def compute(param):
    template = populateStringConstructor(args.filename_template, args)
    template.variable = param.varname
    template.month = param.monthname
    fnameRoot = param.fileName
    reverted = template.reverse(os.path.basename(fnameRoot))
    model = reverted["model"]
    print('Specifying latitude / longitude domain of interest ...')
    datanameID = 'diurnalstd'  # Short ID name of output data
    latrange = (param.args.lat1, param.args.lat2)
    lonrange = (param.args.lon1, param.args.lon2)
    region = cdutil.region.domain(latitude=latrange, longitude=lonrange)
    if param.args.region_name == "":
        region_name = "{:g}_{:g}&{:g}_{:g}".format(*(latrange + lonrange))
    else:
        region_name = param.args.region_name
    print('Reading %s ...' % fnameRoot)
    reverted = template.reverse(os.path.basename(fnameRoot))
    model = reverted["model"]
    try:
        f = cdms2.open(fnameRoot)
        x = f(datanameID, region)
        units = x.units
        print('  Shape =', x.shape)
        print('Finding RMS area-average ...')
        x = x * x
        x = cdutil.averager(x, weights='unweighted')
        x = cdutil.averager(x, axis='xy')
        x = numpy.ma.sqrt(x)
        print('For %8s in %s, average variance of hourly values = (%5.2f %s)^2' % (model, monthname, x, units))
        f.close()
    except Exception as err:
        print("Failed model %s with error: %s" % (model, err))
        x = 1.e20
    return model, region, {region_name: x}
Esempio n. 2
0
def calcBias(a, b):
    # Calculate bias
    # a, b: cdms 2d variables (lat, lon)
    result = cdutil.averager(a, axis="xy",
                             weights="weighted") - cdutil.averager(
                                 b, axis="xy", weights="weighted")
    return float(result)
Esempio n. 3
0
 def compute(param):
     template = populateStringConstructor(args.filename_template, args)
     template.variable = param.varname
     template.month = param.monthname
     fnameRoot = param.fileName
     reverted = template.reverse(os.path.basename(fnameRoot))
     model = reverted["model"]
     print('Specifying latitude / longitude domain of interest ...')
     datanameID = 'diurnalstd'  # Short ID name of output data
     latrange = (param.args.lat1, param.args.lat2)
     lonrange = (param.args.lon1, param.args.lon2)
     region = cdutil.region.domain(latitude=latrange, longitude=lonrange)
     if param.args.region_name == "":
         region_name = "{:g}_{:g}&{:g}_{:g}".format(*(latrange + lonrange))
     else:
         region_name = param.args.region_name
     print('Reading %s ...' % fnameRoot)
     reverted = template.reverse(os.path.basename(fnameRoot))
     model = reverted["model"]
     try:
         f = cdms2.open(fnameRoot)
         x = f(datanameID, region)
         units = x.units
         print('  Shape =', x.shape)
         print('Finding RMS area-average ...')
         x = x * x
         x = cdutil.averager(x, weights='unweighted')
         x = cdutil.averager(x, axis='xy')
         x = numpy.ma.sqrt(x)
         print('For %8s in %s, average variance of hourly values = (%5.2f %s)^2' % (model, monthname, x, units))
         f.close()
     except Exception as err:
         print("Failed model %s with error: %s" % (model, err))
         x = 1.e20
     return model, region, {region_name: x}
Esempio n. 4
0
def process_u_for_time_height(data_region):
    # Average over longitude (i.e., each latitude's average in data_region)
    data_lon_average = cdutil.averager(data_region, axis="x")
    # Average over latitude (i.e., average for entire data_region)
    data_lon_lat_average = cdutil.averager(data_lon_average, axis="y")
    # Get data by vertical level
    level_data = data_lon_lat_average.getAxis(1)
    return data_lon_lat_average, level_data
def createDeterministicFcstMJOinFiles(curday):
    # os.chdir(anaanopath)
    merged_ana_10daysfcst_anofile = 'um_ana_tseries_and_determisitic_10days_fcst_%s_ano.xml' % curday
    merged_ana_10daysfcst_anofpath = os.path.join(
        fcstanopath, merged_ana_10daysfcst_anofile)
    inf = cdms2.open(merged_ana_10daysfcst_anofpath)
    cday = tobj.timestr2comp(curday)

    outfile_dfcst = 'um_determisitic_10days_fcst_mjo_project_input_%s.nc' % curday
    outfile_dpath = os.path.join(mjoDFcstInpath, outfile_dfcst)
    outf_df = cdms2.open(outfile_dpath, 'w')

    outfile_ana = 'um_analysis_mjo_project_input_%s.nc' % curday
    outfile_apath = os.path.join(mjoAnaInpath, outfile_ana)
    outf_a = cdms2.open(outfile_apath, 'w')
    for (ivar, lev, longitudunal_norm_factor, ovar) in [
        ('ulwrf', None, 15.1, 'olr'),
        ('u', 20000, 4.81, 'u200'),
        ('u', 85000, 1.81, 'u850'),
    ]:
        for i in range(
                0, 11, 1
        ):  # 0 will bring past 120 days analysis and 1 to 10 will bring 10 days forecast
            nextday = tobj.moveTime(cday.year, cday.month, cday.day, i)
            previous120day = tobj.moveTime(
                nextday.year, nextday.month, nextday.day,
                -119)  # here -119 will bring previous120day
            previous120data = inf(ivar,
                                  time=(previous120day, nextday),
                                  level=lev)
            print "previous120data", i, previous120day, nextday, previous120data.shape
            previous120data_mean = cdutil.averager(previous120data, axis='t')
            if i:  # forecast individual 10 days in loop
                nextdaydata = inf(ivar, time=nextday, level=lev)
                axlist = nextdaydata.getAxisList()
                nextdaydata -= previous120data_mean  # subtract previous 120 days (119 days analysis + 1st day fcst)
            else:  # past 120 days analysis
                axlist = previous120data.getAxisList()
                nextdaydata = previous120data - previous120data_mean  # just subtract 120 days mean of analysis
            # end of if i:
            #
            subtropical_data = nextdaydata(latitude=(-15, 15, 'ccb'))
            subtropical_data_avg = cdutil.averager(subtropical_data, axis='y')
            subtropical_data_avg /= longitudunal_norm_factor
            fdata = cdms2.createVariable(subtropical_data_avg, id=ovar)
            axlist = axlist[0:-2] + [
                axlist[-1]
            ]  # i.e omitting latitude axis, since we already averaged over that axis.
            fdata.setAxisList(axlist)
            if i:
                outf_df.write(fdata)  # forecast file
            else:
                outf_a.write(fdata)  # analysis file
        # end of for i in range(1, 11, 1):
        # end of for (ivar, ....):
    outf_df.close()
    outf_a.close()
    inf.close()
Esempio n. 6
0
    def applyOperation( self, input_variable, operation ):
        result = None
        try:
            self.setTimeBounds( input_variable )
            operator = None
#            pydevd.settrace('localhost', port=8030, stdoutToServer=False, stderrToServer=True)
            wpsLog.debug( " $$$ ApplyOperation: %s " % str( operation ) )
            if operation is not None:
                type = operation.get('type','').lower()
                bounds = operation.get('bounds','').lower()
                op_start_time = time.clock() # time.time()
                if not bounds:
                    if type == 'departures':
                        ave = cdutil.averager( input_variable, axis='t', weights='equal' )
                        result = input_variable - ave
                    elif type == 'climatology':
                        result = cdutil.averager( input_variable, axis='t', weights='equal' )
                    else:
                        result = input_variable
                    time_axis = input_variable.getTime()
                elif bounds == 'np':
                    if   type == 'departures':
                        result = ma.anomalies( input_variable ).squeeze()
                    elif type == 'climatology':
                        result = ma.average( input_variable ).squeeze()
                    else:
                        result = input_variable
                    time_axis = input_variable.getTime()
                else:
                    if bounds == 'djf': operator = cdutil.DJF
                    elif bounds == 'mam': operator = cdutil.MAM
                    elif bounds == 'jja': operator = cdutil.JJA
                    elif bounds == 'son': operator = cdutil.SON
                    elif bounds == 'year':          operator = cdutil.YEAR
                    elif bounds == 'annualcycle':   operator = cdutil.ANNUALCYCLE
                    elif bounds == 'seasonalcycle': operator = cdutil.SEASONALCYCLE
                    if operator <> None:
                        if   type == 'departures':    result = operator.departures( input_variable ).squeeze()
                        elif type == 'climatology':   result = operator.climatology( input_variable ).squeeze()
                        else:                         result = operator( input_variable ).squeeze()
                    time_axis = result.getTime()
                op_end_time = time.clock() # time.time()
                wpsLog.debug( " ---> Base Operation Time: %.5f" % (op_end_time-op_start_time) )
            else:
                result = input_variable
                time_axis = input_variable.getTime()

