Esempio n. 1
0
    def test_FISTA_Denoising(self):
        print ("FISTA Denoising Poisson Noise Tikhonov")
        # adapted from demo FISTA_Tikhonov_Poisson_Denoising.py in CIL-Demos repository
        #loader = TestData(data_dir=os.path.join(sys.prefix, 'share','ccpi'))
        loader = TestData()
        data = loader.load(TestData.SHAPES)
        ig = data.geometry
        ag = ig
        N=300
        # Create Noisy data with Poisson noise
        scale = 5
        n1 = TestData.random_noise( data.as_array()/scale, mode = 'poisson', seed = 10)*scale
        noisy_data = ImageData(n1)

        # Regularisation Parameter
        alpha = 10

        # Setup and run the FISTA algorithm
        operator = Gradient(ig)
        fid = KullbackLeibler(b=noisy_data)
        reg = FunctionOperatorComposition(alpha * L2NormSquared(), operator)

        x_init = ig.allocate()
        fista = FISTA(x_init=x_init , f=reg, g=fid)
        fista.max_iteration = 3000
        fista.update_objective_interval = 500
        fista.run(verbose=True)
        rmse = (fista.get_output() - data).norm() / data.as_array().size
        print ("RMSE", rmse)
        self.assertLess(rmse, 4.2e-4)
Esempio n. 2
0
 def setup(data, noise):
     if noise == 's&p':
         n1 = TestData.random_noise(data.as_array(), mode = noise, salt_vs_pepper = 0.9, amount=0.2, seed=10)
     elif noise == 'poisson':
         scale = 5
         n1 = TestData.random_noise( data.as_array()/scale, mode = noise, seed = 10)*scale
     elif noise == 'gaussian':
         n1 = TestData.random_noise(data.as_array(), mode = noise, seed = 10)
     else:
         raise ValueError('Unsupported Noise ', noise)
     noisy_data = ig.allocate()
     noisy_data.fill(n1)
 
     # Regularisation Parameter depending on the noise distribution
     if noise == 's&p':
         alpha = 0.8
     elif noise == 'poisson':
         alpha = 1
     elif noise == 'gaussian':
         alpha = .3
         # fidelity
     if noise == 's&p':
         g = L1Norm(b=noisy_data)
     elif noise == 'poisson':
         g = KullbackLeibler(b=noisy_data)
     elif noise == 'gaussian':
         g = 0.5 * L2NormSquared(b=noisy_data)
     return noisy_data, alpha, g
# Regularisation Parameter depending on the noise distribution
if noise == 's&p':
    alpha = 0.8
elif noise == 'poisson':
    alpha = .3
elif noise == 'gaussian':
    alpha = .2

beta = 2 * alpha

# Fidelity
if noise == 's&p':
    f3 = L1Norm(b=noisy_data)
elif noise == 'poisson':
    f3 = KullbackLeibler(noisy_data)
elif noise == 'gaussian':
    f3 = 0.5 * L2NormSquared(b=noisy_data)

if method == '0':

    # Create operators
    op11 = Gradient(ig)
    op12 = Identity(op11.range_geometry())

    op22 = SymmetrizedGradient(op11.domain_geometry())
    op21 = ZeroOperator(ig, op22.range_geometry())

    op31 = Identity(ig, ag)
    op32 = ZeroOperator(op22.domain_geometry(), ag)
Esempio n. 4
0
    def test_KullbackLeibler(self):
        print("test_KullbackLeibler")

        M, N, K = 2, 3, 4
        ig = ImageGeometry(N, M, K)

        u1 = ig.allocate('random_int', seed=500)
        g1 = ig.allocate('random_int', seed=100)
        b1 = ig.allocate('random_int', seed=1000)

