Esempio n. 1
0
 def __init__(self, ctySize=1):
     self.exchange = ccxt.gdax(self.getConfig())
     self.market = self.exchange.market('BTC/EUR')
     self.account_id = '37a4a4f2-7188-44d5-857e-575ea110f9a5'
     self.reporter = None
     self.positionManager = None
     self.ctySize = ctySize
Esempio n. 2
0
    def _createExchangeObject(self, exchange):
        ''' Depricated ... now instantiating class using "eval" in __init__'''
        if exchange == "Binance":
            exchange = ccxt.binance()
        elif exchange == "Bitfinex":
            exchange = ccxt.bitfinex2()
        elif exchange == "Bitmex":
            exchange = ccxt.bitmex()
        elif exchange == "BitStamp":
            exchange = ccxt.binance()
        elif exchange == "Bittrex":
            exchange = ccxt.binance()
        elif exchange == "Bithumb":
            exchange = ccxt.bithumb()
        elif exchange == "CCTX":
            exchange = ccxt.cctx()
        elif exchange == "GDAX":
            exchange = ccxt.gdax()
        elif exchange == "HitBC":
            exchange = ccxt.hitbc()
        elif exchange == "Huobipro":
            exchange = ccxt.huobipro()
        elif exchange == "Kraken":
            exchange = ccxt.kraken()
        elif exchange == "OKEx":
            exchange = ccxt.okex()
        else:
            raise "Exception ExchangeCCXT::_createExchangeObject - ccxt Exchange not valid"

        return exchange
Esempio n. 3
0
 def __init__(self):
     self.api = gdax({
         'apiKey': getenv('gdax_api_key'),
         'secret': getenv('gdax_api_secret'),
         'password': getenv('gdax_api_passphrase')
     })
     self.accounts = pd.DataFrame(self.api.privateGetAccounts())
Esempio n. 4
0
def job():
    ##symbols = ['BCH/USD', 'ETH/USD', 'LTC/USD', 'DASH/USD']
    symbols = ['BCH/USD', 'LTC/USD', 'ETH/USD']
    pairs = [(r, s) for s in symbols for r in symbols if r is not s]
    gdax = ccxt.gdax({'password': '', 'apiKey': '', 'secret': ''})
    gdax.load_markets()
    bitfinex = ccxt.bitfinex({'apiKey': '', 'secret': ''})
    bitfinex.load_markets()
    print("Connected to exchanges")
    exchanges = [gdax, bitfinex]
    for r, s in pairs:
        print("Fetching values")
        asks, bids = {}, {}
        for x in exchanges:
            # TODO check if exchange supports symbol
            rPrice = x.fetch_ticker(r)
            sPrice = x.fetch_ticker(s)
            print(x.name, rPrice['ask'], rPrice['bid'])
            print(x.name, sPrice['bid'], sPrice['ask'])
            asks[x.name] = rPrice['ask'] / rPrice['bid']
            bids[x.name] = sPrice['bid'] / sPrice['ask']
        lowX = min(asks, key=asks.get)
        highX = max(bids, key=bids.get)
        print(r, s, bids[highX] / asks[lowX])
        if (bids[highX] / asks[lowX]) > 1.005:
            print("CONGRATS you found an opportunity")
            print("Short %s on %s, Long %s on %s" % (s, highX, r, lowX))
        time.sleep(1)
Esempio n. 5
0
def results(request):
    output = ""
    if request.method == 'POST':
        form = SimulationForm(request.POST)
        if form.is_valid():
            amount = form.cleaned_data['amount']
            base_currency = form.cleaned_data['base_currency']
            quote_currency = form.cleaned_data['quote_currency']
            duration = form.cleaned_data['duration']
            use_fees = form.cleaned_data['include_fees']
            sim = simulation.ArbitrageSimulation(
                ccxt.exmo(), ccxt.gdax(), amount,
                base_currency + "/" + quote_currency)
            old_stdout = sys.stdout
            result = StringIO()
            sys.stdout = result
            sim.start_simulation(duration, include_fees=use_fees)
            sim.create_trade_visuals()
            sys.stdout = old_stdout
            result_list = result.getvalue().split("\n")
            result_string = []
            for s in result_list:
                if s is not "":
                    result_string.append(s)
            output = result_string
            context = {
                'form': form,
                'duration': duration,
                'amount': amount,
                'output': output
            }
            return render(request, "crypto2/results.html", context)
    else:
        form = SimulationForm()
    return render(request, "crypto2/index.html", {'form': form})
Esempio n. 6
0
 def __init__(self):
     self.gdax = ccxt.gdax({'nonce': ccxt.gdax.milliseconds})
     if (settings['gdax_exporter'].get('api_key')
             and (settings['gdax_exporter'].get('api_secret'))):
         self.gdax.apiKey = settings['gdax_exporter'].get('api_key')
         self.gdax.secret = settings['gdax_exporter'].get('api_secret')
         self.hasApiCredentials = True
Esempio n. 7
0
def get_dataframe():
    exchange = ccxt.gdax()
    ohlcv = exchange.fetch_ohlcv('BTC/USD', '1d')
    assert len(ohlcv) == 300
    df = pd.DataFrame(ohlcv, columns=DOHLCV_COLUMNS)
    df['date'] = pd.to_datetime(df['date'], unit='ms')
    df = df.set_index('date')
    return df
Esempio n. 8
0
def getEtherUSD():
    symbol = 'ETH/USD'
    exchange = ccxt.gdax()
    markets = exchange.load_markets()
    ticker = exchange.fetch_ticker(symbol.upper())
    print(ticker)
    avgPrice = (ticker['bid'] + ticker['ask']) / 2
    print(avgPrice)
    return avgPrice
Esempio n. 9
0
 def __init__(self, keypath):
     with open(keypath, "r") as f:
         passphrase = f.readline().strip()
         key = f.readline().strip()
         secret = f.readline().strip()
     Exchange.__init__(
         self, 'Gdax',
         gdax({
             'apiKey': key,
             'secret': secret,
             'password': passphrase
         }))
Esempio n. 10
0
    def __init__(self,
                 key=None,
                 secret=None,
                 currency_from="BTC",
                 currency_to="ZAR"):
        super().__init__(currency_from, currency_to)