            if isinstance( result, float ):
                result_data = [ result ]
            elif result is not None:
                if result.__class__.__name__ == 'TransientVariable':
                    result = ma.masked_equal( result.squeeze().getValue(), input_variable.getMissing() )
                result_data = result.tolist( numpy.nan )
            else: result_data = None
        except Exception, err:
            wpsLog.debug( "Exception applying Operation '%s':\n %s" % ( str(operation), traceback.format_exc() ) )
            return ( None, None )
Esempio n. 7
0
def run_diag_scatter(parameter):
    variables = parameter.variables
    run_type = parameter.run_type
    # We will always use the same regions, so we don't do the following:
    # x['region'] = parameter.nino_region
    # y['region'] = parameter.regions[0]
    x = {"var": "TS", "units": "degC", "region": "NINO3"}
    test_data = utils.dataset.Dataset(parameter, test=True)
    ref_data = utils.dataset.Dataset(parameter, ref=True)
    if parameter.print_statements:
        print("run_type: {}".format(run_type))
    if run_type == "model_vs_model":
        x["test"] = calculate_nino_index_model(test_data, x["region"],
                                               parameter)
        x["ref"] = calculate_nino_index_model(ref_data, x["region"], parameter)
    elif run_type == "model_vs_obs":
        x["test"] = calculate_nino_index_model(test_data, x["region"],
                                               parameter)
        x["ref"] = calculate_nino_index(x["region"], parameter, ref=True)
    else:
        raise Exception("Invalid run_type={}".format(run_type))
    parameter.test_name_yrs = utils.general.get_name_and_yrs(
        parameter, test_data)
    parameter.ref_name_yrs = utils.general.get_name_and_yrs(
        parameter, ref_data)
    for y_var in variables:
        if y_var == "TAUX":
            regions = ["NINO4"]
        else:
            regions = ["NINO3"]
        for region in regions:
            y = {"var": y_var, "region": region}
            test_data_ts = test_data.get_timeseries_variable(y_var)
            ref_data_ts = ref_data.get_timeseries_variable(y_var)
            y_region = default_regions.regions_specs[region][
                "domain"]  # type: ignore
            test_data_ts_regional = test_data_ts(y_region)
            ref_data_ts_regional = ref_data_ts(y_region)
            # Domain average
            test_avg = cdutil.averager(test_data_ts_regional, axis="xy")
            ref_avg = cdutil.averager(ref_data_ts_regional, axis="xy")
            # Get anomaly from annual cycle climatology
            y["test"] = cdutil.ANNUALCYCLE.departures(test_avg)
            y["ref"] = cdutil.ANNUALCYCLE.departures(ref_avg)
            y["units"] = test_avg.units
            if y_var == "TAUX":
                y["test"] *= 1000
                y["ref"] *= 1000
                y["units"] = "10^3 {}".format(y["units"])
            parameter.var_id = "{}-feedback".format(y["var"])
            title_tuple = (y["var"], y["region"], x["var"], x["region"])
            parameter.main_title = "{} anomaly ({}) vs. {} anomaly ({})".format(
                *title_tuple)
            parameter.viewer_descr[y["var"]] = parameter.main_title
            parameter.output_file = "feedback-{}-{}-{}-{}".format(*title_tuple)
            plot_scatter(x, y, parameter)
    return parameter
Esempio n. 8
0
def get_residual_timeseries(timeseries_ano,
                            mode,
                            region_subdomain,
                            RmDomainMean=True):
    """
    NOTE: Calculate residual by subtracting domain average (or global mean)
    Input
    - timeseries_ano: anomaly time series, cdms2 array, 3d (t, y, x)
    - mode: string, mode name, must be defined in regions_specs
    - RmDomainMean: bool (True or False).
          If True, remove domain mean of each time step.
          Ref:
              Bonfils and Santer (2011)
                  https://doi.org/10.1007/s00382-010-0920-1
              Bonfils et al. (2015)
                  https://doi.org/10.1175/JCLI-D-15-0341.1
          If False, remove global mean of each time step for PDO, or
              do nothing for other modes
          Default is True for this function.
    - region_subdomain: lat lon range of sub domain for given mode, which was
          extracted from regions_specs -- that is a dict contains domain
          lat lon ragne for given mode
    Output
    - timeseries_residual: cdms2 array, 3d (t, y, x)
    """
    if RmDomainMean:
        # Get domain mean
        regional_ano_mean_timeseries = cdutil.averager(
            timeseries_ano(region_subdomain), axis='xy', weights='weighted')
        # Match dimension
        timeseries_ano, regional_ano_mean_timeseries = \
            genutil.grower(
                timeseries_ano, regional_ano_mean_timeseries)
        # Subtract domain mean
        timeseries_residual = MV2.subtract(timeseries_ano,
                                           regional_ano_mean_timeseries)
    else:
        if mode in ['PDO', 'NPGO']:
            # Get global mean
            global_ano_mean_timeseries = cdutil.averager(
                timeseries_ano(latitude=(-60, 70)),
                axis='xy',
                weights='weighted')
            # Match dimension
            timeseries_ano, global_ano_mean_timeseries = \
                genutil.grower(
                    timeseries_ano, global_ano_mean_timeseries)
            # Subtract global mean
            timeseries_residual = MV2.subtract(timeseries_ano,
                                               global_ano_mean_timeseries)
        else:
            timeseries_residual = timeseries_ano
    # return result
    return timeseries_residual
Esempio n. 9
0
def compute(dm, do):
    """ Computes ZONAL MEAN assumes rectilinear/regular grid"""
    if dm is None and do is None:  # just want the doc
        return {
            "Name": "Zonal Mean",
            "Abstract": "Compute Zonal Mean",
            "URI": "http://uvcdat.llnl.gov/documentation/" +
            "utilities/utilities-2.html",
            "Contact": "*****@*****.**",
            "Comments": ""
        }
    return cdutil.averager(dm, axis='x'), cdutil.averager(do, axis='x')
Esempio n. 10
0
def compute(dm, do):
    """ Computes ZONAL MEAN assumes rectilinear/regular grid"""
    if dm is None and do is None:  # just want the doc
        return {
            "Name": "Zonal Mean",
            "Abstract": "Compute Zonal Mean",
            "URI":
                    "http://uvcdat.llnl.gov/documentation/" +
                    "utilities/utilities-2.html",
            "Contact": "*****@*****.**",
            "Comments": ""
        }
    return cdutil.averager(dm, axis='x'), cdutil.averager(do, axis='x')
Esempio n. 11
0
def GetData(idx):
    if idx == 1: fopen=cdms.open('tas_ECMWFear20c_1901_2010.nc'); DATAsp = fopen('ECMWFear20c_EquArea')[79:]
    if idx == 2: fopen=cdms.open('tas_NOAA20CRv3_1901_2010.nc');  DATAsp = fopen('NOAA20CRv3_EquArea') [79:]
    if idx == 3: fopen=cdms.open('tas_NCEPpNCAR_1948_2010.nc');   DATAsp = fopen('NCEPpNCAR_EquArea')[32:]
    if idx == 4: fopen=cdms.open('tas_JRA55_1958_2013.nc');       DATAsp = fopen('JRA55_EquArea')[22:-3]
    if idx == 5: fopen=cdms.open('tp_CFSR_detrended.nc');         DATAsp = fopen('tas')[:-4]
    if idx == 6: fopen=cdms.open('tp_ERA5_detrended.nc');         DATAsp = fopen('tas')[:-4]
    if idx == 7: fopen=cdms.open('tp_MERRA2_detrended.nc');       DATAsp = fopen('tas')[:-4]
    fopen.close()
    