        # with no data
        try:
            f = KullbackLeibler()
        except ValueError:
            print('Give data b=...\n')

        print('With negative data, no background\n')
        try:
            f = KullbackLeibler(b=-1 * g1)
        except ValueError:
            print('We have negative data\n')

        f = KullbackLeibler(b=g1)

        print('Check KullbackLeibler(x,x)=0\n')
        self.assertNumpyArrayAlmostEqual(0.0, f(g1))

        print('Check gradient .... is OK \n')
        res_gradient = f.gradient(u1)
        res_gradient_out = u1.geometry.allocate()
        f.gradient(u1, out=res_gradient_out)
        self.assertNumpyArrayAlmostEqual(res_gradient.as_array(), \
                                                res_gradient_out.as_array(),decimal = 4)

        print('Check proximal ... is OK\n')
        tau = 400.4
        res_proximal = f.proximal(u1, tau)
        res_proximal_out = u1.geometry.allocate()
        f.proximal(u1, tau, out=res_proximal_out)
        self.assertNumpyArrayAlmostEqual(res_proximal.as_array(), \
                                                res_proximal_out.as_array(), decimal =5)

        print('Check conjugate ... is OK\n')

        if (1 - u1.as_array()).all():
            print('If 1-x<=0, Convex conjugate returns 0.0')

        self.assertNumpyArrayAlmostEqual(0.0, f.convex_conjugate(u1))

        print('Check KullbackLeibler with background\n')
        eta = b1

        f1 = KullbackLeibler(b=g1, eta=b1)

        tmp_sum = (u1 + eta).as_array()
        ind = tmp_sum >= 0
        tmp = scipy.special.kl_div(f1.b.as_array()[ind], tmp_sum[ind])
        self.assertNumpyArrayAlmostEqual(f1(u1), numpy.sum(tmp))

        res_proximal_conj_out = u1.geometry.allocate()
        proxc = f.proximal_conjugate(u1, tau)
        f.proximal_conjugate(u1, tau, out=res_proximal_conj_out)
        print(res_proximal_conj_out.as_array())
        print(proxc.as_array())
        numpy.testing.assert_array_almost_equal(
            proxc.as_array(), res_proximal_conj_out.as_array())
Esempio n. 5
0
    asm_attn = pet.AcquisitionSensitivityModel(bin_eff)
    return asm_attn


# In[ ]:

# set up the acquisition model
am = pet.AcquisitionModelUsingRayTracingMatrix()
# ASM norm already there
asm_attn = get_asm_attn(acq_data, attns, am)
# Get ASM dependent on attn and/or norm
asm = pet.AcquisitionSensitivityModel(asm_norm, asm_attn)
am.set_acquisition_sensitivity(asm)
am.set_up(acq_data, image)

f_numba = KullbackLeibler(b=acq_data, eta=rand, use_numba=True)
f_numpy = KullbackLeibler(b=acq_data, eta=rand, use_numba=False)

fake_data = am.direct(image)
t0 = time.time()
res_numba = f_numba(fake_data)
t1 = time.time()
dt_numba = t1 - t0

t0 = time.time()
res_numpy = f_numpy(fake_data)
t1 = time.time()
dt_numpy = t1 - t0
print("call took", t1 - t0)

print("numba {} {}s ".format(res_numba, dt_numba))
Esempio n. 6
0
plt.subplot(2, 1, 1)
plt.imshow(data.as_array())
plt.title('Ground Truth')
plt.colorbar()
plt.subplot(2, 1, 2)
plt.imshow(noisy_data.as_array())
plt.title('Noisy Data')
plt.colorbar()
plt.show()

# Regularisation Parameter
alpha = 10

# Setup and run the FISTA algorithm
operator = Gradient(ig)
fid = KullbackLeibler(noisy_data)


def KL_Prox_PosCone(x, tau, out=None):

    if out is None:
        tmp = 0.5 * ((x - fid.bnoise - tau) +
                     ((x + fid.bnoise - tau)**2 + 4 * tau * fid.b).sqrt())
        return tmp.maximum(0)
    else:
        tmp = 0.5 * ((x - fid.bnoise - tau) +
                     ((x + fid.bnoise - tau)**2 + 4 * tau * fid.b).sqrt())
        x.add(fid.bnoise, out=out)
        out -= tau
        out *= out
        tmp = fid.b * (4 * tau)
Esempio n. 7
0
def main():

    ###########################################################################
    # Parse input files
    ###########################################################################

    if trans_pattern is None:
        raise AssertionError("--trans missing")
    if sino_pattern is None:
        raise AssertionError("--sino missing")
    trans_files = sorted(glob(trans_pattern))
    sino_files = sorted(glob(sino_pattern))
    attn_files = sorted(glob(attn_pattern))
    rand_files = sorted(glob(rand_pattern))

    num_ms = len(sino_files)
    # Check some sinograms found
    if num_ms == 0:
        raise AssertionError("No sinograms found!")
    # Should have as many trans as sinos
    if num_ms != len(trans_files):
        raise AssertionError("#trans should match #sinos. "
                             "#sinos = " + str(num_ms) + ", #trans = " +
                             str(len(trans_files)))
    # If any rand, check num == num_ms
    if len(rand_files) > 0 and len(rand_files) != num_ms:
        raise AssertionError("#rand should match #sinos. "
                             "#sinos = " + str(num_ms) + ", #rand = " +
                             str(len(rand_files)))

