Esempio n. 1
0
def test_extinction(rerun=0,measure=0,nsys=10,show=0):
    #Comparison between competitive, trophic, disordered
    path=Path('test_extinction')
    try:
        if not os.listdir(path):
            rerun=1
    except:
        rerun =1
    if rerun:
        #If not already run before
        kwargs={}
        prm=deepcopy(dft_prm)



        loop(path=path,axes=axes,check_key=0,print_msg=1,tmax=500000,tsample=10000.,
            #keep='all',
            parameters=prm,dynamics=dft_dyn,
            **kwargs )

    if rerun or measure:
        rebuild_filelist(path)
        make_measures(path,use_measures=['usual','effective','abundance',
            'matrix',
            'removal',
            'testcavity',
            measure_cavity,
            ])

    if not show:
        return

    axes=['n_shape']

    measures=open_measures(path)
    measures=measures[measures['avgN']!=0]
    show_hist(measures=measures,axes=axes, values=['n_abundance'] )
    from cavity import cavity_distri
    xs=np.linspace(0,0.5,100)
    sigma,mu,gamma=[measures['n_couplings_'+z].mean() for z in ('sigma', 'mu','gamma')  ]
    dist=cavity_distri(S=2000,sigma=sigma,sigma_k=0,mu=mu,gamma=gamma)
    plot(xs,[dist(x) for x in xs],hold=1,linewidth=2 )
    plt.xlabel(r'Abundance $n_i$')


    plot_main(measures=measures,axes=axes)
    plot_cavity(measures=measures, axes=axes,)
Esempio n. 2
0
def intersection(rerun=1, measure=0, nsys=100, show=0):
    #Comparison between competitive trophic
    path = Path('interp_intersection')
    #(model_resource_generalists, {'vars':('R','X'), 'S':6, 'R':np.logspace(.8,.81,5), 'X':np.linspace(.9909,.991,5), 'sigma_rho':.25 }  ),
    #(model_trophic_satur,  {'vars':('m0','e'),'sigma_k':0.05,'S':2000, 'm0':np.linspace(12.1,12.2,6),'e':np.linspace(0.01,.03,11),'s0':2, } ),

    kwargs = {}
    prm = deepcopy(dft_prm)
    kwargs['r_shape'] = (6, )
    kwargs['n_shape'] = (6, )
    kwargs['r_std'] = 0.25
    cmean = prm['consumption']['mean']
    prm['consumption']['save'] = False
    prm['r']['save'] = False
    X = 0.991
    kwargs['consumption_std'] = np.sqrt(cmean**2 * (1 / X - 1))

    axes = [('sys', range(nsys))]

    if rerun:
        loop(
            path=path,
            axes=axes,
            check_key=0,
            print_msg=1,
            converge=1,
            tmax=500000,
            tsample=15000.,
            #keep='all',
            parameters=prm,
            dynamics=dft_dyn,
            **kwargs)

    if rerun or measure:
        rebuild_filelist(path)
        make_measures(path,
                      use_measures=[
                          'usual',
                          'effective',
                          'abundance',
                          measure_cavity,
                      ],
                      update_prev=0)

    measures = open_measures(path)
    kwargs = {}
    show_hist(measures=measures,
              axes=['n_shape'],
              values=['n_abundance'],
              log='y',
              bins=30)
    from cavity import cavity_distri
    xs = np.linspace(0, 0.5, 100)
    sigma, mu, gamma = [
        measures['n_couplings_' + z].mean() for z in ('sigma', 'mu', 'gamma')
    ]
    dist = cavity_distri(S=2000, sigma=sigma, sigma_k=0, mu=mu, gamma=gamma)
    plot(xs, [dist(x) for x in xs], hold=1, linewidth=2)
    plt.xlabel(r'Abundance $n_i$')

    plt.show()
Esempio n. 3
0
def gamma_role(rerun=0, measure=0, nsys=10, show=0):
    #Comparison between competitive, trophic, disordered
    path = Path('interp_gamma_cavity')
    try:
        if not os.listdir(path):
            rerun = 1
    except:
        rerun = 1
    if rerun:
        #If not already run before
        kwargs = {}
        prm = deepcopy(dft_prm)