    DATAgm = cdutil.averager(DATAsp,axis='yx')
    DATAgmCent = np.array(DATAgm - cdutil.averager(DATAgm, axis=0, weight='equal'))
    return DATAsp, np.array(DATAgm), np.array(DATAgmCent)
Esempio n. 12
0
def run_diag_scatter(parameter):
    variables = parameter.variables
    run_type = parameter.run_type
    # We will always use the same regions, so we don't do the following:
    # x['region'] = parameter.nino_region
    # y['region'] = parameter.regions[0]
    x = {'var': 'TS', 'units': 'degC', 'region': 'NINO3'}
    test_data = utils.dataset.Dataset(parameter, test=True)
    ref_data = utils.dataset.Dataset(parameter, ref=True)
    if parameter.print_statements:
        print('run_type: {}'.format(run_type))
    if run_type == 'model_vs_model':
        x['test'] = calculate_nino_index_model(test_data, x['region'], parameter)
        x['ref'] = calculate_nino_index_model(ref_data, x['region'], parameter)
    elif run_type == 'model_vs_obs':
        x['test'] = calculate_nino_index_model(test_data, x['region'], parameter)
        x['ref'] = calculate_nino_index(x['region'], parameter, ref=True)
    else:
        raise Exception('Invalid run_type={}'.format(run_type))
    parameter.test_name_yrs = utils.general.get_name_and_yrs(parameter, test_data)
    parameter.ref_name_yrs = utils.general.get_name_and_yrs(parameter, ref_data)
    for y_var in variables:
        if y_var == 'TAUX':
            regions = ['NINO4']
        else:
            regions = ['NINO3']
        for region in regions:
            y = {'var': y_var, 'region': region}
            test_data_ts = test_data.get_timeseries_variable(y_var)
            ref_data_ts = ref_data.get_timeseries_variable(y_var)
            y_region = default_regions.regions_specs[region]['domain']
            test_data_ts_regional = test_data_ts(y_region)
            ref_data_ts_regional = ref_data_ts(y_region)
            # Domain average
            test_avg = cdutil.averager(test_data_ts_regional, axis='xy')
            ref_avg = cdutil.averager(ref_data_ts_regional, axis='xy')
            # Get anomaly from annual cycle climatology
            y['test'] = cdutil.ANNUALCYCLE.departures(test_avg)
            y['ref'] = cdutil.ANNUALCYCLE.departures(ref_avg)
            y['units'] = test_avg.units
            if y_var == 'TAUX':
                y['test'] *= 1000
                y['ref'] *= 1000
                y['units'] = '10^3 {}'.format(y['units'])
            parameter.var_id = '{}-feedback'.format(y['var'])
            title_tuple = (y['var'], y['region'], x['var'], x['region'])
            parameter.main_title = '{} anomaly ({}) vs. {} anomaly ({})'.format(*title_tuple)
            parameter.viewer_descr[y['var']] = parameter.main_title
            parameter.output_file = 'feedback-{}-{}-{}-{}'.format(*title_tuple)
            plot_scatter(x, y, parameter)
    return parameter
Esempio n. 13
0
def compute(dm, do):
    """ Computes ANNUAL MEAN"""
    if dm is None and do is None:  # just want the doc
        return {
            "Name": "Annual Mean",
            "Abstract": "Compute Annual Mean",
            "URI": "http://uvcdat.llnl.gov/documentation/" +
            "utilities/utilities-2.html",
            "Contact": "*****@*****.**",
            "Comments": "Assumes input are 12 months climatology"
        }
    # Do we really want this? Wouldn't it better to let it fails
    cdms2.setAutoBounds('on')
    return cdutil.averager(dm, axis='t'), cdutil.averager(do, axis='t')
Esempio n. 14
0
def compute(dm, do):
    """ Computes ANNUAL MEAN"""
    if dm is None and do is None:  # just want the doc
        return {
            "Name": "Annual Mean",
            "Abstract": "Compute Annual Mean",
            "URI":
                    "http://uvcdat.llnl.gov/documentation/" +
                    "utilities/utilities-2.html",
            "Contact": "Peter Gleckler <*****@*****.**>",
            "Comments": "Assumes input are 12 months climatology"
        }
    # Do we really want this? Wouldn't it better to let it fails
    cdms2.setAutoBounds('on')
    return cdutil.averager(dm, axis='t'), cdutil.averager(do, axis='t')
Esempio n. 15
0
def arbitrary_checking(mode, eof_Nth):
    """
    NOTE: To keep sign of EOF pattern consistent across observations or models,
          this function check whether multiplying -1 to EOF pattern and PC
          is needed or not
    Input
    - mode: string, modes of variability. e.g., 'PDO', 'PNA', 'NAM', 'SAM'
    - eof_Nth: cdms2 array from eofs, eof pattern
    Ouput
    - reverse_sign: bool, True or False
    """
    reverse_sign = False
    # Explicitly check average of geographical region for each mode
    if mode == 'PDO':
        if float(
                cdutil.averager(eof_Nth(latitude=(30, 40),
                                        longitude=(150, 180)),
                                axis='xy',
                                weights='weighted')) >= 0:
            reverse_sign = True
    elif mode == 'PNA':
        if float(
                cdutil.averager(eof_Nth(latitude=(80, 90)),
                                axis='xy',
                                weights='weighted')) <= 0:
            reverse_sign = True
    elif mode == 'NAM' or mode == 'NAO':
        if float(
                cdutil.averager(eof_Nth(latitude=(60, 80)),
                                axis='xy',
                                weights='weighted')) >= 0:
            reverse_sign = True
    elif mode == 'SAM':
        if float(
                cdutil.averager(eof_Nth(latitude=(-60, -90)),
                                axis='xy',
                                weights='weighted')) >= 0:
            reverse_sign = True
    else:  # Minimum sign control part was left behind for any future usage..
        if float(eof_Nth[-1][-1]) is not eof_Nth.missing:
            if float(eof_Nth[-1][-1]) >= 0:
                reverse_sign = True
        elif float(eof_Nth[-2][-2]) is not eof_Nth.missing:
            if float(eof_Nth[-2]
                     [-2]) >= 0:  # Double check missing value at pole
                reverse_sign = True
    # return result
    return reverse_sign
Esempio n. 16
0
def average_vs_projection(data):
    """Show the difference between PDSI regional average and projections"""
    #start = cdtime.comptime(1975,8,1)
    #stop = cdtime.comptime(2005,12,31)
    start = cdtime.comptime(1900,1,1)
    stop = cdtime.comptime(1949,12,31)
    ax1=plt.subplot(211)
    ax2=plt.subplot(212)
    for thing in sorted(["MXDA","OWDA","NADA","MADA","ANZDA"])+["ALL"]:
        X=getattr(data,thing)
        pdsi_av = cdutil.averager(X.obs,axis='xy')(time=(start,stop))
        c=colorregions(X.name)
        Plotting.time_plot(pdsi_av,lw=3,color=c,label=X.name,ax=ax1)
        Plotting.time_plot(X.projection(time=(start,stop)),lw=3,color=c,label=X.name,ax=ax2)
        if thing =="ALL":
           
            x=np.arange(1975,2006)
            y=X.projection(time=(start,stop))
            p=np.polyfit(x,y,1)
            ax2.plot(x,np.polyval(p,x),"k--",lw=1)
            y=pdsi_av
            p=np.polyfit(x,y,1)
            ax1.plot(x,np.polyval(p,x),"k--",lw=1)
            