    # For attn, there should be 0, 1 or num_ms images
    if len(attn_files) > 1 and len(attn_files) != num_ms:
        raise AssertionError("#attn should be 0, 1 or #sinos")

    ###########################################################################
    # Read input
    ###########################################################################

    if trans_type == "tm":
        trans = [reg.AffineTransformation(file) for file in trans_files]
    elif trans_type == "disp":
        trans = [
            reg.NiftiImageData3DDisplacement(file) for file in trans_files
        ]
    elif trans_type == "def":
        trans = [reg.NiftiImageData3DDeformation(file) for file in trans_files]
    else:
        raise error("Unknown transformation type")

    sinos_raw = [pet.AcquisitionData(file) for file in sino_files]
    attns = [pet.ImageData(file) for file in attn_files]
    rands = [pet.AcquisitionData(file) for file in rand_files]

    # Loop over all sinograms
    sinos = [0] * num_ms
    for ind in range(num_ms):
        # If any sinograms contain negative values
        # (shouldn't be the case), set them to 0
        sino_arr = sinos_raw[ind].as_array()
        if (sino_arr < 0).any():
            print("Input sinogram " + str(ind) +
                  " contains -ve elements. Setting to 0...")
            sinos[ind] = sinos_raw[ind].clone()
            sino_arr[sino_arr < 0] = 0
            sinos[ind].fill(sino_arr)
        else:
            sinos[ind] = sinos_raw[ind]
        # If rebinning is desired
        segs_to_combine = 1
        if args['--numSegsToCombine']:
            segs_to_combine = int(args['--numSegsToCombine'])
        views_to_combine = 1
        if args['--numViewsToCombine']:
            views_to_combine = int(args['--numViewsToCombine'])
        if segs_to_combine * views_to_combine > 1:
            sinos[ind] = sinos[ind].rebin(segs_to_combine, views_to_combine)
            # only print first time
            if ind == 0:
                print(f"Rebinned sino dimensions: {sinos[ind].dimensions()}")

    ###########################################################################
    # Initialise recon image
    ###########################################################################

    if initial_estimate:
        image = pet.ImageData(initial_estimate)
    else:
        # Create image based on ProjData
        image = sinos[0].create_uniform_image(0.0, (nxny, nxny))
        # If using GPU, need to make sure that image is right size.
        if use_gpu:
            dim = (127, 320, 320)
            spacing = (2.03125, 2.08626, 2.08626)
        # elif non-default spacing desired
        elif args['--dxdy']:
            dim = image.dimensions()
            dxdy = float(args['--dxdy'])
            spacing = (image.voxel_sizes()[0], dxdy, dxdy)
        if use_gpu or args['--dxdy']:
            image.initialise(dim=dim, vsize=spacing)
            image.fill(0.0)

    ###########################################################################
    # Set up resamplers
    ###########################################################################

    resamplers = [get_resampler(image, trans=tran) for tran in trans]

    ###########################################################################
    # Resample attenuation images (if necessary)
    ###########################################################################

    resampled_attns = None
    if len(attns) > 0:
        resampled_attns = [0] * num_ms
        # if using GPU, dimensions of attn and recon images have to match
        ref = image if use_gpu else None
        for i in range(len(attns)):
            # if we only have 1 attn image, then we need to resample into
            # space of each gate. However, if we have num_ms attn images, then
            # assume they are already in the correct position, so use None as
            # transformation.
            tran = trans[i] if len(attns) == 1 else None
            # If only 1 attn image, then resample that. If we have num_ms attn
            # images, then use each attn image of each frame.
            attn = attns[0] if len(attns) == 1 else attns[i]
            resam = get_resampler(attn, ref=ref, trans=tran)
            resampled_attns[i] = resam.forward(attn)

