def test_dot_L(seed=42): solver = celerite.CholeskySolver() np.random.seed(seed) t = np.sort(np.random.rand(5)) b = np.random.randn(len(t), 5) yerr = np.random.uniform(0.1, 0.5, len(t)) alpha_real = np.array([1.3, 0.2]) beta_real = np.array([0.5, 0.8]) alpha_complex_real = np.array([0.1]) alpha_complex_imag = np.array([0.0]) beta_complex_real = np.array([1.5]) beta_complex_imag = np.array([0.1]) K = get_kernel_value( alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, t[:, None] - t[None, :] ) K[np.diag_indices_from(K)] += yerr**2 L = np.linalg.cholesky(K) x0 = np.dot(L, b) solver.compute( 0.0, alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, t, yerr**2) x = solver.dot_L(b) assert np.allclose(x0, x)
def _test_solve(alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, seed=42): solver = celerite.CholeskySolver() np.random.seed(seed) t = np.sort(np.random.rand(500)) diag = np.random.uniform(0.1, 0.5, len(t)) b = np.random.randn(len(t)) with pytest.raises(RuntimeError): solver.log_determinant() with pytest.raises(RuntimeError): solver.dot_solve(b) solver.compute( 0.0, alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, t, diag ) K = get_kernel_value( alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, t[:, None] - t[None, :] ) K[np.diag_indices_from(K)] += diag assert np.allclose(solver.solve(b).T, np.linalg.solve(K, b)) b = np.random.randn(len(t), 5) assert np.allclose(solver.solve(b), np.linalg.solve(K, b))
def test_dot(with_general, seed=42): solver = celerite.CholeskySolver() np.random.seed(seed) t = np.sort(np.random.rand(500)) b = np.random.randn(len(t), 5) alpha_real = np.array([1.3, 0.2]) beta_real = np.array([0.5, 0.8]) alpha_complex_real = np.array([0.1]) alpha_complex_imag = np.array([0.0]) beta_complex_real = np.array([1.5]) beta_complex_imag = np.array([0.1]) K = get_kernel_value(alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, t[:, None] - t[None, :]) if with_general: U = np.vander(t - np.mean(t), 4).T V = U * np.random.rand(4)[:, None] A = np.sum(U * V, axis=0) + 1e-8 K[np.diag_indices_from(K)] += A K += np.tril(np.dot(U.T, V), -1) + np.triu(np.dot(V.T, U), 1) else: A = np.empty(0) U = np.empty((0, 0)) V = np.empty((0, 0)) x0 = np.dot(K, b) x = solver.dot(0.0, alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, A, U, V, t, b) assert np.allclose(x0, x)
def test_pickle(with_general, seed=42): solver = celerite.CholeskySolver() np.random.seed(seed) t = np.sort(np.random.rand(500)) diag = np.random.uniform(0.1, 0.5, len(t)) y = np.sin(t) if with_general: U = np.vander(t - np.mean(t), 4).T V = U * np.random.rand(4)[:, None] A = np.sum(U * V, axis=0) + 1e-8 else: A = np.empty(0) U = np.empty((0, 0)) V = np.empty((0, 0)) alpha_real = np.array([1.3, 1.5]) beta_real = np.array([0.5, 0.2]) alpha_complex_real = np.array([1.0]) alpha_complex_imag = np.array([0.1]) beta_complex_real = np.array([1.0]) beta_complex_imag = np.array([1.0]) def compare(solver1, solver2): assert solver1.computed() == solver2.computed() if not solver1.computed(): return assert np.allclose(solver1.log_determinant(), solver2.log_determinant()) assert np.allclose(solver1.dot_solve(y), solver2.dot_solve(y)) s = pickle.dumps(solver, -1) solver2 = pickle.loads(s) compare(solver, solver2) solver.compute(0.0, alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, A, U, V, t, diag) solver2 = pickle.loads(pickle.dumps(solver, -1)) compare(solver, solver2) # Test that models can be pickled too. kernel = terms.RealTerm(0.5, 0.1) kernel += terms.ComplexTerm(0.6, 0.7, 1.0) gp1 = GP(kernel) gp1.compute(t, diag) s = pickle.dumps(gp1, -1) gp2 = pickle.loads(s) assert np.allclose(gp1.log_likelihood(y), gp2.log_likelihood(y))