            
    ax1.set_title("(a): Regional mean PDSI")
    ax1.set_ylabel("PDSI")
    ax2.set_title("(b): Projection on fingerprint")
   # ax2.set_ylim(-22,22)
    ax2.set_ylabel("Projection")
    ax1.set_ylim(-1.6,1.6)
    plt.legend(ncol=4,fontsize=8)
def TOAswcs(HISSSP_3_110, model_name):
    vORG_110 = HISSSP_3_110.vORG
    HISm_mean_110 = HISSSP_3_110.HISm_mean
    HISm_spat_110 = HISSSP_3_110.HISm_spat
    EOFreturn1 = HISSSP_3_110.class_cal_eofs(vORG_110,
                                             HISm_mean_110,
                                             HISm_spat_110,
                                             idx=[-1],
                                             REA_idx=True)
    STDeof3 = EOFreturn1['std_EOFsOnHISm'][:, 3]
    vars_list = ['rsut', 'rsutcs']
    STDsw = []
    mondel_list = ['CNRM-CM6-1', 'CNRM-ESM2-1', 'MIROC-ES2L', 'UKESM1-0-LL']
    for idx1 in model_name:
        if idx1 in mondel_list:
            fopen2 = cdms.open(new_data_path + 'Returned_' + vars_list[1] +
                               '_' + idx1 + '_historical_r1i1p1f2.nc')
        else:
            fopen2 = cdms.open(new_data_path + 'Returned_' + vars_list[1] +
                               '_' + idx1 + '_historical_r1i1p1f1.nc')
        rsutcs = fopen2('tEquArea', squeeze=1)
        used = cdutil.averager(rsutcs[-114:-4, -3:, :], axis='yx')
        std = np.std(used)
        STDsw.append(std)
    STDsw = np.array(STDsw)
    fitT = sm.OLS(STDeof3, np.c_[np.ones(17), STDsw]).fit()
    pred = fitT.get_prediction(np.c_[np.ones(17), STDsw]).predicted_mean
    plt.scatter(STDsw, STDeof3)
    plt.plot(STDsw, pred, color='black')
    plt.xlim(0.6, 2.2)
    plt.ylim(0, 0.25)
    plt.show()
    plt.clf()
Esempio n. 18
0
def reduce2latlon_seasonal( mv, seasons=seasonsyr, vid=None ):
    """as reduce2lat_seasonal, but both lat and lon axes are retained.
    """
    # This differs from reduce2lat_seasonal only in the line "axis_names ="....
    # I need to think about how to structure the code so there's less cut-and-paste!
    if vid==None:
        vid = 'reduced_'+mv.id
    # Note that the averager function returns a variable with meaningless id.
    # The climatology function returns the same id as mv, which we also don't want.

    # The slicers in time.py require getBounds() to work.
    # If it doesn't, we'll have to give it one.
    # Setting the _bounds_ attribute will do it.
    timeax = timeAxis(mv)
    if timeax.getBounds()==None:
        timeax._bounds_ = timeax.genGenericBounds()
    mvseas = seasons.climatology(mv)
    
    axes = allAxes( mv )
    axis_names = [ a.id for a in axes if a.id!='lat' and a.id!='lon' and a.id!='time']
    axes_string = '('+')('.join(axis_names)+')'

    if len(axes_string)>2:
        for axis in mvseas.getAxisList():
            if axis.getBounds() is None:
                axis._bounds_ = axis.genGenericBounds()
        avmv = averager( mvseas, axis=axes_string )
    else:
        avmv = mvseas
    if avmv is None: return avmv
    avmv.id = vid
    if hasattr(mv,'units'): avmv.units = mv.units
    avmv = delete_singleton_axis( avmv, vid='time' )
    avmv.units = mv.units
    return avmv
Esempio n. 19
0
def reduce2levlat_seasonal( mv, seasons=seasonsyr, vid=None ):
    """as reduce2levlat, but data is averaged only for time restricted to the specified season;
    as in reduce2lat_seasona."""
    if vid==None:   # Note that the averager function returns a variable with meaningless id.
        vid = 'reduced_'+mv.id
    if levAxis(mv) is None: return None
    if latAxis(mv) is None: return None
    axes = allAxes( mv )
    timeax = timeAxis(mv)
    if timeax.getBounds()==None:
        timeax._bounds_ = timeax.genGenericBounds()

    if timeax.units=='months':
        # Special check necessary for LEGATES obs data, because
        # climatology() won't accept this incomplete specification
        timeax.units = 'months since 0001-01-01'
    mvseas = seasons.climatology(mv)

    axis_names = [ a.id for a in axes if a.id!='lev' and a.id!='lat' and a.id!='time']
    axes_string = '('+')('.join(axis_names)+')'

    if len(axes_string)>2:
        avmv = averager( mvseas, axis=axes_string )
    else:
        avmv = mvseas
    avmv.id = vid
    avmv = delete_singleton_axis( avmv, vid='time' )
    avmv.units = mv.units

    return avmv
    def testContiguousRegridNANIssue(self):
        a = MV2.reshape(MV2.sin(MV2.arange(20000)), (2, 1, 100, 100))
        lon = cdms2.createAxis(MV2.arange(100) * 3.6)
        lon.designateLongitude()
        lon.units = "degrees_east"
        lon.id = "longitude"

        lat = cdms2.createAxis(MV2.arange(100) * 1.8 - 90.)
        lat.id = "latitude"
        lat.designateLatitude()
        lat.units = "degrees_north"

        lev = cdms2.createAxis([1000.])
        lev.id = "plev"
        lev.designateLevel()
        lev.units = "hPa"

        t = cdms2.createAxis([0, 31.])
        t.id = "time"
        t.designateTime()
        t.units = "days since 2014"

        cdutil.setTimeBoundsMonthly(t)
        a.setAxisList((t, lev, lat, lon))
        a = MV2.masked_less(a, .5)
        grd = cdms2.createGaussianGrid(64)

        a = a.ascontiguous()
        a = a.regrid(grd, regridTool="regrid2")
        a = cdutil.averager(a, axis='txy')
        self.assertEqual(a[0], 0.7921019540305255)
Esempio n. 21
0
    def compute(self):
        variable = self.getInputFromPort("tvariable")
        axis = self.getInputFromPort("axis")

        avg = cdutil.averager(variable.data, axis=axis)

