Esempio n. 1
0
 def test_invalid_dtype(self):
     # Test passing in a MJD dataset
     dataset = xr.Dataset({
         'first': (['lat', 'lon', 'time'], np.ones([180, 360, 6])),
         'second': (['lat', 'lon', 'time'], np.ones([180, 360, 6])),
         'lat':
         np.linspace(-89.5, 89.5, 180),
         'lon':
         np.linspace(-179.5, 179.5, 360),
         'time':
         [2451544.5, 2451575.5, 2451604.5, 2451635.5, 2451665.5, 2451696.5]
     })
     with self.assertRaises(ValueError) as err:
         subset.subset_temporal(dataset, '2000-01-10, 2000-04-01')
     self.assertIn('type datetime', str(err.exception))
Esempio n. 2
0
def anomaly_internal(ds: xr.Dataset,
                     time_range: TimeRangeLike.TYPE = None,
                     region: PolygonLike.TYPE = None,
                     monitor: Monitor = Monitor.NONE) -> xr.Dataset:
    """
    Calculate anomaly using as reference data the mean of an optional region
    and time slice from the given dataset. If no time slice/spatial region is
    given, the operation will calculate anomaly using the mean of the whole
    dataset as the reference.

    This is done for each data array in the dataset.
    :param ds: The dataset to calculate anomalies from
    :param time_range: Time range to use for reference data
    :param region: Spatial region to use for reference data
    :param monitor: a progress monitor.
    :return: The anomaly dataset
    """
    ref = ds.copy()
    if time_range:
        time_range = TimeRangeLike.convert(time_range)
        ref = subset_temporal(ref, time_range)
    if region:
        region = PolygonLike.convert(region)
        ref = subset_spatial(ref, region)
    with monitor.observing("Calculating anomaly"):
        ref = ref.mean(keep_attrs=True, skipna=True)
        diff = ds - ref
    return diff
Esempio n. 3
0
 def test_invalid_dtype(self):
     # Test passing in a MJD dataset
     dataset = xr.Dataset({
         'first': (['lat', 'lon', 'time'], np.ones([180, 360, 6])),
         'second': (['lat', 'lon', 'time'], np.ones([180, 360, 6])),
         'lat': np.linspace(-89.5, 89.5, 180),
         'lon': np.linspace(-179.5, 179.5, 360),
         'time': [2451544.5,
                  2451575.5,
                  2451604.5,
                  2451635.5,
                  2451665.5,
                  2451696.5]})
     with self.assertRaises(ValueError) as err:
         subset.subset_temporal(dataset, '2000-01-10, 2000-04-01')
     self.assertIn('type datetime', str(err.exception))
Esempio n. 4
0
def anomaly_internal(ds: xr.Dataset,
                     time_range: TimeRangeLike.TYPE = None,
                     region: PolygonLike.TYPE = None,
                     monitor: Monitor = Monitor.NONE) -> xr.Dataset:
    """
    Calculate anomaly using as reference data the mean of an optional region
    and time slice from the given dataset. If no time slice/spatial region is
    given, the operation will calculate anomaly using the mean of the whole
    dataset as the reference.

    This is done for each data array in the dataset.
    :param ds: The dataset to calculate anomalies from
    :param time_range: Time range to use for reference data
    :param region: Spatial region to use for reference data
    :param monitor: a progress monitor.
    :return: The anomaly dataset
    """
    ref = ds.copy()
    if time_range:
        time_range = TimeRangeLike.convert(time_range)
        ref = subset_temporal(ref, time_range)
    if region:
        region = PolygonLike.convert(region)
        ref = subset_spatial(ref, region)
    with monitor.observing("Calculating anomaly"):
        ref = ref.mean(keep_attrs=True, skipna=True)
        diff = ds - ref
    return diff
Esempio n. 5
0
 def test_subset_temporal(self):
     # Test general functionality
     dataset = xr.Dataset({
         'first': (['lat', 'lon', 'time'], np.ones([180, 360, 6])),
         'second': (['lat', 'lon', 'time'], np.ones([180, 360, 6])),
         'lat': np.linspace(-89.5, 89.5, 180),
         'lon': np.linspace(-179.5, 179.5, 360),
         'time': [datetime(2000, x, 1) for x in range(1, 7)]})
     actual = subset.subset_temporal(dataset, '2000-01-10, 2000-04-01')
     expected = xr.Dataset({
         'first': (['lat', 'lon', 'time'], np.ones([180, 360, 3])),
         'second': (['lat', 'lon', 'time'], np.ones([180, 360, 3])),
         'lat': np.linspace(-89.5, 89.5, 180),
         'lon': np.linspace(-179.5, 179.5, 360),
         'time': [datetime(2000, x, 1) for x in range(2, 5)]})
     assert_dataset_equal(expected, actual)
Esempio n. 6
0
 def test_subset_temporal(self):
     # Test general functionality
     dataset = xr.Dataset({
         'first': (['lat', 'lon', 'time'], np.ones([180, 360, 6])),
         'second': (['lat', 'lon', 'time'], np.ones([180, 360, 6])),
         'lat':
         np.linspace(-89.5, 89.5, 180),
         'lon':
         np.linspace(-179.5, 179.5, 360),
         'time': [datetime(2000, x, 1) for x in range(1, 7)]
     })
     actual = subset.subset_temporal(dataset, '2000-01-10, 2000-04-01')
     expected = xr.Dataset({
         'first': (['lat', 'lon', 'time'], np.ones([180, 360, 3])),
         'second': (['lat', 'lon', 'time'], np.ones([180, 360, 3])),
         'lat':
         np.linspace(-89.5, 89.5, 180),
         'lon':
         np.linspace(-179.5, 179.5, 360),
         'time': [datetime(2000, x, 1) for x in range(2, 5)]
     })
     assert_dataset_equal(expected, actual)