        self.exchange = ccxt.gdax()
        self.exchange.apiKey = key
        self.exchange.secret = secret

        self.set_sell_fees(variable=2.5 / 100)
        self.set_buy_fees(variable=0)
        self.set_send_fees(variable=0.1 / 100)
        self.set_receive_fees(fixed=0.0002)
        self.set_withdrawl_fees(fixed=0.15)
        self.set_deposit_fees(fixed=0.15)
Esempio n. 11
0
 def get(cls):
     return {
         'binance':
         ccxt.binance({
             'apiKey': 'YOUR_PUBLIC_API_KEY',
             'secret': 'YOUR_SECRET_PRIVATE_KEY',
         }),
         'bitstamp':
         ccxt.bitstamp({
             'apiKey': 'YOUR_PUBLIC_API_KEY',
             'secret': 'YOUR_SECRET_PRIVATE_KEY',
         }),
         'bittrex':
         ccxt.bittrex({
             'apiKey': os.environ.get("BITTREX_KEY"),
             'secret': os.environ.get("BITTREX_SECRET"),
         }),
         'gdax':
         ccxt.gdax({
             'apiKey': 'YOUR_PUBLIC_API_KEY',
             'secret': 'YOUR_SECRET_PRIVATE_KEY',
         }),
         'hitbtc':
         ccxt.hitbtc({
             'apiKey': 'YOUR_PUBLIC_API_KEY',
             'secret': 'YOUR_SECRET_PRIVATE_KEY',
         }),
         'kraken':
         ccxt.kraken({
             'apiKey': 'YOUR_PUBLIC_API_KEY',
             'secret': 'YOUR_SECRET_PRIVATE_KEY',
         }),
         'liqui':
         ccxt.liqui({
             'apiKey': 'YOUR_PUBLIC_API_KEY',
             'secret': 'YOUR_SECRET_PRIVATE_KEY',
         }),
         'poloniex':
         ccxt.poloniex({
             'apiKey': 'YOUR_PUBLIC_API_KEY',
             'secret': 'YOUR_SECRET_PRIVATE_KEY',
         }),
         # add additional supported exchanges
     }
Esempio n. 12
0
    def __init__(self):
        self.url = "wss://ws-feed.gdax.com"
        self.public_client = ccxt.gdax()

        self.product_ids = GDAX_PRODUCT_IDS

        self.order_books = {x: {} for x in self.product_ids}
        self.inside_order_books = {
            x: {"bids": {}, "asks": {}} for x in self.product_ids
        }
        self.last_trade_ids = {x: None for x in self.product_ids}

        self.db = Database(DATABASE['GDAX'], migrate=True)

        self.ws = websocket.WebSocketApp(
            self.url,
            on_message=self.on_message,
            on_error=self.on_error,
            on_open=self.on_open,
        )
Esempio n. 13
0
def ETH_Kraken_Ticker():
	i=0
	last=[1]
	period = 60
	start_Time = time.time()
	exchange = ccxt.gdax()
	markets = exchange.load_markets()
	developing_candle_sticks = []
	candle_sticks = [None]
	j = 0
	print('Hello, I am Crypto Bot! \n Starting Trading..... ')
	opens = None
	high = None
	low = None
	close = None
	while True:
		

		coin_name = exchange.fetchTicker('ETH/USD')['symbol']
		current =  float(exchange.fetchTicker('ETH/USD')['last'])
		change = ((current - last[i])/last[i])*100
		
		last.append( current )
		print('%s $%.2f %.2f%%' %(coin_name,current,change))
		