        self.setResult('tvariable', TransientVariable(avg))
Esempio n. 22
0
def get_predictor1(data_path, predictor_source, varMEAN, length, selec):
    model_flg = 1
    if predictor_source == 'models_historical' or predictor_source == 'models_ssp':
        for instance in CMIP6_models.instances:
            if 'historical' in instance.CaseList and 'ssp585' in instance.CaseList:
                if predictor_source == 'models_historical':
                    fopen = cdms.open(data_path + 'tp_' + instance.Name +
                                      '_historical_' + instance.VarLab[1][0] +
                                      '.nc')
                    vUsed = fopen(varMEAN)[int(-1 * length - 4):-4]
                if predictor_source == 'models_ssp':
                    fopen = cdms.open(data_path + 'tp_' + instance.Name +
                                      '_ssp585_' + instance.VarLab[1][0] +
                                      '.nc')
                    vUsed = fopen(varMEAN)[int(-1 * length):]
                fopen.close()
                vUsed_masked = vUsed - cdutil.averager(
                    vUsed, axis=0, weights='equal')
                if model_flg == 1:
                    array_MEAN = [vUsed_masked]
                    lat, lon = vUsed_masked.getAxis(1), vUsed_masked.getAxis(2)
                    model_flg += 1
                else:
                    array_MEAN = np.ma.concatenate(
                        [array_MEAN, [vUsed_masked]])
        return_ME = MV.array(array_MEAN)
        return_ME.setAxis(2, lat)
        return_ME.setAxis(3, lon)
        return return_ME
Esempio n. 23
0
def timeseries_average( data_slice ):
#    logger = getLogger( "log-map" )
    lat, lon = location['latitude'], location['longitude']
    timeseries = data_slice(latitude=(lat, lat, "cob"), longitude=(lon, lon, "cob"))
    result =  cdutil.averager( timeseries, axis='t', weights='equal' ).squeeze().tolist()
#    if logger: logger.debug( "Result = %s", str(result) )
    return result
Esempio n. 24
0
 def test1dLevelAxis(self):
     f = cdms2.open(os.path.join(vcs.sample_data, "ta_ncep_87-6-88-4.nc"))
     ta = f("ta", time=slice(0, 1), squeeze=1)
     ta = cdutil.averager(ta, axis="yx")
     self.x.plot(ta, bg=self.bg)
     fnm = os.path.splitext(os.path.split(__file__)[1])[0] + ".png"
     self.checkImage(fnm)
Esempio n. 25
0
 def executeOperation(self, task, _input):
     self.logger.info("Executing AverageKernel, input metadata = " +
                      str(_input.metadata))
     dset_address = _input.metadata.get("uri",
                                        _input.metadata.get("dataPath"))
     vname = _input.metadata.get("name")
     jobId = str(task.metadata.get('jobId', task.rId))
     dset = cdms2.open(dset_address)
     selector = _input.getSelector(dset[vname])
     self.logger.info("exec *EXT* AverageKernel, selector: " +
                      str(selector))
     variable = dset(vname, **selector)
     axes = task.metadata.get("axis", "xy")
     #        weights = task.metadata.get( "weights", "" ).split(",")
     #        if weights == [""]: weights = [ ("generate" if( axis == 'y' ) else "equal") for axis in axes ]
     weights = task.metadata.get("weights", "generate").split(",")
     if (len(weights) == 1): weights = weights[0]
     action = task.metadata.get("action", "average")
     returned = 0
     result_var = cdutil.averager(variable,
                                  axis=axes,
                                  weights=weights,
                                  action=action,
                                  returned=returned)
     self.logger.info("Computed result, input shape = " +
                      str(variable.shape) + ", output shape = " +
                      str(result_var.shape))
     rv = self.createResult(jobId, result_var, _input, task)
     self.logger.info("Result data, shape = " + str(result_var.shape) +
                      ", data = " + np.array_str(rv.array()))
     return rv
Esempio n. 26
0
def gain_pcs_fraction(full_field, eof_pattern, pcs, debug=False):
    """
    NOTE: This function is designed for getting fraction of variace obtained by
          pseudo pcs
    Input: (dimension x, y, t should be identical for above inputs)
    - full_field (t,y,x)
    - eof_pattern (y,x)
    - pcs (t)
    Output:
    - fraction: cdms2 array but for 1 single number which is float.
                Preserve cdms2 array type for netCDF recording.
                fraction of explained variance
    """
    # 1) Get total variacne ---
    variance_total = genutil.statistics.variance(full_field, axis="t")
    variance_total_area_ave = cdutil.averager(
        variance_total, axis="xy", weights="weighted"
    )
    # 2) Get variance for pseudo pattern ---
    # 2-1) Reconstruct field based on pseudo pattern
    if debug:
        print("from gain_pcs_fraction:")
        print("full_field.shape (before grower): ", full_field.shape)
        print("eof_pattern.shape (before grower): ", eof_pattern.shape)
    # Extend eof_pattern (add 3rd dimension as time then copy same 2d value for all time step)
    reconstructed_field = genutil.grower(full_field, eof_pattern)[
        1
    ]  # Matching dimension (add time axis)
    for t in range(0, len(pcs)):
        reconstructed_field[t] = MV2.multiply(reconstructed_field[t], pcs[t])
    # 2-2) Get variance of reconstructed field
    variance_partial = genutil.statistics.variance(reconstructed_field, axis="t")
    variance_partial_area_ave = cdutil.averager(
        variance_partial, axis="xy", weights="weighted"
    )
    # 3) Calculate fraction ---
    fraction = MV2.divide(variance_partial_area_ave, variance_total_area_ave)
    # debugging
    if debug:
        print("full_field.shape (after grower): ", full_field.shape)
        print("reconstructed_field.shape: ", reconstructed_field.shape)
        print("variance_partial_area_ave: ", variance_partial_area_ave)
        print("variance_total_area_ave: ", variance_total_area_ave)
        print("fraction: ", fraction)
        print("from gain_pcs_fraction done")
    # return result
    return fraction
    def zon_p_plots(var, dsetA, dsetB, title="", nlev=None):
        # Average Zonally over last 20 years
        bt = 30 * 12

        controlV = dsetA(var, time=slice(bt, 600))
        compareV = dsetB(var, time=slice(bt, 600))

        a = cdutil.averager(controlV, axis="x")
        b = cdutil.averager(compareV, axis="x")

        c = b - a
        cdutil.setTimeBoundsMonthly(c)
        plotme = cdutil.DJF.climatology(c)
        lat_pressure_contour_cdms(plotme, tit="%s DJF" % title, nlev=nlev)

        plotme = cdutil.JJA.climatology(c)
        lat_pressure_contour_cdms(plotme, tit="%s JJA" % title, nlev=nlev)
Esempio n. 28
0
 def getProcessedVariable( self, varname, var_proc_op ):
     var = self.df[ varname ]
     if isNone( var ):
         print>>sys.stderr, "Error, can't find variable '%s' in data file." % ( varname )
         return None
     if var_proc_op == "anomaly_t":
         var_ave = cdutil.averager( var, axis='time' )
     return var
Esempio n. 29
0
 def weightedAvgAxisPoints(self, var):
     """ Update the variable by applying the weighted avg operation to the
     the given axis.
     """
     varID = var.id
     var = cdutil.averager(var, axis="(%s)" % self.axis.id)
     var.id = varID
     return var
Esempio n. 30
0
 def execute(self):
     dataIn=self.loadData()[0]
     data,cdms2keyargs = self.loadVariable(dataIn)
     dims = "".join(["(%s)" % x for x in cdms2keyargs.keys()])
     data = cdutil.averager(data,axis=dims)
     data.id=self.getVariableName(dataIn)
     self.saveVariable(data,self.average,"json")
     return
Esempio n. 31
0
def EIS_LTS(T,P,RELHUM):
        #Calculates the Lower Tropospheric Stability (LTS) and Estimated Inversion Strenght (EIS)
        Theta_700=cdu.logLinearInterpolation(T,P,levels=70000)*(1000./700.)**(2./7.)
        Theta_700=cdu.averager(Theta_700,axis='z')
        Theta_1000=cdu.logLinearInterpolation(T,P,levels=100000)
        Theta_1000=cdu.averager(Theta_1000,axis='z')
        LTS=Theta_700-Theta_1000
        LTS.id='LTS'
        LTS.long_name='Lower tropospheric stability'
        LTS.units='K'
        Theta_700.long_name='Potential temperature at 700hPa'
        Theta_700.units='K'
        Theta_1000.long_name='Potential temperature at 1000hPa'
        Theta_1000.units='K'
        # !!! Still need to develop EIS !!!
        EIS=LTS
        return LTS,EIS,Theta_700,Theta_1000
Esempio n. 32
0
def decade_fast_annual_cycle(X,debug=False,semiann=False,zonal_average=False,return_Pdays=True):
    if len(X.shape)==4:
        nt,nlat,nlon,nmod = X.shape
        has_models=True
    elif len(X.shape)==3:
        nt,nlat,nlon = X.shape
        has_models = False
    if zonal_average:
        X = cdutil.averager(X,axis='x')
    nyears = nt/60

    newshape = (nyears, 60) + X.shape[1:]
    print newshape
    yrs = X.reshape(newshape)

    if semiann:
        vec_cycle=broadcast(get_semiannual_cycle)
    else:
        vec_cycle = broadcast(get_cycle)
   # print "vectorized"
    apply_everywhere = np.apply_along_axis(vec_cycle,1,yrs)
    