    ###########################################################################
    # Set up acquisition models
    ###########################################################################

    print("Setting up acquisition models...")
    if not use_gpu:
        acq_models = num_ms * [pet.AcquisitionModelUsingRayTracingMatrix()]
    else:
        acq_models = num_ms * [pet.AcquisitionModelUsingNiftyPET()]
        for acq_model in acq_models:
            acq_model.set_use_truncation(True)
            acq_model.set_cuda_verbosity(verbosity)

    # If present, create ASM from ECAT8 normalisation data
    asm_norm = None
    if norm_file:
        asm_norm = pet.AcquisitionSensitivityModel(norm_file)

    # Loop over each motion state
    for ind in range(num_ms):
        # Create attn ASM if necessary
        asm_attn = None
        if resampled_attns:
            asm_attn = get_asm_attn(sinos[ind], resampled_attns[i],
                                    acq_models[ind])

        # Get ASM dependent on attn and/or norm
        asm = None
        if asm_norm and asm_attn:
            if ind == 0:
                print("ASM contains norm and attenuation...")
            asm = pet.AcquisitionSensitivityModel(asm_norm, asm_attn)
        elif asm_norm:
            if ind == 0:
                print("ASM contains norm...")
            asm = asm_norm
        elif asm_attn:
            if ind == 0:
                print("ASM contains attenuation...")
            asm = asm_attn
        if asm:
            acq_models[ind].set_acquisition_sensitivity(asm)

        if len(rands) > 0:
            acq_models[ind].set_background_term(rands[ind])

        # Set up
        acq_models[ind].set_up(sinos[ind], image)

    ###########################################################################
    # Set up reconstructor
    ###########################################################################

    print("Setting up reconstructor...")

    # Create composition operators containing acquisition models and resamplers
    C = [
        CompositionOperator(am, res, preallocate=True)
        for am, res in zip(*(acq_models, resamplers))
    ]

    # Configure the PDHG algorithm
    if args['--normK'] and not args['--onlyNormK']:
        normK = float(args['--normK'])
    else:
        kl = [KullbackLeibler(b=sino, eta=(sino * 0 + 1e-5)) for sino in sinos]
        f = BlockFunction(*kl)
        K = BlockOperator(*C)
        # Calculate normK
        print("Calculating norm of the block operator...")
        normK = K.norm(iterations=10)
        print("Norm of the BlockOperator ", normK)
        if args['--onlyNormK']:
            exit(0)

    # Optionally rescale sinograms and BlockOperator using normK
    scale_factor = 1. / normK if args['--normaliseDataAndBlock'] else 1.0
    kl = [
        KullbackLeibler(b=sino * scale_factor, eta=(sino * 0 + 1e-5))
        for sino in sinos
    ]
    f = BlockFunction(*kl)
    K = BlockOperator(*C) * scale_factor

    # If preconditioned
    if precond:

        def get_nonzero_recip(data):
            """Get the reciprocal of a datacontainer. Voxels where input == 0
            will have their reciprocal set to 1 (instead of infinity)"""
            inv_np = data.as_array()
            inv_np[inv_np == 0] = 1
            inv_np = 1. / inv_np
            data.fill(inv_np)

        tau = K.adjoint(K.range_geometry().allocate(1))
        get_nonzero_recip(tau)

        tmp_sigma = K.direct(K.domain_geometry().allocate(1))
        sigma = 0. * tmp_sigma
        get_nonzero_recip(sigma[0])

        def precond_proximal(self, x, tau, out=None):
            """Modify proximal method to work with preconditioned tau"""
            pars = {
                'algorithm':
                FGP_TV,
                'input':
                np.asarray(x.as_array() / tau.as_array(), dtype=np.float32),
                'regularization_parameter':
                self.lambdaReg,
                'number_of_iterations':
                self.iterationsTV,
                'tolerance_constant':
                self.tolerance,
                'methodTV':
                self.methodTV,
                'nonneg':
                self.nonnegativity,
                'printingOut':
                self.printing
            }

            res, info = regularisers.FGP_TV(pars['input'],
                                            pars['regularization_parameter'],
                                            pars['number_of_iterations'],
                                            pars['tolerance_constant'],
                                            pars['methodTV'], pars['nonneg'],
                                            self.device)
            if out is not None:
                out.fill(res)
            else:
                out = x.copy()
                out.fill(res)
            out *= tau
            return out

        FGP_TV.proximal = precond_proximal
        print("Will run proximal with preconditioned tau...")