		if candles(current,start_Time,period,candle_sticks,opens, high, low, close) is True:

			start_Time = time.time()
			j+=1
			opens = None
			high = None
			low = None
			close = None
			print('Open: $%.2f, High: $%.2f, Low: $%.2f, Close: $%.2f, Average: $%.2f'%(candle_sticks[j][0],candle_sticks[j][1],candle_sticks[j][2],candle_sticks[j][3],candle_sticks[j][4]))
		else:
			opens,high,low,close = (candles(current,start_Time,period,candle_sticks,opens, high, low, close))	
		
		
		i+=1
		time.sleep(1)
Esempio n. 14
0
def get_exchange(exchange):
    config = CONFIG[exchange]
    if exchange == "gdax":
        return ccxt.gdax({
            "api_key": config['api_key'],
            "secret": config['secret'],
            "password": config['password']
        })
    if exchange == "binance":
        return ccxt.binance({
            "api_key": config['api_key'],
            "secret": config['secret']
        })
    if exchange == "hitbtc":
        return ccxt.hitbtc({
            "api_key": config['api_key'],
            "secret": config['secret']
        })
    if exchange == "cryptopia":
        return ccxt.cryptopia({
            "api_key": config['api_key'],
            "secret": config['secret']
        })
Esempio n. 15
0
    def preloadData(self, iteration=100, interval=1):
        print("Starting preload")
        data = self.makeFetchDF()
        exchange = ccxt.gdax()

        trade_id = 0
        i = 0
        j = 0
        while i < iteration:
            if i % 20 == 0 and i != j:
                j = i
                print("Currently at iteration ", i)
            startTime = timer()
            trade_data, new_trade_id = self.fetchExchangeData(exchange)
            print('fetch gdax data time: ', timer() - startTime)
            if new_trade_id != trade_id:
                trade_id = new_trade_id
                data = pd.concat([data, trade_data])
                i += 1
            #data.tail(1)[trade_id]
            time.sleep(interval)

        self.last_trade_id = trade_id
        return data.sort_values(by='trades_date_time'), trade_id
# -----------------------------------------------------------------------------

import ccxt  # noqa: E402

# -----------------------------------------------------------------------------
# common constants

msec = 1000
minute = 60 * msec
hold = 30

# -----------------------------------------------------------------------------

exchange = ccxt.gdax({
    'rateLimit': 3000,
    'enableRateLimit': True,
    # 'verbose': True,
})

# -----------------------------------------------------------------------------

from_datetime = '2017-09-01 00:00:00'
from_timestamp = exchange.parse8601(from_datetime)

# -----------------------------------------------------------------------------

now = exchange.milliseconds()

# -----------------------------------------------------------------------------

data = []
Esempio n. 17
0
        profit_cumulative = []
        profit_cumulative.append(self.profit[0])
        for i in range(1, len(self.profit)):
            profit_cumulative.append(self.profit[i]\
                    + profit_cumulative[i - 1])
        plt.plot(range(len(profit_cumulative)), profit_cumulative)
        plt.suptitle("Cumulative Profit over Time")
        plt.ylabel("Cumulative Profit (" + self.quote_currency + ")")
        plt.xlabel("Time (number of trades since start)")
        plt.savefig("crypto/static/graphs/output_profit.png")
        plt.clf()

if __name__ == "__main__":
    CHOICES = [
        ArbitrageSimulation(ccxt.bittrex(), ccxt.hitbtc(), "BTC/USDT"),
        ArbitrageSimulation(ccxt.exmo(), ccxt.gdax(), "BTC/USD"),
        ArbitrageSimulation(ccxt.exmo(), ccxt.kraken(), "BTC/EUR"),
        ArbitrageSimulation(ccxt.bitfinex(), ccxt.exmo(), "ETH/USD"),
    ]
    if len(sys.argv) > 1:  # can provide commandline args to run simulation
        PARSER = argparse.ArgumentParser(description="Produces visual output"\
                + " from simulator with the given parameters.")
        PARSER.add_argument("simulation_type", help="whether to simulate a"\
                + " duration (0) or for to time a profit (1).", type=int,\
                choices=[0, 1])
        PARSER.add_argument("limit_value",\
                help="If duration, the time in minutes if timing a profit,"\
                + " the amount of profit.", type=float)
        PARSER.add_argument("simulation_choice",\
                help="Which default simulation to use.", type=int,\
                choices=range(len(CHOICES)))
root = os.path.dirname(
    os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(root + '/python')

import ccxt  # noqa: E402

# -----------------------------------------------------------------------------
# common constants

msec = 1000
minute = 60 * msec
hold = 30

# -----------------------------------------------------------------------------

exchange = ccxt.gdax()

# -----------------------------------------------------------------------------

from_datetime = '2017-09-01 00:00:00'
from_timestamp = exchange.parse8601(from_datetime)

# -----------------------------------------------------------------------------

now = exchange.milliseconds()