    R = MV.array(apply_everywhere[:,0])
    P = MV.array(apply_everywhere[:,1])
    #print "got R and P"
    
    if debug:
        return R,P
    time = X.getTime()[::60]
    tax = cdms.createAxis(time)
    tax.designateTime()
    tax.id = "time"
    atts = X.getTime().attributes
    for k in atts:
        setattr(tax,k,atts[k])
    print "got new time"
    axlist = [tax]+X.getAxisList()[1:]
    R.setAxisList(axlist)
    P.setAxisList(axlist)
    if return_Pdays is False:
        return R,P
    #Pnew = P.copy()
    #Pold = P.copy()
    Pnew = MV.zeros(P.shape)
    if has_models:
        
        for mod_i in range(nmod):
            chunk = P[:,:,:,mod_i]
            Pnew[:,:,:,mod_i] = correct_phase(chunk)
            
            
    else:
        chunk = P[:,:,:]
        Pnew = correct_phase(chunk)
    Pnew = MV.array(Pnew)
    Pnew.setAxisList(axlist)            
   
    return R,P,Pnew
Esempio n. 33
0
 def alteredWeightedAvgAxisPoints(self, var):
     """ Update the variable by applying the altered weighted avg operation
     to the given axis.
     """
     varID = var.id
     var = cdutil.averager(var, axis="(%s)" % self.axis.id,
                          weight=self.alteredWeightsVar.filled())
     var.id = varID
     return var
Esempio n. 34
0
 def getProcessedVariable(self, varname, var_proc_op):
     var = self.df[varname]
     if isNone(var):
         print >> sys.stderr, "Error, can't find variable '%s' in data file." % (
             varname)
         return None
     if var_proc_op == "anomaly_t":
         var_ave = cdutil.averager(var, axis='time')
     return var
Esempio n. 35
0
def compute(d):
    """ Computes bias"""
    if d is None:  # just want the doc
        return {
            "Name": "Mean",
            "Abstract": "Area Mean (area weighted)",
            "Contact": "*****@*****.**",
        }
    return MV2.float(cdutil.averager(d, axis='xy', weights='weighted'))
Esempio n. 36
0
def compute(d):
    """Computes bias"""
    if d is None:  # just want the doc
        return {
            "Name": "Mean",
            "Abstract": "Area Mean (area weighted)",
            "Contact": "*****@*****.**",
        }
    return MV2.float(cdutil.averager(d, axis="xy", weights="weighted"))
Esempio n. 37
0
 def sumAxisPoints(self, var):
     """ Update the variable by applying the sum operation to the given
     axis. Note this function is called only when a variable is defined.
     """
     varID = var.id
     var = cdutil.averager(var, axis="(%s)" % self.axis.id, weight='equal',
                           action='sum')        
     var.id = varID
     return var
Esempio n. 38
0
 def get_ssp(fname_ssp):
     fopen_ssp = cdms.open(data_path + fname_ssp)
     v_SSP = fopen_ssp(varMEAN)
     v_SSP_Mean = cdutil.averager(v_SSP,
                                  axis='yx') - v_HIS_MeanYr
     v_SSP_DeTr = np.convolve(v_SSP_Mean,
                              np.ones(21) / 21,
                              mode='valid')
     fopen_ssp.close()
     HIS_full_Mean = cdutil.averager(v_HIS_full,
                                     axis='yx') - v_HIS_MeanYr
     SSP_full_Mean = cdutil.averager(v_SSP,
                                     axis='yx') - v_HIS_MeanYr
     COM_full_Mean = np.r_[HIS_full_Mean, SSP_full_Mean]
     COM_full_DeTr = np.convolve(COM_full_Mean,
                                 np.ones(21) / 21,
                                 mode='valid')
     return COM_full_DeTr, v_SSP_DeTr
Esempio n. 39
0
 def plot(self, prevWindowId, varSpecs, method, template, width, height, opts={}):
     canvas = self._canvas[prevWindowId] if prevWindowId != 0 else None
     plot = VcsPlot(canvas, width=width, height=height)
     plot.setGraphicsMethod(method)
     plot.setTemplate(template)
     all_vars = []
     for varSpec in varSpecs:
         if 'json' in varSpec:
             f = None
             var = compute_graph.loadjson(varSpec['json']).derive()
         else: 
             f = cdms2.open(varSpec['uri'])
             # use [] so that the var is not read.
             var = f[varSpec['variable']]
         if ('operations' in varSpec):
             for op in varSpec['operations']:
                 if ('subRegion' in op):
                     kargs = op['subRegion']
                     var = var.subRegion(**kargs)
                 elif ('subSlice' in op):
                     kargs = op['subSlice']
                     # fill in None with begin and end of the current axis
                     for axis in list(kargs.keys()):
                         values = kargs[axis]
                         newValues = values
                         axisIndex = var.getAxisIndex(axis)
                         if values[0] is None:
                             newValues[0] = 0
                         if values[1] is None:
                             newValues[1] = var.shape[axisIndex] - 1
                         kargs[axis] = slice(*newValues)
                     var = var.subSlice(**kargs)
                 elif ('transform' in op):
                     for axis in op["transform"]:
                         method = op["transform"][axis]
                         if method == "avg":
                             var = cdutil.averager(var,axis="({})".format(axis))
                         elif method == "std":
                             # .std does not work with a FileVariable
                             # var[:] turns var into a transientVariable which can be used in .std()
                             var = genutil.statistics.std(var[:], axis="({})".format(axis))
                         else:
                             print("Got {} as a transform method".format(method))
         if ('axis_order' in varSpec):
             indexOrder = varSpec['axis_order']
             axisOrder = var.getAxisIds()
             stringOrder = ''.join(["({})".format(axisOrder[i]) for i in indexOrder])
             var = var(order=stringOrder)
         all_vars.append(var())
     plot.loadVariable(all_vars)
     canvas = plot.getCanvas()
     windowId = self.getGlobalId(plot.getWindow())
     self._canvas[windowId] = canvas
     if f is not None:
         f.close()
     return [windowId]
Esempio n. 40
0
def compute(dm, do):
    """ Computes bias"""
    if dm is None and do is None:  # just want the doc
        return {
            "Name": "Bias",
            "Abstract": "Compute Full Average of Model - Observation",
            "Contact": "*****@*****.**",
        }
    dif = MV2.subtract(dm, do)
    return MV2.float(cdutil.averager(dif, axis='xyt', weights='weighted'))
Esempio n. 41
0
def compute(dm, do):
    """Computes bias"""
    if dm is None and do is None:  # just want the doc
        return {
            "Name": "Bias",
            "Abstract": "Compute Full Average of Model - Observation",
            "Contact": "*****@*****.**",
        }
    dif = MV2.subtract(dm, do)
    return MV2.float(cdutil.averager(dif, axis="xyt", weights="weighted"))
Esempio n. 42
0
def regional_DA(OWDA,
                region,
                start_time=None,
                typ='fingerprint',
                return_noise=False):
    if start_time is None:
        start_time = cdtime.comptime(2000, 1, 1)
    times = np.arange(10, 76)
    modeldata = mask_data(OWDA.model(region), OWDA.obs(region)[0].mask)
    if typ == 'fingerprint':
        mma = MV.average(modeldata, axis=0)
        solver = Eof(mma, weights='area')

        to_proj = mask_data(modeldata, solver.eofs()[0].mask)
        P = MV.zeros(to_proj.shape[:2])
        for i in range(to_proj.shape[0]):
            tp = to_proj[i]
            mma_mask = mask_data(mma, tp[0].mask)
            solver = Eof(mma_mask, weights='area')
            fac = da.get_orientation(solver)
            P[i] = solver.projectField(tp)[:, 0] * fac
        P.setAxisList(to_proj.getAxisList()[:2])
        noise = solver.projectField(OWDA.obs(region))[:, 0]
    else:
        P = cdutil.averager(modeldata, axis='xy')
        noise = cdutil.averager(OWDA.obs(region), axis='xy')
    if return_noise:
        return P, noise
    else:
        nmod, nyears = P.shape
        TOE = MV.zeros((nmod, len(times)))
        for i in range(len(times)):
            L = times[i]
            stop_time = start_time.add(L, cdtime.Years)
            modslopes = cmip5.get_linear_trends(P(time=(start_time,
                                                        stop_time)))

            noiseterm = np.std(bootstrap_slopes(noise, L))