        prm['fluxes'] = {
            'type': 'matrix',
            'variables': [('n', 'com'), ('n', 'com')],
            'role': 'fluxes',
            'save': False,
            'mean': 50. / 1600.,
            'std': 0,
            'sign': 1,
        }
        prm['commtroph'] = {
            'type': 'matrix',
            'variables': [('n', 'com'), ('n', 'com')],
            'role': 'interactions',
            'structure': 'trophic',
            'requires': ['fluxes'],
            #'efficiency':0.724,
            'efficiency': 0.6,
            'ordered': 0,
            'dynamics': None,
        }

        prm['community'].update({
            #'distribution':'exponential'
        })

        #specs=[ ((16,),None,'nlv'),((5625,),'nlv',None) ][1:]
        specs = [((300, ), None, 'nlv'), ((400, ), None, 'nlv'),
                 ((600, ), None, 'nlv'), ((1600, ), 'nlv', None)]  #[:-1]
        axes = [(('n_shape', 'commtroph_dynamics', 'community_dynamics'),
                 specs), ('sys', range(10))]

        loop(
            path=path,
            axes=axes,
            check_key=0,
            print_msg=1,
            tmax=500000,
            tsample=10000.,
            #keep='all',
            parameters=prm,
            dynamics=dft_dyn,
            **kwargs)

    if rerun or measure:
        rebuild_filelist(path)
        make_measures(path,
                      use_measures=[
                          'usual', 'effective', 'abundance', 'matrix',
                          measure_cavity, 'testcavity'
                      ])  #,'trophic','assembly_corr'] )

    if not show:
        return

    axes = ['n_shape']

    measures = open_measures(path)
    measures = measures[measures['avgN'] != 0]
    show_hist(measures=measures, axes=axes, values=['n_abundance'])
    from cavity import cavity_distri
    xs = np.linspace(0, 0.5, 100)
    sigma, mu, gamma = [
        measures['n_couplings_' + z].mean() for z in ('sigma', 'mu', 'gamma')
    ]
    dist = cavity_distri(S=2000, sigma=sigma, sigma_k=0, mu=mu, gamma=gamma)
    plot(xs, [dist(x) for x in xs], hold=1, linewidth=2)
    plt.xlabel(r'Abundance $n_i$')

    plot_main(measures=measures, axes=axes)
    plot_cavity(
        measures=measures,
        axes=axes,
    )

    if 0:
        plot_data(
            measures=measures,
            axes=axes,
            #split_by=['community_symmetry'],
            values=[('press', {
                'style': 'plot',
                'linewidth': 2
            }), ('n_matrix_press', {
                'style': 'scatter'
            })],
            hold=1)
        plt.ylabel(r'Response to press$')
        plt.xlabel(r'Pool size $S$')
        #show_data(measures=measures,axes=axes, values= ['n_%alive','phi','avgN','stdN','n_biomass','n_biomass_std','n_interactions_mu' ,'n_interactions_sigma'])

    if 0:
        compare = {
            'phi': 'n_%alive',
            'avgN': 'n_biomass',
            'stdN': 'n_biomass_std',
            'press': 'n_matrix_press',
        }
        for trait in ('phi', 'avgN', 'stdN', 'press'):
            plot_data(measures=measures,
                      axes=axes,
                      hold=1,
                      newfig=1,
                      title=trait,
                      values=[(trait, {
                          'style': 'plot',
                          'log': 'x'
                      }), (compare[trait], {
                          'style': 'scatter'
                      })])

    plt.show()
Esempio n. 4
0
def intersection(path=Path('interp_intersection'),
                 rerun=0,
                 nsys=10,
                 measure=0,
                 show=0,
                 hold=0):
    #Comparison between competitive, trophic

    if 0:
        compare_prms_models([
            (model_trophic_satur, {
                'vars': ('m0', 'e'),
                'm0': np.linspace(20, 20.1, 10),
                'e': np.linspace(0, 0.001, 10)[1:-1],
                'S': 100,
                's0': 0.,
                'sigma_k': .3
            }),
        ],
                            mode='scatter')
    try:
        if not os.listdir(path):
            rerun = 1
    except:
        rerun = 1
    if rerun:
        #If not already run before
        kwargs = {}
        prm = deepcopy(dft_prm)