# -----------------------------------------------------------------------------

data = []

while from_timestamp < now:
import pandas
from statistics import stdev
import numpy as np
import matplotlib.pyplot as plt
import ccxt
import time


exchange = ccxt.gdax({
    'rateLimit': 10000,
    'enableRateLimit': True,
    'verbose': False,
})


buying = False
collection_size = 50  # decides the size of the samples taken to calculate the avg and stdev
curr_accept_price = None
percent_gain = 1.002
curr_buy_order_price = None
last_points = []


while True:
    if len(last_points) < collection_size:
        print(len(last_points))
        ticker = exchange.fetch_ticker('BTC/USD')
        current_price = ticker['last']
        last_points.append(current_price)
        if len(last_points) == collection_size:
            buying = True
Esempio n. 20
0
root = os.path.dirname(
    os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(root)

import ccxt


def dump(*args):
    print(' '.join([str(arg) for arg in args]))


# instantiate exchanges

gdax = ccxt.gdax({
    'apiKey': '92560ffae9b8a01d012726c698bcb2f1',  # standard
    'secret':
    '9aHjPmW+EtRRKN/OiZGjXh8OxyThnDL4mMDre4Ghvn8wjMniAr5jdEZJLN/knW6FHeQyiz3dPIL5ytnF0Y6Xwg==',
    'password': '******',  # GDAX requires a password!
})

gdax.urls[
    'api'] = 'https://api-public.sandbox.gdax.com'  # use the testnet for GDAX

hitbtc = ccxt.hitbtc({
    'apiKey': '18339694544745d9357f9e7c0f7c41bb',
    'secret': '8340a60fb4e9fc73a169c26c7a7926f5',
})

quadrigacx = ccxt.quadrigacx({
    'apiKey': 'jKvWkMqrOj',
    'secret': 'f65a2e3bf3c73171ee14e389314b2f78',
    'uid': '395037',  # QuadrigaCX requires uid!
# -*- coding: utf-8 -*-

import os
import sys

root = os.path.dirname(
    os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(root + '/python')

import ccxt  # noqa: E402

gdax = ccxt.gdax({
    'apiKey': "a43edfe629bc5991acc83a536ac6358e",
    'secret':
    "xOvq+iH8NT07TheFB/fmY3GcnMZMwP7Xct9zwWtAZxsCbJh8rxeEe/0BGxfbV2em7P9iqQD7/TJGqmsDO8B/kw==",
    'password': '******',
    'verbose': True,  # switch it to False if you don't want the HTTP log
})

# move gdax to sandbox
gdax.urls['api'] = 'https://api-public.sandbox.gdax.com'

print(gdax.fetch_balance())
bl3p_db = dataset.connect('mysql://*****:*****@139.59.147.221/bl3p')
btcmarkets_db = dataset.connect('mysql://*****:*****@139.59.147.221/btcmarkets')
coinfloor_db = dataset.connect('mysql://*****:*****@139.59.147.221/coinfloor')
gemini_db = dataset.connect('mysql://*****:*****@139.59.147.221/gemini')
tidex_db = dataset.connect('mysql://*****:*****@139.59.147.221/tidex')
cex_db = dataset.connect('mysql://*****:*****@139.59.147.221/cex')
koineks_db = dataset.connect('mysql://*****:*****@139.59.147.221/koineks')

# DEFINE DATABASE CONNECTION FOR TECHNICAL INDICATORS
indicator_db = dataset.connect('mysql://*****:*****@139.59.147.221/indicators')
historical_db = dataset.connect('mysql://*****:*****@139.59.147.221/historical')

gdax = ccxt.gdax({
    'rateLimit': 3000,
    'enableRateLimit': True,
    # 'verbose': True,
    'exchangeName': "gdax",
    'database': gdax_db
})

bitfinex = ccxt.bitfinex({
    'rateLimit': 3000,
    'enableRateLimit': True,
    # 'verbose': True,
    'exchangeName': "bitfinex",
    'database': bitfinex_db
})

huobipro = ccxt.huobipro({
    'rateLimit': 3000,
    'enableRateLimit': True,
Esempio n. 23
0
 ccxt.coinone(),
 ccxt.coinsecure(),
 ccxt.coinspot(),
 ccxt.coolcoin(),
 ccxt.cryptopia(),
 ccxt.dsx(),
 ccxt.ethfinex(),
 ccxt.exmo(),
 ccxt.exx(),
 ccxt.flowbtc(),
 ccxt.foxbit(),
 ccxt.fybse(),
 ccxt.fybsg(),
 ccxt.gatecoin(),
 ccxt.gateio(),
 ccxt.gdax(),
 ccxt.gemini(),
 ccxt.getbtc(),
 ccxt.hadax(),
 ccxt.hitbtc(),
 ccxt.hitbtc2(),
 ccxt.huobi(),
 ccxt.huobicny(),
 ccxt.huobipro(),
 ccxt.ice3x(),
 ccxt.independentreserve(),
 ccxt.indodax(),
 ccxt.itbit(),
 ccxt.jubi(),
 ccxt.kraken(),
 ccxt.kucoin(),
Esempio n. 24
0
    oversolds = [await check_rsi(symbol, t, exchange) for t in timeframe]
    print(exchange.name)
    list(map(print_values, oversolds))
    if sum(o.get('oversold') == True for o in oversolds) > 3:
        alert(exchange.name + ": " + symbol + " oversold alert")
    print("")