            TOE[:, i] = modslopes / noiseterm
        TOE.setAxis(0, P.getAxis(0))
        return TOE
Esempio n. 43
0
 def execute(self):
     dataIn=self.loadData()[0]
     domain = self.loadDomain()
     cdms2keyargs = self.domain2cdms(domain)
     f=self.loadFileFromURL(dataIn["url"])
     data = f(dataIn["id"],**cdms2keyargs)
     dims = "".join(["(%s)" % x for x in cdms2keyargs.keys()])
     data = cdutil.averager(data,axis=dims)
     data.id=dataIn["id"]
     self.saveVariable(data,self.average,"json")
     return
Esempio n. 44
0
    def testYxfilled(self):
        f = cdms2.open(os.path.join(cdat_info.get_sampledata_path(), 'clt.nc'))

        cdms2.setAutoBounds("on")
        s = f("clt")

        d1 = MV2.max(s, axis=0)
        d2 = MV2.min(s, axis=0)

        s1 = cdutil.averager(d1, axis='x')
        s2 = cdutil.averager(d2, axis='x')

        yf = vcsaddons.createyxvsxfill()
        yf.linewidth = 5
        yf.linecolor = "red"
        yf.fillareacolor = "blue"

        self.x.plot(s1, s2, yf)

        self.checkImage("test_yxvsxfill.png")
Esempio n. 45
0
def get_daily_ano_segment(d_seg):
    """
    Note: 1. Get daily time series (3D: time and spatial 2D)
          2. Meridionally average (2D: time and spatial, i.e., longitude)
          3. Get anomaly by removing time mean of the segment
    input
    - d_seg: cdms2 data
    output
    - d_seg_x_ano: 2d array
    """
    cdms2.setAutoBounds('on')
    # sub region
    d_seg = d_seg(latitude=(-10, 10))
    # Get meridional average (3d (t, y, x) to 2d (t, y))
    d_seg_x = cdutil.averager(d_seg, axis='y', weights='weighted')
    # Get time-average in the segment on each longitude grid
    d_seg_x_ave = cdutil.averager(d_seg_x, axis='t')
    # Remove time mean for each segment
    d_seg_x_ano = MV2.subtract(d_seg_x, d_seg_x_ave)
    return d_seg_x_ano
Esempio n. 46
0
    def applyAxesOperations(self, var, axesOperations):
        """ Apply axes operations to update the slab """
        try:
            axesOperations = eval(axesOperations)
        except:
            raise TypeError("Invalid string 'axesOperations'")

        for axis in list(axesOperations):
            if axesOperations[axis] == 'sum':
                var = cdutil.averager(var, axis="(%s)" % axis, weight='equal',
                                      action='sum')
            elif axesOperations[axis] == 'avg':
                var = cdutil.averager(var, axis="(%s)" % axis, weight='equal')
            elif axesOperations[axis] == 'wgt':
                var = cdutil.averager(var, axis="(%s)" % axis)
            elif axesOperations[axis] == 'gtm':
                var = genutil.statistics.geometricmean(var, axis="(%s)" % axis)
            elif axesOperations[axis] == 'std':
                var = genutil.statistics.std(var, axis="(%s)" % axis)                
                
        return var
Esempio n. 47
0
    def executeOperation(self, task, _input):
        variable = _input.getVariable()
        axis = task.metadata.get("axis","xy")
#        weights = task.metadata.get( "weights", "" ).split(",")
#        if weights == [""]: weights = [ ("generate" if( axis == 'y' ) else "equal") for axis in axes ]
        weights = task.metadata.get("weights","generate").split(",")
        if( len(weights) == 1 ): weights = weights[0]
        action = task.metadata.get("action","average")
        returned = 0
        result_var = cdutil.averager( variable, axis=axis, weights=weights, action=action, returned=returned )
        rv = self.createResult( result_var, _input, task )
        return rv
Esempio n. 48
0
    def applyOperation( self, input_variables, operation ):
        result = None
        result_mdata = {}
        t0 = time.time()
        input_variable = input_variables[0]
        try:
            if operation is not None:
                method = operation.get('method','').lower()
                if method == 'average':
                    axis = operation.get('axis','xy').lower()
                    if 'e' in axis:
                        axis1 = axis.replace('e','')
                        for input_variable in input_variables:
                            lresult = cdutil.averager( input_variable, axis=axis1 ) if axis1 else cdutil.averager( input_variable )
                            result = lresult if result is None else result + lresult
                        result /= len( input_variables )
                    else:
                        result = cdutil.averager( input_variable, axis=axis )

        except Exception, err:
            wpsLog.debug( "Exception applying Operation '%s':\n %s" % ( str(operation), traceback.format_exc() ) )
Esempio n. 49
0
    def applyAxesOperations(self, var, axesOperations):
        """ Apply axes operations to update the slab """
        try:
            axesOperations = eval(axesOperations)
        except:
            raise TypeError("Invalid string 'axesOperations'")

        for axis in list(axesOperations):
            if axesOperations[axis] == 'sum':
                var = cdutil.averager(var, axis="(%s)" % axis, weight='equal',
                                      action='sum')
            elif axesOperations[axis] == 'avg':
                var = cdutil.averager(var, axis="(%s)" % axis, weight='equal')
            elif axesOperations[axis] == 'wgt':
                var = cdutil.averager(var, axis="(%s)" % axis)
            elif axesOperations[axis] == 'gtm':
                var = genutil.statistics.geometricmean(var, axis="(%s)" % axis)
            elif axesOperations[axis] == 'std':
                var = genutil.statistics.std(var, axis="(%s)" % axis)                
                
        return var
def computer(name, start_lon, end_lon, start_lat, end_lat, Nb=200, Lb=24, windows = [20,30,40,50,75,100]):
    '''
    Where the hell is my docstring?
    '''
    # filtering parameters    
    fs = 1; f_hi = 1/(12*2.0); f_lo = fs/(12*7.0)
    
    # open file
    f = cdms2.open(name, 'r')
    start_time = f.getAxis('time').asRelativeTime()[0]
    end_time = f.getAxis('time').asRelativeTime()[-1]

    # extract variable of interest in east pacific area
    coral = f('pseudocoral',latitude=(start_lat,end_lat),longitude=(start_lon,end_lon))
    # print 'coral'
    # print coral
    f.close()

    # compute spatial mean
    cdutil.setTimeBoundsMonthly(coral,stored=0)
    spatial_mean = cdutil.averager(coral,axis='xy')
    
    # generate boostrap samples
    Xb = bootstrap.block_bootstrap_ET(spatial_mean, Lb, Nb)
    #print 'spatial_mean_bootstrap'
    #print spatial_mean_bootstrap
    nw = len(windows) # number of windows
   
    
    seasonal_amp = np.empty((nw,Nb))
    variance     = np.empty((nw,Nb))
    
    index = 0  # loop over windows
    for i in windows:
        Xw =  Xb[:,:i*12]  # sample over window
        clim, anom = seasonal_cycle(Xw)  # isolate seasonal cycle
        # compute seasonal amplitude
        smax = np.nanmax(clim, axis=1)
        smin = np.nanmin(clim, axis=1)
        seasonal_amp[index,:] = smax - smin
        
        # compute ENSO variance
        anom2_7 = np.empty(anom.shape)
        for b in range(Nb):
            # apply bandpass filter        
            anom2_7[b,:] = bandpass.butter_bandpass_filter(anom[b,:],f_lo,f_hi,fs)
        # compute variance per se     
        variance[index,:]  = np.var(anom2_7,axis=1)
        index +=1  # update index


    return (variance, seasonal_amp)
Esempio n. 51
0
def getZonalNormStd(data):
    """
    data - pass filtered data
    Return : normalized data and std of the meridionally averaged data.
        Once we averaged over latitude, then it will become zonal data.
    """
    # todo : correct the commented, docstr line for meridionally, zonally
    # meridionally averaged data (averaged over latitude axis)
    # weight='weighted' is default option that will generate the area weights
    meridional_avg = cdutil.averager(data, axis='y')(squeeze=1) #, weight='weighted')
    # make memory free
    del data
    # averaged over time axis
    time_avg = cdutil.averager(meridional_avg, axis='t', weight='equal')(squeeze=1)
    # get the std
    std_avg = numpy.sqrt(meridional_avg.asma().var())
    # get the normalize the data
    normal_data = (meridional_avg - time_avg) / std_avg
     # make memory free
    del meridional_avg, time_avg
    # return normal_data and std_avg data
    return normal_data, std_avg
Esempio n. 52
0
def get_zonal_cycle(tas,period=12.):
    if "longitude" in tas.getAxisIds():
        tas = cdutil.averager(tas,axis='x')
    AMP = MV.zeros(tas.shape[1])
    PHI = MV.zeros(tas.shape[1])
    for j in range(tas.shape[1]):
        mag,phase = get_cycle(tas[:,j],period=period)
        AMP[j] = mag
        PHI[j] = phase
        