        #(model_trophic_satur,  {'vars':('m0','e'),'m0':np.linspace(20,20.1,10),'e':np.linspace(0,0.001,10)[1:-1],
        #'S':100,'s0':1.,'sigma_k':.3 } ),
        prm['fluxes'] = {
            'type': 'matrix',
            'structure': 'random',
            #'distribution':'exponential',
            'variables': [('n', 'com'), ('n', 'com')],
            'role': 'fluxes',
            'save': False,
            'sign': 1,
            'mean': 20. / 100.,
            'std': 1. / 100,
        }
        prm['commtroph'] = {
            'type': 'matrix',
            'variables': [('n', 'com'), ('n', 'com')],
            'role': 'interactions',
            'structure': 'trophic',
            'requires': ['fluxes'],
            'efficiency': 0.,
            'ordered': 0,
            'dynamics': None,
            'diagonal': 0,
            'mean': 1,
        }

        prm['community'].update({
            'mean': 10.,
            'std': 1.,
            'symmetry': -1.,
            'diagonal': 0,
        })

        prm['growth']['std'] = 0
        prm['n']['shape'] = (100, )

        specs = [(None, 'nlv'), ('nlv', None)]
        axes = [(('commtroph_dynamics', 'community_dynamics'), specs[1:]),
                ('sys', range(nsys))]

        loop(path=path,
             axes=axes,
             check_key=0,
             print_msg=1,
             tmax=500000,
             tsample=10000.,
             converge=1,
             parameters=prm,
             dynamics=dft_dyn,
             **kwargs)

    if rerun or measure:
        rebuild_filelist(path)
        make_measures(
            path,
            use_measures=[
                'usual',
                'effective',
                'abundance',
                #'matrix',
                measure_cavity,  #'testcavity'
            ])  #,'trophic','assembly_corr'] )

    if not show:
        return

    axes = ['commtroph_dynamics']

    dico = {
        'commtroph_dynamics': 'community',
        0: 'competition',
        1: 'predation',
        'n_abundance': 'Species abundance'
    }
    measures = open_measures(path)
    measures['commtroph_dynamics'][measures['commtroph_dynamics'].isnull()] = 0
    measures['commtroph_dynamics'][measures['commtroph_dynamics'] == 'nlv'] = 1

    hists = show_hist(measures=measures,
                      axes=axes,
                      values=['n_abundance'],
                      dictionary=dico,
                      log='',
                      bins=30)
    from cavity import cavity_distri
    xs = np.linspace(0, np.max([np.max(z) for z in measures['n_abundance']]),
                     100)
    sigma, mu, gamma = [
        measures['n_couplings_' + z].mean() for z in ('sigma', 'mu', 'gamma')
    ]
    #sigma,mu,gamma=1,10,-1
    dist = cavity_distri(S=2000,
                         sigma=sigma,
                         sigma_k=measures['n_capacity_std'].mean(),
                         mu=mu,
                         gamma=gamma)
    plot(xs, [dist(x) for x in xs], hold=1, linewidth=2, log='')
    #plt.xlabel(r'Abundance $n_i$')
    # print np.sum(hists['n_abundance'][1][1:])*1./np.sum(hists['n_abundance'][1]),np.sum([dist(x) for x in xs[:-1]]*(xs[1:]-xs[:-1])  )
    # plt.bar(0,np.sum(hists['n_abundance'][1][1])*(1-np.sum([dist(x) for x in xs[:-1]]*(xs[1:]-xs[:-1])  )), width=0.01 )