async def check(exchange, timeframe):
    while True:
        try:
            [
                await check_oversold(symbol, exchange, timeframe)
                for symbol in exchange.load_markets()
            ]
        except Exception as e:
            print(e)


exchanges = [(ccxt.gdax(), ['5m', '15m', '1h', '6h']),
             (ccxt.binance(), ['5m', '15m', '1h', '4h'])]

# too low volume
#  (ccxt.bittrex(), ['5m', '30m', '1h', '1d']),
#  (ccxt.poloniex(), ['5m', '15m', '2h', '4h']),

tasks = [check(e, t) for e, t in exchanges]

alert("RSI Alert Bot started")
asyncio.get_event_loop().run_until_complete(asyncio.wait(tasks))
Esempio n. 25
0
	def initialize_exchange(self):
		self.exchange = ccxt.gdax()
		self.exchange.fetch_markets()
		self.initialize_api()
		return self.exchange
Esempio n. 26
0
from ccxt_sandbox_api import sandbox_api_key, sandbox_secret_key, sandbox_passphrase
from ccxt_real_api import real_api_key, real_secret_key


# Import the RNN packages
import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt


# Instantiate sandbox gdax api to execute practice trades
sandbox = ccxt.gdax({'apiKey': sandbox_api_key,
                     'secret': sandbox_secret_key,
                     'password': sandbox_passphrase,
                     'nonce': ccxt.gdax.seconds,
                     'verbose': False}) # If verbose is True, log HTTP requests
sandbox.urls['api'] = 'https://api-public.sandbox.gdax.com'


# Instantiate real gdax api to get live data feed
gdax = ccxt.gdax({'apiKey': real_api_key,
                  'secret': real_secret_key,
                  'password': real_passphrase,
                  'nonce': ccxt.gdax.seconds,
                  'verbose': False}) # If verbose is True, log HTTP requests
gdax.urls['api'] = 'https://api.gdax.com'


delay = 2 # delay in seconds
Esempio n. 27
0
# Code inputs:
N_pairs_with_tether    = 10 # Number of pairs to print in exchanges possibly with tether
N_pairs_without_tether = 10 # Number of pairs to print in exchanges without tether
verbose                = False # Do not print market fetching status

# Exchanges with tether (you can transfer USDT between exchanges)
bittrex  = ccxt.bittrex()  # 266 markets
binance  = ccxt.binance()
poloniex = ccxt.poloniex() # 99 markets
kraken   = ccxt.kraken()   # 59 markets

# Exchanges without tether (cannot transfer USD between exchanges)
cex      = ccxt.cex()      # 27 markets
bitstamp = ccxt.bitstamp() # 15 markets
gdax     = ccxt.gdax()     # 10 markets

exchanges = [bittrex, kraken, poloniex, gdax, cex, bitstamp, binance]

# Load markets and check if exchanges are working
working_exchanges = []
for exchange in exchanges:
    # Try loading the markets, if you can, add it to the working exchanges list
    try:
        exchange.load_markets()
        working_exchanges.append(exchange)
    # If you cannot, say so, and dont add it to the list
    except:
        print('%s is down! Excluding %s'%(exchange.name, exchange.name))

# Padding for printing out names
sys.path.append(root + '/python')

import ccxt  # noqa: E402

# -----------------------------------------------------------------------------
# common constants

msec = 1000
minute = 60 * msec
hold = 30

# -----------------------------------------------------------------------------

exchange = ccxt.gdax({
    'rateLimit': 3000,
    'enableRateLimit': True,
    # 'verbose': True,
})

# -----------------------------------------------------------------------------

from_datetime = '2017-09-01 00:00:00'
from_timestamp = exchange.parse8601(from_datetime)

# -----------------------------------------------------------------------------

now = exchange.milliseconds()

# -----------------------------------------------------------------------------

data = []
Esempio n. 29
0
# -----------------------------------------------------------------------------

this_folder = os.path.dirname(os.path.abspath(__file__))
root_folder = os.path.dirname(os.path.dirname(this_folder))
sys.path.append(root_folder + '/python')
sys.path.append(this_folder)

# -----------------------------------------------------------------------------

import ccxt  # noqa: E402

# -----------------------------------------------------------------------------

kraken = ccxt.kraken()
gdax = ccxt.gdax()

symbol = 'BTC/USD'