    # If not preconditioned
    else:
        sigma = float(args['--sigma'])
        # If we need to calculate default tau
        if args['--tau']:
            tau = float(args['--tau'])
        else:
            tau = 1 / (sigma * normK**2)

    if regularisation == 'none':
        G = IndicatorBox(lower=0)
    elif regularisation == 'FGP_TV':
        r_iterations = float(args['--reg_iters'])
        r_tolerance = 1e-7
        r_iso = 0
        r_nonneg = 1
        r_printing = 0
        device = 'gpu' if use_gpu else 'cpu'
        G = FGP_TV(r_alpha, r_iterations, r_tolerance, r_iso, r_nonneg,
                   r_printing, device)
    else:
        raise error("Unknown regularisation")

    if precond:

        def PDHG_new_update(self):
            """Modify the PDHG update to allow preconditioning"""
            # save previous iteration
            self.x_old.fill(self.x)
            self.y_old.fill(self.y)

            # Gradient ascent for the dual variable
            self.operator.direct(self.xbar, out=self.y_tmp)
            self.y_tmp *= self.sigma
            self.y_tmp += self.y_old

            self.f.proximal_conjugate(self.y_tmp, self.sigma, out=self.y)

            # Gradient descent for the primal variable
            self.operator.adjoint(self.y, out=self.x_tmp)
            self.x_tmp *= -1 * self.tau
            self.x_tmp += self.x_old

            self.g.proximal(self.x_tmp, self.tau, out=self.x)

            # Update
            self.x.subtract(self.x_old, out=self.xbar)
            self.xbar *= self.theta
            self.xbar += self.x

        PDHG.update = PDHG_new_update

    # Get filename
    outp_file = outp_prefix
    if descriptive_fname:
        if len(attn_files) > 0:
            outp_file += "_wAC"
        if norm_file:
            outp_file += "_wNorm"
        if use_gpu:
            outp_file += "_wGPU"
        outp_file += "_Reg-" + regularisation
        if regularisation == 'FGP_TV':
            outp_file += "-alpha" + str(r_alpha)
            outp_file += "-riters" + str(r_iterations)
        if args['--normK']:
            outp_file += '_userNormK' + str(normK)
        else:
            outp_file += '_calcNormK' + str(normK)
        if args['--normaliseDataAndBlock']:
            outp_file += '_wDataScale'
        else:
            outp_file += '_noDataScale'
        if not precond:
            outp_file += "_sigma" + str(sigma)
            outp_file += "_tau" + str(tau)
        else:
            outp_file += "_wPrecond"
        outp_file += "_nGates" + str(len(sino_files))
        if resamplers is None:
            outp_file += "_noMotion"

    pdhg = PDHG(f=f,
                g=G,
                operator=K,
                sigma=sigma,
                tau=tau,
                max_iteration=num_iters,
                update_objective_interval=update_obj_fn_interval,
                x_init=image,
                log_file=outp_file + ".log")

    def callback_save(iteration, objective_value, solution):
        """Callback function to save images"""
        if (iteration + 1) % save_interval == 0:
            out = solution if not nifti else reg.NiftiImageData(solution)
            out.write(outp_file + "_iters" + str(iteration + 1))

    pdhg.run(iterations=num_iters,
             callback=callback_save,
             verbose=True,
             very_verbose=True)

    if visualisations:
        # show reconstructed image
        out = pdhg.get_output()
        out_arr = out.as_array()
        z = out_arr.shape[0] // 2
        show_2D_array('Reconstructed image', out.as_array()[z, :, :])
        pylab.show()
Esempio n. 8
0
    #am_norm = PowerMethod(am, 20)[0]
    am_norm = np.sqrt(4479081.53395)

    # # PDHG without regularization

    # In[ ]:

    # reg parameter
    alpha = 0.001

    # explicit case

    # rescale KL
    # KL(lambda *x + eta, b) = lambda * KL(x + eta/lambda, b/lambda)
    f1 = ScaledFunction(
        KullbackLeibler(b=(1 / am_norm) * acq_data, eta=(1 / am_norm) * rand),
        am_norm)

    F = f1
    G = IndicatorBox(lower=0)

    # rescale operators
    am_rescaled = ScaledOperator(am, (1 / am_norm))

    K = am_rescaled

    # In[ ]:

    sigma = 1.0
    tau = 1.0
    pet.set_max_omp_threads(15)