = Order(dt=data.current_dt, asset=asset, amount=10)
            price, amount = model.process_order(data, order)

            avg_price = (
                data.current(asset, 'high') + data.current(asset, 'low')
            ) / 2
            expected_price = \
                avg_price * (1 + model.NO_DATA_VOLATILITY_SLIPPAGE_IMPACT)

            self.assertAlmostEqual(price, expected_price, delta=0.001)
            self.assertEqual(amount, 10)
Esempio n. 2
0
    def test_calculate_impact_without_history(self):
        model = VolatilityVolumeShare(volume_limit=1)
        late_start_asset = self.asset_finder.retrieve_asset(1000)
        early_start_asset = self.asset_finder.retrieve_asset(1001)

        cases = [
            # History will look for data before the start date.
            (pd.Timestamp('2006-01-05 11:35AM', tz='UTC'), early_start_asset),
            # Start day of the futures contract; no history yet.
            (pd.Timestamp('2006-02-10 11:35AM', tz='UTC'), late_start_asset),
            # Only a week's worth of history data.
            (pd.Timestamp('2006-02-17 11:35AM', tz='UTC'), late_start_asset),
        ]

        for minute, asset in cases:
            data = self.create_bardata(simulation_dt_func=lambda: minute)

            order = Order(dt=data.current_dt, asset=asset, amount=10)
            price, amount = model.process_order(data, order)

            avg_price = (data.current(asset, 'high') +
                         data.current(asset, 'low')) / 2
            expected_price = \
                avg_price * (1 + model.NO_DATA_VOLATILITY_SLIPPAGE_IMPACT)

            self.assertAlmostEqual(price, expected_price, delta=0.001)
            self.assertEqual(amount, 10)
Esempio n. 3
0
    def test_low_transaction_volume(self):
        # With a volume limit of 0.001, and a bar volume of 100, we should
        # compute a transaction volume of 100 * 0.001 = 0.1, which gets rounded
        # down to zero. In this case we expect no amount to be transacted.
        model = VolatilityVolumeShare(volume_limit=0.001)

        minute = pd.Timestamp('2006-03-01 11:35AM', tz='UTC')
        data = self.create_bardata(simulation_dt_func=lambda: minute)
        order = Order(dt=data.current_dt, asset=self.ASSET, amount=10)
        price, amount = model.process_order(data, order)

        self.assertIsNone(price)
        self.assertIsNone(amount)
Esempio n. 4
0
    def test_low_transaction_volume(self):
        # With a volume limit of 0.001, and a bar volume of 100, we should
        # compute a transaction volume of 100 * 0.001 = 0.1, which gets rounded
        # down to zero. In this case we expect no amount to be transacted.
        model = VolatilityVolumeShare(volume_limit=0.001)

        minute = pd.Timestamp('2006-03-01 11:35AM', tz='UTC')
        data = self.create_bardata(simulation_dt_func=lambda: minute)
        order = Order(dt=data.current_dt, asset=self.ASSET, amount=10)
        price, amount = model.process_order(data, order)

        self.assertIsNone(price)
        self.assertIsNone(amount)
Esempio n. 5
0
    def test_impacted_price_worse_than_limit(self):
        model = VolatilityVolumeShare(volume_limit=0.05)

        # Use all the same numbers from the 'calculate_impact' tests. Since the
        # impacted price is 59805.5, which is worse than the limit price of
        # 59800, the model should return None.
        minute = pd.Timestamp('2006-03-01 11:35AM', tz='UTC')
        data = self.create_bardata(simulation_dt_func=lambda: minute)
        order = Order(
            dt=data.current_dt, asset=self.ASSET, amount=10, limit=59800,
        )
        price, amount = model.process_order(data, order)

        self.assertIsNone(price)
        self.assertIsNone(amount)
Esempio n. 6
0
    def test_impacted_price_worse_than_limit(self):
        model = VolatilityVolumeShare(volume_limit=0.05)

        # Use all the same numbers from the 'calculate_impact' tests. Since the
        # impacted price is 59805.5, which is worse than the limit price of
        # 59800, the model should return None.
        minute = pd.Timestamp('2006-03-01 11:35AM', tz='UTC')
        data = self.create_bardata(simulation_dt_func=lambda: minute)
        order = Order(
            dt=data.current_dt,
            asset=self.ASSET,
            amount=10,
            limit=59800,
        )
        price, amount = model.process_order(data, order)

        self.assertIsNone(price)
        self.assertIsNone(amount)
Esempio n. 7
0
    def _calculate_impact(self, test_order, answer_key):
        model = VolatilityVolumeShare(volume_limit=0.05)
        first_minute = pd.Timestamp('2006-03-31 11:35AM', tz='UTC')

        next_3_minutes = self.trading_calendar.minutes_window(first_minute, 3)
        remaining_shares = test_order.open_amount

        for i, minute in enumerate(next_3_minutes):
            data = self.create_bardata(simulation_dt_func=lambda: minute)
            new_order = Order(
                dt=data.current_dt, asset=self.ASSET, amount=remaining_shares,
            )
            price, amount = model.process_order(data, new_order)

            self.assertEqual(price, answer_key[i][0])
            self.assertEqual(amount, answer_key[i][1])

            amount = amount or 0
            if remaining_shares < 0:
                remaining_shares = min(0, remaining_shares - amount)
            else:
                remaining_shares = max(0, remaining_shares - amount)
Esempio n. 8
0
    def _calculate_impact(self, test_order, answer_key):
        model = VolatilityVolumeShare(volume_limit=0.05)
        first_minute = pd.Timestamp('2006-03-31 11:35AM', tz='UTC')

        next_3_minutes = self.trading_calendar.minutes_window(first_minute, 3)
        remaining_shares = test_order.open_amount

        for i, minute in enumerate(next_3_minutes):
            data = self.create_bardata(simulation_dt_func=lambda: minute)
            new_order = Order(
                dt=data.current_dt,
                asset=self.ASSET,
                amount=remaining_shares,
            )
            price, amount = model.process_order(data, new_order)

            self.assertEqual(price, answer_key[i][0])
            self.assertEqual(amount, answer_key[i][1])

            amount = amount or 0
            if remaining_shares < 0:
                remaining_shares = min(0, remaining_shares - amount)
            else:
                remaining_shares = max(0, remaining_shares - amount)