# each ohlcv candle is a list of [ timestamp, open, high, low, close, volume ]
index = 4  # use close price from each ohlcv candle


def print_chart(exchange, symbol, timeframe):

    print("\n" + exchange.name + ' ' + symbol + ' ' + timeframe + ' chart:')

    # get a list of ohlcv candles
    ohlcv = exchange.fetch_ohlcv(symbol, timeframe)

    # get the ohlCv (closing price, index == 4)
Esempio n. 30
0
# -*- coding: utf-8 -*-

import os
import sys

root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(root + '/python')

import ccxt  # noqa: E402

gdax = ccxt.gdax({
    'apiKey': "a43edfe629bc5991acc83a536ac6358e",
    'secret': "xOvq+iH8NT07TheFB/fmY3GcnMZMwP7Xct9zwWtAZxsCbJh8rxeEe/0BGxfbV2em7P9iqQD7/TJGqmsDO8B/kw==",
    'password': '******',
    'verbose': True,  # switch it to False if you don't want the HTTP log
})

# move gdax to sandbox
gdax.urls['api'] = 'https://api-public.sandbox.gdax.com'

print(gdax.fetch_balance())
Esempio n. 31
0
    return style(s, '\033[1m')


def underline(s):
    return style(s, '\033[4m')


def dump(*args):
    print(' '.join([str(arg) for arg in args]))


# instantiate exchanges

gdax = ccxt.gdax({
    'apiKey': '92560ffae9b8a01d012726c698bcb2f1',  # standard
    'secret': '9aHjPmW+EtRRKN/OiZGjXh8OxyThnDL4mMDre4Ghvn8wjMniAr5jdEZJLN/knW6FHeQyiz3dPIL5ytnF0Y6Xwg==',
    'password': '******',  # GDAX requires a password!
})

gdax.urls['api'] = 'https://api-public.sandbox.gdax.com'  # use the testnet for GDAX

hitbtc = ccxt.hitbtc({
    'apiKey': '18339694544745d9357f9e7c0f7c41bb',
    'secret': '8340a60fb4e9fc73a169c26c7a7926f5',
})

quadrigacx = ccxt.quadrigacx({
    'apiKey': 'jKvWkMqrOj',
    'secret': 'f65a2e3bf3c73171ee14e389314b2f78',
    'uid': '395037',  # QuadrigaCX requires uid!
})
Esempio n. 32
0
def exchangeObject(exchange_in):
    exchanges = [
        ccxt.acx(),
        ccxt.bitbay(),
        ccxt.bitfinex(),
        ccxt.bitflyer(),
        ccxt.bithumb(),
        ccxt.bitlish(),
        ccxt.bitmarket(),
        ccxt.bitmex(),
        ccxt.bitso(),
        ccxt.bitstamp(),
        ccxt.bitstamp1(),
        ccxt.bittrex(),
        ccxt.bl3p(),
        ccxt.bleutrade(),
        ccxt.btcbox(),
        ccxt.btcchina(),
        ccxt.btcexchange(),
        ccxt.btcmarkets(),
        ccxt.btctradeua(),
        ccxt.btcturk(),
        ccxt.bxinth(),
        ccxt.ccex(),
        ccxt.cex(),
        ccxt.chbtc(),
        ccxt.chilebit(),
        ccxt.coincheck(),
        ccxt.coinfloor(),
        ccxt.coingi(),
        ccxt.coinmarketcap(),
        ccxt.coinmate(),
        ccxt.coinspot(),
        ccxt.cryptopia(),
        ccxt.dsx(),
        ccxt.exmo(),
        ccxt.flowbtc(),
        ccxt.foxbit(),
        ccxt.fybse(),
        ccxt.fybsg(),
        ccxt.gatecoin(),
        ccxt.gateio(),
        ccxt.gdax(),
        ccxt.gemini(),
        ccxt.getbtc(),
        ccxt.hitbtc(),
        ccxt.independentreserve(),
        ccxt.itbit(),
        ccxt.jubi(),
        ccxt.kraken(),
        ccxt.kucoin(),
        ccxt.kuna(),
        ccxt.lakebtc(),
        ccxt.liqui(),
        ccxt.livecoin(),
        ccxt.luno(),
        ccxt.mercado(),
        ccxt.mixcoins(),
        ccxt.nova(),
        ccxt.okcoincny(),
        ccxt.okcoinusd(),
        ccxt.okex(),
        ccxt.paymium(),
        ccxt.poloniex(),
        ccxt.qryptos(),
        ccxt.quadrigacx(),
        ccxt.southxchange(),
        ccxt.surbitcoin(),
        ccxt.therock(),
        ccxt.tidex(),
        ccxt.urdubit(),
        ccxt.vaultoro(),
        ccxt.vbtc(),
        ccxt.virwox(),
        ccxt.wex(),
        ccxt.xbtce(),
        ccxt.yobit(),
        ccxt.yunbi(),
        ccxt.zaif(),
        ccxt.zb()
    ]

    for count, exchange in enumerate([str(x) for x in exchanges]):
        if exchange_in.lower() in exchange:
            return exchanges[count]
            break
Esempio n. 33
0
# coding=utf-8
import ccxt
import time
import pprint

delay = 2  # seconds

pp = pprint.PrettyPrinter(indent=2)

binance = ccxt.binance()
binance_markets = binance.load_markets()

gdax = ccxt.gdax()
gdax_markets = gdax.load_markets()