    AMP.setAxis(0,tas.getLatitude())
    PHI.setAxis(0,tas.getLatitude())
    return AMP,PHI
Esempio n. 53
0
    def testAnnualSeasonalAverage(self):
        f = cdms2.open(self.filename, "r")

        # Read in the raw data EXCLUDING a leap year
        obs_timeseries1 = f('obs', time=slice(0, 48))  # 1900.1. to 1903.12.
        # Read in the raw data INCLUDING a leap year
        obs_timeseries2 = f('obs', time=slice(
            0, 60))  # 1900.1. to 1904.12., 1904 is year lear

        ### Truncate first Jan, Feb and last Dec before get Annual cycle anomaly ... (to have fair DJF seasonal mean later)
        obs_timeseries1 = obs_timeseries1[2:-1]
        obs_timeseries2 = obs_timeseries2[2:-1]

        ### Set monthly time bounds ...
        cdutil.setTimeBoundsMonthly(obs_timeseries1)
        cdutil.setTimeBoundsMonthly(obs_timeseries2)

        #### Removing Annual cycle ...
        obs_timeseries_ano1 = cdutil.ANNUALCYCLE.departures(obs_timeseries1)
        obs_timeseries_ano2 = cdutil.ANNUALCYCLE.departures(obs_timeseries2)

        #### Calculate time average ...
        obs_timeseries_ano_timeave1 = cdutil.averager(
            obs_timeseries_ano1, axis='t')  ## This should be zero and it does
        obs_timeseries_ano_timeave2 = cdutil.averager(
            obs_timeseries_ano2,
            axis='t')  ## This should be zero BUT it does NOT

        #### SEASONAL MEAN TEST ####
        obs_timeseries_ano1_DJF = cdutil.DJF(obs_timeseries_ano1,
                                             criteriaarg=[0.95, None])
        obs_timeseries_ano2_DJF = cdutil.DJF(obs_timeseries_ano2,
                                             criteriaarg=[0.95, None])
        obs_timeseries_ano1_JJA = cdutil.JJA(obs_timeseries_ano1,
                                             criteriaarg=[0.95, None])
        obs_timeseries_ano2_JJA = cdutil.JJA(obs_timeseries_ano2,
                                             criteriaarg=[0.95, None])

        #### Calculate time average ...
        obs_timeseries_ano1_DJF_timeave = cdutil.averager(
            obs_timeseries_ano1_DJF,
            axis='t')  ## This should be zero and it does
        obs_timeseries_ano2_DJF_timeave = cdutil.averager(
            obs_timeseries_ano2_DJF,
            axis='t')  ## This should be zero BUT it does NOT

        obs_timeseries_ano1_JJA_timeave = cdutil.averager(
            obs_timeseries_ano1_JJA,
            axis='t')  ## This should be zero and it does
        obs_timeseries_ano2_JJA_timeave = cdutil.averager(
            obs_timeseries_ano2_JJA,
            axis='t')  ## This should be zero and it does

        numpy.testing.assert_almost_equal(obs_timeseries_ano_timeave2,
                                          obs_timeseries_ano_timeave1, 10)
        numpy.testing.assert_almost_equal(obs_timeseries_ano1_JJA_timeave,
                                          obs_timeseries_ano2_JJA_timeave, 10)
        numpy.testing.assert_almost_equal(obs_timeseries_ano1_DJF_timeave,
                                          obs_timeseries_ano2_DJF_timeave, 10)
Esempio n. 54
0
def reduce2lat( mv, vid=None ):
    """as reduce2lat_old, but uses the averager module for greater capabilities"""
    if vid==None:   # Note that the averager function returns a variable with meaningless id.
        vid = 'reduced_'+mv.id
    axes = allAxes( mv )
    axis_names = [ a.id for a in axes if a.id!='lat' ]
    axes_string = '('+')('.join(axis_names)+')'

    avmv = averager( mv, axis=axes_string )
    avmv.id = vid
    avmv.units = mv.units

    return avmv
Esempio n. 55
0
def reduce2scalar( mv, vid=None ):
    """averages mv over the full range all axes, to a single scalar.
    Uses the averager module for greater capabilities"""
    if vid==None:   # Note that the averager function returns a variable with meaningless id.
        vid = 'reduced_'+mv.id
    axes = allAxes( mv )
    axis_names = [ a.id for a in axes ]
    axes_string = '('+')('.join(axis_names)+')'

    avmv = averager( mv, axis=axes_string )
    avmv.id = vid
    avmv.units = mv.units

    return avmv
Esempio n. 56
0
    def executeOperation(self, task, _input):
        self.logger.info( "Executing AverageKernel, input metadata = " + str(_input.metadata) )
        dset_address = _input.metadata.get("uri", _input.metadata.get("dataPath") )
        vname = _input.metadata.get("name")
        dset = cdms2.open( dset_address )
        selector = _input.getSelector( dset[vname] )
        self.logger.info( "exec *EXT* AverageKernel, selector: " + str( selector ) )
        variable = dset( vname, **selector )
        axisIndex = variable.getAxisIndex( 'longitude' )

        cdutil.times.setTimeBoundsMonthly(variable)
        djfclimatology = cdutil.times.DJF.climatology(variable)
        zonalAve = cdutil.averager( djfclimatology, axis=axisIndex, weights='equal' )

        return self.createResult( zonalAve, _input, task )
Esempio n. 57
0
def compute(dm, do):
    """ Computes Mean Absolute Error"""
    if dm is None and do is None:  # just want the doc
        return {
            "Name": "Mean Absolute Error",
            "Abstract": "Compute Full Average of " +
            "Absolute Difference Between Model And Observation",
            "Contact": "*****@*****.**",
        }
    absdif = MV2.absolute(MV2.subtract(dm, do))
    mae = cdutil.averager(absdif, axis='xyt', weights='weighted')

# mae = MV.average(MV.absolute(MV.subtract(dm, do))) - depricated ... did
# not include area weights
    return float(mae)
Esempio n. 58
0
def computeTimeseries( domainId, varId, region, op ):
    d = computeTimeseries.getDomain( domainId )
    if d is not None:
        variable = d.variables.get( varId, None )
        if variable is not None:
            lat, lon = region['latitude'], region['longitude']
            timeseries = variable(latitude=(lat, lat, "cob"), longitude=(lon, lon, "cob"))
            if op == 'average':
                return cdutil.averager( timeseries, axis='t', weights='equal' ).squeeze().tolist()
            else:
                return timeseries.squeeze().tolist()
        else:
             task_error( "Missing variable '%s' in domain '%s'" % (  varId, domainId ) )
    else:
        task_error( "Missing domain '%s'" % ( domainId ) )
        return []
Esempio n. 59
0
def execute(data_str, domain_str, res_str):

      dataIn= loadData(data_str)
                
      domain = loadDomain(domain_str)

      cdms2keyargs = domain2cdms(domain)

      f=loadFileFromURL(dataIn["url"])

      data = f(dataIn["id"],**cdms2keyargs)
      dims = "".join(["(%s)" % x for x in cdms2keyargs.keys()])

      data = cdutil.averager(data,axis=dims)
      data.id=dataIn["id"]

      saveVariable(data, res_str)
Esempio n. 60
0
def reduce2latlon( mv, vid=None ):
    """as reduce2lat, but averaging reduces coordinates to (lat,lon)"""
    if vid==None:   # Note that the averager function returns a variable with meaningless id.
        vid = 'reduced_'+mv.id
    axes = allAxes( mv )
    axis_names = [ a.id for a in axes if a.id!='lat' and a.id!='lon' ]
    axes_string = '('+')('.join(axis_names)+')'
    for ax in axes:
        # The averager insists on bounds.  Sometimes they don't exist, especially for obs.
        if ax.id!='lat' and ax.id!='lon' and not hasattr( ax, 'bounds' ):
            ax.setBounds( ax.genGenericBounds() )

    avmv = averager( mv, axis=axes_string )
    avmv.id = vid
    avmv.units = mv.units

    return avmv