    #plot_main(measures=measures,axes=axes)
    #plot_cavity(measures=measures, axes=axes,)

    if not hold:
        plt.show()
Esempio n. 5
0
def ordering(path=Path('ordering'),
             mode='dft',
             struct='all',
             rerun=0,
             measure=0,
             nsys=3,
             sysmin=0,
             show=0,
             funcresp=False,
             **kw):

    if struct == 'all':
        struct = [
            'triangular', 'nested', 'bipartite', 'scalefree', 'assortativity',
            'clustering', 'connectivity'
        ]
    if hasattr(struct, '__iter__'):
        for st in struct:
            ordering(path=path,
                     mode=mode,
                     struct=st,
                     rerun=rerun,
                     measure=0,
                     nsys=nsys,
                     sysmin=sysmin,
                     show=0,
                     funcresp=funcresp)
        ordering(path=path,
                 mode=mode,
                 struct=None,
                 rerun=0,
                 measure=measure,
                 nsys=nsys,
                 sysmin=sysmin,
                 show=show,
                 funcresp=funcresp)
        return

    if mode != 'dft':
        path = Path(path.strip() + '_{}'.format(mode))
    try:
        if not os.listdir(str(path)):
            rerun = 1
    except OSError as e:
        print e
        rerun = 1
    kwargs = {}
    prm = deepcopy(dft_prm)
    prm['growth']['std'] = 0.25
    prm['n']['shape'] = (120, )
    prm['community']['stdrel'] = .3
    prm['community']['diagonal'] = 0
    prm['community']['structure'] = 'random'
    prm['edges'] = {
        'type': 'matrix',
        'variables': [('n', 'com'), ('n', 'com')],
        'mode': 'network',
        'connectivity': .2,
        'role': 'edges',
        'save': False,
        'structure': 'random',
    }

    if funcresp:
        prm['threshold'] = {
            'type': 'matrix',
            'variables': ['n'],
            'dynamics': 'nlv',
            'role': 'threshold',
            'mean': 5.,
            'std': 0.,
            'sign': 1,
        }
        dyn = {
            'nlv': {
                'type': 'simplefr',
                'variables': [
                    ('n', 'com'),
                ],
            },
        }
    else:
        dyn = deepcopy(dft_dyn)

    if mode == 'competition':
        prm['community']['mean'] = -0.04
        prm['community']['symmetry'] = .9
        prm['growth']['sign'] = 1

    elif mode == 'predation':

        prm['final'] = prm.pop('community')

        prm['community'] = {
            'type': 'matrix',
            'variables': [('n', 'com'), ('n', 'com')],
            'role': 'fluxes',
            'mean': 0.05,
            'stdrel': .3,
            'save': False,
        }

        prm['final']['requires'] = ['community']
        prm['final']['efficiency'] = 0.2
        prm['final']['structure'] = 'trophic'
        prm['final']['ordered'] = 0
        prm['final'].pop('symmetry', None)
        prm['growth']['sign'] = 0

    elif mode == 'mutualism':
        if not funcresp:
            prm['community']['rowmax'] = 0.5
        else:
            prm['community']['mean'] = 0.05

        prm['community']['symmetry'] = 0.3
        prm['growth']['sign'] = 0
        #prm['growth']['std']=0.25

    prm['community']['requires'] = ['edges']
    prm['community']['edgefrom'] = 'edges'

    order = np.linspace(0, 1, 11)
    axes = []
    if struct == 'nested':
        prm['edges']['structure'] = 'nested'
        #prm['community']['connectivity']=.6
        axes = [
            ('edges_nestedness', order),
        ]
    elif struct == 'triangular':
        prm['edges']['structure'] = 'triangular'
        #prm['community']['connectivity']=.6
        axes = [
            ('edges_triangular', order[6:]),
        ]

    elif struct == 'bipartite':
        prm['edges']['structure'] = 'multipartite'
        axes = [
            ('edges_partition', order),
        ]
    elif struct == 'scalefree':
        prm['edges']['structure'] = 'barabasi'
        axes = [
            ('edges_order', order),
        ]
        prm['edges']['connectivity'] = prm['edges']['connectivity'] / 3.
        prm['community']['mean'] = prm['community']['mean'] * 3.
    elif struct == 'assortativity':
        axes = [
            ('edges_assortativity', np.linspace(-1, 1, 2 * len(order))),
        ]
    elif struct == 'clustering':
        axes = [
            ('edges_clustering', np.linspace(-1, 1, 2 * len(order))),
        ]
    elif struct == 'connectivity':
        axes = [
            ('edges_connectivity', np.linspace(0.05, 1, len(order))),
        ]