# pp.pprint(gdax.fetch_order_book("ETH/BTC"))
# pp.pprint(binance.fetch_order_book("ETH/BTC"))
while True:

    gdax_order_book = gdax.fetch_order_book("ETH/BTC")
    binance_order_book = binance.fetch_order_book("ETH/BTC")

    gdax_sell_price = gdax_order_book['bids'][0][0]
    gdax_buy_price = gdax_order_book['asks'][0][0]

    binance_sell_price = binance_order_book['bids'][0][0]
    binance_buy_price = binance_order_book['asks'][0][0]

    print(binance_sell_price)
    print(binance_buy_price)
Esempio n. 34
0
    def train_and_predict(self,
                          restore=False,
                          data_rnn=None,
                          data_rnn_ckpt=None):
        #tf.reset_default_graph()
        print('Restore model? %s' % restore)

        # RNN Hyperparams
        # num_epochs is already defined as part of the class
        batch_size = 1
        total_series_length = len(data_rnn.index)
        truncated_backprop_length = 5  # The size of the sequence
        state_size = 10  # The number of neurons
        num_features = 2 + self.future_price_window + self.order_book_window * 6  # The number of columns to be used for xTrain analysis in RNN
        num_classes = 1  # The number of targets to be predicted
        num_batches = int(total_series_length / batch_size /
                          truncated_backprop_length)
        min_test_size = 1000

        PriceRange, PriceMean, data_rnn_norm, data_rnn_processed = self.process_data(
            data_rnn, restore)

        rnn_column_list = self.get_rnn_column_list()

        # RNN Placeholders
        batchX_placeholder = tf.placeholder(
            dtype=tf.float32,
            shape=[None, truncated_backprop_length, num_features],
            name='data_ph')
        batchY_placeholder = tf.placeholder(
            dtype=tf.float32,
            shape=[None, truncated_backprop_length, num_classes],
            name='target_ph')

        # RNN Train-Test Split
        test_first_idx = 0  # needed for train
        if restore:
            data_rnn_test = data_rnn_norm
            #print('nrows of testing = %s' % len(data_rnn_test.index))

        else:
            for i in range(min_test_size, len(data_rnn_processed.index)):
                if (i % truncated_backprop_length * batch_size == 0):
                    test_first_idx = len(data_rnn_processed.index) - i
                    break
            # Purposefully uses data_rnn['row_nums'] because data_rnn['row_nums'] also becomes normalized
            print(data_rnn_processed.columns)
            print(test_first_idx)
            print(len(data_rnn_norm))
            data_rnn_train = data_rnn_norm[
                data_rnn_processed['row_num'] < test_first_idx]
            #data_rnn_train = data_rnn_norm[data_rnn['row_num'] < (test_first_idx-2400)]
            print('nrows of training = %s' % len(data_rnn_train.index))
            data_rnn_test = data_rnn_norm[
                data_rnn_processed['row_num'] >= test_first_idx]
            print('nrows of testing = %s' % len(data_rnn_test.index))

            xTrain = data_rnn_train[rnn_column_list].as_matrix()
            yTrain = data_rnn_train[['future_ma_%s' % self.future_ma_window
                                     ]].as_matrix()
        xTest = data_rnn_test[rnn_column_list].as_matrix()
        yTest = data_rnn_test[['future_ma_%s' % self.future_ma_window
                               ]].as_matrix()

        if restore:
            # Weights and Biases In
            weight = tf.get_variable(name='weight',
                                     shape=[state_size, num_classes])
            bias = tf.get_variable(name='bias', shape=[num_classes])
            labels_series = tf.unstack(batchY_placeholder, axis=1)  # Unpacking
        else:
            # Weights and Biases In
            weight = tf.Variable(tf.truncated_normal([state_size,
                                                      num_classes]),
                                 name='weight')
            bias = tf.Variable(tf.constant(0.1, shape=[num_classes]),
                               name='bias')
            labels_series = tf.unstack(batchY_placeholder, axis=1)  # Unpacking

        # Forward Pass: Unrolling the cell (input to hidden recurrent layer)
        cell = tf.contrib.rnn.BasicRNNCell(
            num_units=state_size)  # this takes forever!
        states_series, current_state = tf.nn.dynamic_rnn(
            cell=cell, inputs=batchX_placeholder, dtype=tf.float32)
        states_series = tf.transpose(states_series, [1, 0, 2])

