Esempio n. 1
0
def execute_pipeline(query):
    df = pd.read_csv('data/bnpp_newsroom_v1.1/bnpp_newsroom-v1.1.csv',
                     converters={'paragraphs': literal_eval})
    df = filter_paragraphs(df)

    cdqa_pipeline = QAPipeline(
        reader='models/bert_qa_vCPU-sklearn.joblib')
    cdqa_pipeline.fit(X=df)
    cdqa_pipeline.reader.output_dir = None

    prediction = cdqa_pipeline.predict(X=query)

    result = (prediction[0], prediction[1])

    return result
Esempio n. 2
0
import os
import pandas as pd
from ast import literal_eval
import cdqa
from cdqa.utils.filters import filter_paragraphs
from cdqa.pipeline.cdqa_sklearn import QAPipeline

df = pd.read_csv('/home/ubuntu/data/bnpp_newsroom_v1.1/bnpp_newsroom-v1.1.csv',
                 converters={'paragraphs': literal_eval})
df = filter_paragraphs(df)

df['title'] = df['category']

cdqa_pipeline = QAPipeline(
    reader='/home/ubuntu/data/bert_qa_vCPU-sklearn.joblib')
cdqa_pipeline.fit(X=df)

print('At result')


class QAModule():
    def __init__(self):
        self.query = 'Since when does the Excellence Program of BNP Paribas exist?'

    def getAnswer(self, query):
        prediction = cdqa_pipeline.predict(X=query)
        return prediction


class SentimentModule():
    def __init__(self):