    elif not struct is None:

        raise Exception('Unknown structure: {}'.format(struct))

    axes += [('sys', range(sysmin, nsys + sysmin))]

    if not struct is None:
        axes[0] = (axes[0][0], 'community_order'), zip(axes[0][1],
                                                       np.abs(axes[0][1]))
        kwargs['community_label'] = struct

    if rerun:
        loop(path=path,
             axes=axes,
             check_key=0,
             print_msg=1,
             tmax=500000,
             ftol=0.0002,
             tsample=10000.,
             parameters=prm,
             dynamics=dyn,
             converge=1,
             **kwargs)

    if rerun or measure:
        rebuild_filelist(path)
        make_measures(
            path,
            use_measures=[
                'usual',
                'effective',
                ifelse(funcresp, measure_funcresp, 'usual'),
                ifelse(funcresp, measure_funcresp_cavity, measure_cavity),
                #'matrix',
                #'degree',
                #measure_ordered,
                #measure_ordered_cavity,
                # measure_groups,measure_groups_cavity,
                measure_cavity_compare,
                #'abundance',
            ],

            # read_filter=ifelse( struct is None,None,('community_label','==',struct)),
            death=10**-10)

    if not show:
        return

    axes = ['community_order']
    split_by = ['community_label']

    measures = open_measures(path)

    dico = {
        'community_edgemean': r'$s$',
        'n_shape': r'$S$',
        'community_nestedness': 'nestedness',
        'community_partition': 'partition',
        'edges_structure': 'network',
        'community_structure': 'structure',
        'cavity_compare': 'Distance to reference',
        'community_order': 'Ordering',
        'multipartite': 'bipartite',
        'random': 'scale-free'
    }

    plot_modelprm(measures=measures,
                  axes=axes,
                  split_by=split_by,
                  dictionary=dico)

    #plt.show()

    plot_main(measures=measures,
              axes=axes,
              split_by=split_by,
              dictionary=dico,
              aggregator='mean',
              log='')

    plot_data(measures=measures,
              axes=axes,
              split_by=split_by,
              hold=1,
              values=[('n_couplings_n_std', {
                  'style': 'plot'
              }), ('n_couplings_n_mean', {
                  'style': 'plot',
                  'color': 'r'
              })])

    plot_data(measures=measures,
              axes=axes,
              split_by=split_by,
              hold=1,
              values=['n_connectivity'])

    if 0:
        plot_data(measures=measures,
                  axes=axes,
                  split_by=split_by,
                  hold=1,
                  values=['n_degree_std'])
        plot_data(
            measures=measures,
            axes=axes,
            split_by=split_by,
            hold=1,
            values=[('n_biomass_tot', {
                'style': 'scatter'
            }), ('totN', {
                'style': 'plot'
            })],
            dictionary=dico,
            title='{}: Total biomass'.format(mode.capitalize()),
        )

    plot_data(
        measures=measures,
        axes=axes,
        split_by=split_by,
        hold=1,
        values=['cavity_compare'],
        dictionary=dico,
        title=mode.capitalize(),
    )
    plt.ylim(ymin=0, ymax=.5)

    if 0:
        #ABUNDANCE HIST
        if struct != 'all':
            measures = measures[measures['community_structure'] == struct]
        show_hist(measures=measures[measures['community_order'] == 1],
                  axes=axes,
                  values=['n_abundance'],
                  dictionary=dico,
                  log='y')

        sigma, mu, gamma = [
            measures['n_couplings_' + z].mean()
            for z in ('sigma', 'mu', 'gamma')
        ]
        zeta = measures['n_capacity_std'].mean()
        from cavity import cavity_distri
        print sigma, mu, gamma
        dist = cavity_distri(S=measures['n_shape'][0][0],
                             sigma=sigma,
                             sigma_k=zeta,
                             mu=mu,
                             gamma=gamma)
        xs = np.linspace(0,
                         np.max([np.max(z) for z in measures['n_abundance']]),
                         100)
        plot(xs, [dist(x) for x in xs], hold=1, linewidth=2, log='y')

    if not hold:
        plt.show()