        # Backward Pass: Output
        last_state = tf.gather(params=states_series,
                               indices=states_series.get_shape()[0] - 1)
        last_label = tf.gather(params=labels_series,
                               indices=len(labels_series) - 1)

        # Prediction, Loss, and Optimizer
        prediction = tf.matmul(last_state, weight) + bias
        loss = tf.reduce_mean(tf.squared_difference(last_label, prediction))
        train_step = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
        loss_list = []
        test_pred_list = []

        # Add saver variable to save and restore all variables from trained model
        saver = tf.train.Saver()

        # Initialize and run session
        with tf.Session() as sess:
            if restore:
                saver.restore(sess, data_rnn_ckpt)
                exchange = ccxt.gdax()
                predicted_price = 0
                while True:
                    #input(data_rnn['trades_date_time'])
                    start_time = timer()
                    updated, updated_data_rnn = self.updateData(
                        exchange, data_rnn)
                    if updated:
                        data_rnn = updated_data_rnn
                        #input(data_rnn['trades_date_time'])
                        test_pred_list = []

                        PriceRange, PriceMean, data_rnn_norm, data_rnn_processed = self.process_data(
                            data_rnn, restore)
                        xTest = data_rnn_norm[
                            self.get_rnn_column_list()].as_matrix()
                        yTest = data_rnn_norm[[
                            'future_ma_%s' % self.future_ma_window
                        ]].as_matrix()

                        for test_idx in range(
                                len(xTest) - truncated_backprop_length):
                            testBatchX = xTest[
                                test_idx:test_idx +
                                truncated_backprop_length, :].reshape(
                                    (1, truncated_backprop_length,
                                     num_features))
                            testBatchY = yTest[
                                test_idx:test_idx +
                                truncated_backprop_length].reshape(
                                    (1, truncated_backprop_length, 1))

                            # _current_state = np.zeros((batch_size,state_size))
                            feed = {
                                batchX_placeholder: testBatchX,
                                batchY_placeholder: testBatchY
                            }

                            # Test_pred contains 'window_size' predictions, we want the last one
                            _last_state, _last_label, test_pred = sess.run(
                                [last_state, last_label, prediction],
                                feed_dict=feed)
                            test_pred_list.append(
                                test_pred[-1][0])  # The last one

                        actual_price = data_rnn.tail(1)['trade_px']
                        print("actual price - predicted price: ",
                              actual_price.item() - predicted_price)
                        predicted_price = test_pred_list[
                            -1] * PriceRange + PriceMean

                        print("time taken for iteration: ",
                              timer() - start_time)
                        print("")
                        #self.plot_predictions(test_pred_list, yTest, PriceRange, PriceMean)

                        time.sleep(0.75)
            else:
                tf.global_variables_initializer().run()

                for epoch_idx in range(self.num_epochs):
                    print('Epoch %d' % int(epoch_idx + 1))
                    try:
                        for batch_idx in range(num_batches):
                            start_idx = batch_idx * truncated_backprop_length
                            end_idx = start_idx + truncated_backprop_length * batch_size

                            batchX = xTrain[start_idx:end_idx, :].reshape(
                                batch_size, truncated_backprop_length,
                                num_features)
                            batchY = yTrain[start_idx:end_idx].reshape(
                                batch_size, truncated_backprop_length, 1)

                            feed = {
                                batchX_placeholder: batchX,
                                batchY_placeholder: batchY
                            }

                            # TRAIN!
                            _loss, _train_step, _pred, _last_label, _prediction = sess.run(
                                fetches=[
                                    loss, train_step, prediction, last_label,
                                    prediction
                                ],
                                feed_dict=feed)
                            loss_list.append(_loss)

                            if (batch_idx % 1000 == 0):
                                print('Step %d - Loss: %.10f' %
                                      (batch_idx, _loss))

                    except ValueError:
                        print('You have reached the end of Training Epoch %d' %
                              int(epoch_idx + 1))
                        pass

                    # Before going on into testing, save variables from trained model to disk
                save_path = saver.save(sess, data_rnn_ckpt)
                print("Model saved in file: %s" % save_path)

                # TEST
                for test_idx in range(len(xTest) - truncated_backprop_length):
                    testBatchX = xTest[test_idx:test_idx +
                                       truncated_backprop_length, :].reshape(
                                           (1, truncated_backprop_length,
                                            num_features))
                    testBatchY = yTest[test_idx:test_idx +
                                       truncated_backprop_length].reshape(
                                           (1, truncated_backprop_length, 1))

                    # _current_state = np.zeros((batch_size,state_size))
                    feed = {
                        batchX_placeholder: testBatchX,
                        batchY_placeholder: testBatchY
                    }

                    # Test_pred contains 'window_size' predictions, we want the last one
                    _last_state, _last_label, test_pred = sess.run(
                        [last_state, last_label, prediction], feed_dict=feed)
                    test_pred_list.append(test_pred[-1][0])  # The last one

            self.plot_predictions(test_pred_list, yTest, PriceRange, PriceMean)