def _test_log_determinant(alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, seed=42): solver = celerite.CholeskySolver() np.random.seed(seed) t = np.sort(np.random.rand(5)) diag = np.random.uniform(0.1, 0.5, len(t)) solver.compute( 0.0, alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, t, diag ) K = get_kernel_value( alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, t[:, None] - t[None, :] ) K[np.diag_indices_from(K)] += diag assert np.allclose(solver.log_determinant(), np.linalg.slogdet(K)[1])
def test_carma(seed=42): solver = celerite.CholeskySolver() np.random.seed(seed) t = np.sort(np.random.uniform(0, 5, 100)) yerr = 0.1 + np.zeros_like(t) y = np.sin(t) + yerr * np.random.randn(len(t)) carma_solver = CARMASolver(-0.5, np.array([0.1, 0.05, 0.01]), np.array([0.2, 0.1])) carma_ll = carma_solver.log_likelihood(t, y, yerr) params = carma_solver.get_celerite_coeffs() solver.compute(0.0, params[0], params[1], params[2], params[3], params[4], params[5], np.empty(0), np.empty((0, 0)), np.empty((0, 0)), t, yerr**2) celerite_ll = -0.5 * (solver.dot_solve(y) + solver.log_determinant() + len(t) * np.log(2 * np.pi)) assert np.allclose(carma_ll, celerite_ll)
def _test_solve(alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, seed=42, with_general=False): solver = celerite.CholeskySolver() np.random.seed(seed) t = np.sort(np.random.rand(500)) diag = np.random.uniform(0.1, 0.5, len(t)) b = np.random.randn(len(t)) with pytest.raises(RuntimeError): solver.log_determinant() with pytest.raises(RuntimeError): solver.dot_solve(b) if with_general: U = np.vander(t - np.mean(t), 4).T V = U * np.random.rand(4)[:, None] A = np.sum(U * V, axis=0) + 1e-8 else: A = np.empty(0) U = np.empty((0, 0)) V = np.empty((0, 0)) solver.compute(0.0, alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, A, U, V, t, diag) K = get_kernel_value(alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, t[:, None] - t[None, :]) K[np.diag_indices_from(K)] += diag if len(A): K[np.diag_indices_from(K)] += A K += np.tril(np.dot(U.T, V), -1) + np.triu(np.dot(V.T, U), 1) assert np.allclose(solver.solve(b).T, np.linalg.solve(K, b)) b = np.random.randn(len(t), 5) assert np.allclose(solver.solve(b), np.linalg.solve(K, b))
def test_pickle(seed=42): solver = celerite.CholeskySolver() np.random.seed(seed) t = np.sort(np.random.rand(500)) diag = np.random.uniform(0.1, 0.5, len(t)) y = np.sin(t) alpha_real = np.array([1.3, 1.5]) beta_real = np.array([0.5, 0.2]) alpha_complex_real = np.array([1.0]) alpha_complex_imag = np.array([0.1]) beta_complex_real = np.array([1.0]) beta_complex_imag = np.array([1.0]) def compare(solver1, solver2): assert solver1.computed() == solver2.computed() if not solver1.computed(): return assert np.allclose(solver1.log_determinant(), solver2.log_determinant()) assert np.allclose(solver1.dot_solve(y), solver2.dot_solve(y)) s = pickle.dumps(solver, -1) solver2 = pickle.loads(s) compare(solver, solver2) solver.compute( 0.0, alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, t, diag ) solver2 = pickle.loads(pickle.dumps(solver, -1)) compare(solver, solver2) # Test that models can be pickled too. kernel = terms.RealTerm(0.5, 0.1) kernel += terms.ComplexTerm(0.6, 0.7, 1.0) gp1 = GP(kernel) gp1.compute(t, diag) s = pickle.dumps(gp1, -1) gp2 = pickle.loads(s) assert np.allclose(gp1.log_likelihood(y), gp2.log_likelihood(y))
def test_dot(seed=42): solver = celerite.CholeskySolver() np.random.seed(seed) t = np.sort(np.random.rand(500)) b = np.random.randn(len(t), 5) alpha_real = np.array([1.3, 0.2]) beta_real = np.array([0.5, 0.8]) alpha_complex_real = np.array([0.1]) alpha_complex_imag = np.array([0.0]) beta_complex_real = np.array([1.5]) beta_complex_imag = np.array([0.1]) K = get_kernel_value( alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, t[:, None] - t[None, :] ) x0 = np.dot(K, b) x = solver.dot( 0.0, alpha_real, beta_real, alpha_complex_real, alpha_complex_imag, beta_complex_real, beta_complex_imag, t, b ) assert np.allclose(x0, x)