Esempio n. 1
0
            if printtofile:
                fig.savefig('SICNH_seascyc_OBS.pdf')

            fig = plt.figure()
            plt.plot(hadsivcnh,'k'); plt.plot(hadsivpnh,'k--')
            plt.plot(cansivcnh,'g'); plt.plot(cansivpnh,'g--')
            plt.legend(('HadISST 1979-89','HadISST 2002-11',
                        'CanESM2 1979-89','CanESM2 2002-12'),'lower left')
            plt.title('Total Arctic Sea Ice Volume')
            if printtofile:
                fig.savefig('SICNHTotVol_seascyc_OBS.pdf')    

        else:

            # calc average SST near sea-ice (where exactly?)
            hadsstc60N = cutl.polar_mean_areawgted3d(hadsicc,lat,lon,latlim=latlim)
            hadsstp60N = cutl.polar_mean_areawgted3d(hadsicp,lat,lon,latlim=latlim)
            hurrsstc60N = cutl.polar_mean_areawgted3d(hurrsicc,lat,lon,latlim=latlim)
            hurrsstp60N = cutl.polar_mean_areawgted3d(hurrsicp,lat,lon,latlim=latlim)
            cansstc60N = cutl.polar_mean_areawgted3d(cansicc,lat,lon,latlim=latlim)
            cansstp60N = cutl.polar_mean_areawgted3d(cansicp,lat,lon,latlim=latlim)

            fig = plt.figure()
            plt.plot(hadsstc60N,'k'); plt.plot(hadsstp60N,'k--')
            #plt.plot(hurrsstc60N,'b'); plt.plot(hurrsstp60N,'b--') # SCREWY
            plt.plot(cansstc60N,'g'); plt.plot(cansstp60N,'g--')
            plt.legend(('HadISST 1979-89','HadISST 2002-11',
                        'CanESM2 1979-89','CanESM2 2002-12'),'lower center')
            plt.title('Average SST North of ' + str(latlim) + 'N')
            if printtofile:
                fig.savefig('SST' + str(latlim) + 'N_seascyc_OBS.pdf')
Esempio n. 2
0
lat = cnc.getNCvar(fnamec,'lat')
lon = cnc.getNCvar(fnamec,'lon')

fldcclim,fldcstd = cutl.climatologize3d(fldc)
fldp1clim,fldp1std = cutl.climatologize3d(fldp1)
fldp2clim,fldp2std = cutl.climatologize3d(fldp2)
fldp3clim,fldp3std = cutl.climatologize3d(fldp3)

if avgtype == 'gt' + str(latlim) + 'Nmasked':
    print avgtype + '!!!'
    fldc = ma.masked_where(fldc==0,fldc)
    fldp1 = ma.masked_where(fldp1==0,fldp1)
    fldp2 = ma.masked_where(fldp2==0,fldp2)
    fldp3 = ma.masked_where(fldp3==0,fldp3)

fldcpm = cutl.polar_mean_areawgted3d(fldc,lat,lon,latlim=latlim)
fldp1pm = cutl.polar_mean_areawgted3d(fldp1,lat,lon,latlim=latlim)
fldp2pm = cutl.polar_mean_areawgted3d(fldp2,lat,lon,latlim=latlim)
fldp3pm = cutl.polar_mean_areawgted3d(fldp3,lat,lon,latlim=latlim)

# calculate polar mean statistics

tstatp1 = np.arange(1,13,dtype=float)*0
pvalp1 = np.arange(1,13,dtype=float)*0
tstatp2 = np.arange(1,13,dtype=float)*0
pvalp2 = np.arange(1,13,dtype=float)*0
tstatp3 = np.arange(1,13,dtype=float)*0
pvalp3 = np.arange(1,13,dtype=float)*0

for midx in range(0,12):
    
Esempio n. 3
0
# # # ##################### Do calculations #################
# annual time-series (3d)
anntsc = cutl.annualize_monthlyts(fldc)
anntsp1 = cutl.annualize_monthlyts(fldp1)
anntsp2 = cutl.annualize_monthlyts(fldp2)
anntsp3 = cutl.annualize_monthlyts(fldp3)

# annual global mean time-series
anngmc = cutl.global_mean_areawgted3d(anntsc, lat, lon)
anngmp1 = cutl.global_mean_areawgted3d(anntsp1, lat, lon)
anngmp2 = cutl.global_mean_areawgted3d(anntsp2, lat, lon)
anngmp3 = cutl.global_mean_areawgted3d(anntsp3, lat, lon)

# annual polar (>=60N) mean time-series
annpmc = cutl.polar_mean_areawgted3d(anntsc, lat, lon)
annpmp1 = cutl.polar_mean_areawgted3d(anntsp1, lat, lon)
annpmp2 = cutl.polar_mean_areawgted3d(anntsp2, lat, lon)
annpmp3 = cutl.polar_mean_areawgted3d(anntsp3, lat, lon)

# global mean annual mean time mean
anngmtmc = np.mean(anngmc)
anngmtmp1 = np.mean(anngmp1)
anngmtmp2 = np.mean(anngmp2)
anngmtmp3 = np.mean(anngmp3)


# monthly global mean time-series
gmc = cutl.global_mean_areawgted3d(fldc, lat, lon)
gmp1 = cutl.global_mean_areawgted3d(fldp1, lat, lon)
gmp2 = cutl.global_mean_areawgted3d(fldp2, lat, lon)
Esempio n. 4
0
            # calc sea ice area
            # mult fraction by grid cell area & sum
            areas = cutl.calc_cellareas(lat,lon)
            careasp = np.tile(areas,(cfldp.shape[0],1,1)) # need one per time
            careasc = np.tile(areas,(cfldc.shape[0],1,1)) # need one per month (climo)
            cfldc = cfldc*careasc
            cfldp = cfldp*careasp

            cfldcall[eii-1,:] = np.sum(np.sum(cfldc[:,lat>0,:],2),1) # NH total ice area
            cfldpall[eii-1,:] = np.sum(np.sum(cfldp[:,lat>0,:],2),1) # NH total ice area
        else:
            latlim = 60 # 60N
            # just do polar mean for now
            print 'doing polar mean of ' + cfield
            cfldcall[eii-1,:] = cutl.polar_mean_areawgted3d(cfldc,lat,lon,latlim=latlim)
            cfldpall[eii-1,:] = cutl.polar_mean_areawgted3d(cfldp,lat,lon,latlim=latlim)
            
        
# Now get obs for sea ice
if cfield=='sic': # sea ice concentration

    fhadsicc = basepath2 + 'HadISST/hadisst1.1_bc_128_64_1870_2013m03_sicn_' +\
              ctimstr + 'climo.nc' #SICN, 129x64 CLIMO
    fhadsicp = basepath2 + 'HadISST/hadisst1.1_bc_128_64_1870_2013m03_sicn_1870010100-2013030100.nc'

    fnsidcsicc = basepath2 + 'NSIDC/nsidc_bt_128x64_1978m11_2011m12_sicn_' + ctimstr + 'climo.nc'
    fnsidcsicp = basepath2 + 'NSIDC/nsidc_bt_128x64_1978m11_2011m12_sicn_1978111600-2011121612.nc' #SICN, 129x64
    # nsidc_bt_128x64_1978m11_2011m12_sicn_1978111600-2011121612.nc