Esempio n. 1
0
def test_factor():
    x, c, a, U, V, K, Y = get_matrices(include_dense=True)
    d, W = driver.factor(x, c, a, U, V, a, V)

    # Make sure that no copy is made if possible
    assert np.allclose(a, d)
    assert np.allclose(V, W)
Esempio n. 2
0
def test_norm_rev():
    a, U, V, P, Y = get_matrices(vector=True)
    d, W = driver.factor(U, P, a, V)
    check_grad(
        ops.norm,
        [U, P, d, W, Y],
        1,
    )
Esempio n. 3
0
def test_solve_upper_fwd():
    x, c, a, U, V, Y = get_matrices()
    d, W = driver.factor(x, c, a, U, V, a, V)
    check_basic(
        backprop.solve_upper_fwd,
        ops.solve_upper,
        [x, c, U, W, Y],
    )
Esempio n. 4
0
def test_solve_rev(vector):
    a, U, V, P, Y = get_matrices(vector=vector)
    d, W = driver.factor(U, P, a, V)
    check_grad(
        ops.solve,
        [U, P, d, W, Y],
        1,
    )
Esempio n. 5
0
def test_solve_upper_rev():
    x, c, a, U, V, Y = get_matrices()
    d, W = driver.factor(x, c, a, U, V, a, V)
    check_grad(
        ops.solve_upper,
        [x, c, U, W, Y],
        1,
    )
Esempio n. 6
0
def test_norm_fwd():
    a, U, V, P, Y = get_matrices(vector=True)
    d, W = driver.factor(U, P, a, V)
    check_basic(
        backprop.norm_fwd,
        ops.norm,
        [U, P, d, W, Y],
    )
Esempio n. 7
0
def test_dot_tril_rev(vector):
    a, U, V, P, Y = get_matrices(vector=vector)
    d, W = driver.factor(U, P, a, V)
    check_grad(
        ops.dot_tril,
        [U, P, d, W, Y],
        1,
    )
Esempio n. 8
0
def test_solve_fwd(vector):
    a, U, V, P, Y = get_matrices(vector=vector)
    d, W = driver.factor(U, P, a, V)
    check_basic(
        backprop.solve_fwd,
        ops.solve,
        [U, P, d, W, Y],
    )
Esempio n. 9
0
def test_dot_tril_fwd(vector):
    a, U, V, P, Y = get_matrices(vector=vector)
    d, W = driver.factor(U, P, a, V)
    check_basic(
        backprop.dot_tril_fwd,
        ops.dot_tril,
        [U, P, d, W, Y],
    )
Esempio n. 10
0
def test_conditional_mean_fwd():
    a, U, V, P, Y, U_star, V_star, inds = get_matrices(vector=True,
                                                       conditional=True)
    d, W = driver.factor(U, P, a, np.copy(V))
    z = driver.solve(U, P, d, W, Y)
    check_basic(
        driver.conditional_mean,
        ops.conditional_mean,
        [U, V, P, z, U_star, V_star, inds],
    )
Esempio n. 11
0
def test_norm():
    a, U, V, P, K, Y = get_matrices(vector=True, include_dense=True)

    # First compute the expected value
    expect = np.dot(Y, np.linalg.solve(K, Y))

    # Then solve using celerite
    d, W = driver.factor(U, P, a, V)
    value = driver.norm(U, P, d, W, Y)

    # Check that the solution is correct
    assert np.allclose(value, expect)
Esempio n. 12
0
def test_norm_rev():
    a, U, V, P, Y = get_matrices(vector=True)
    d, W = driver.factor(U, P, a, V)

    X = np.empty((1, 1))
    Z = np.empty_like(Y)
    F = np.empty_like(U)

    X, Z, F = backprop.norm_fwd(U, P, d, W, Y, X, Z, F)

    check_grad(backprop.norm_fwd, backprop.norm_rev, [U, P, d, W, Y], [X],
               [Z, F])
Esempio n. 13
0
def test_solve_lower_fwd(vector):
    x, c, a, U, V, Y = get_matrices(vector=vector)
    if vector:
        Y = Y[:, None]

    d, W = driver.factor(x, c, a, U, V, a, V)
    Z0 = driver.solve_lower(x, c, U, W, Y, np.copy(Y))

    Z = np.empty_like(Y)
    F = np.empty((U.shape[0], U.shape[1], Y.shape[1]))
    Z, F = backprop.solve_lower_fwd(x, c, U, W, Y, Z, F)
    assert np.allclose(Z0, Z)
Esempio n. 14
0
def test_norm_fwd():
    a, U, V, P, Y = get_matrices(vector=True)
    d, W = driver.factor(U, P, a, V)

    X0 = driver.norm(U, P, d, W, np.copy(Y))

    X = np.empty((1, 1))
    Z = np.empty_like(Y)
    F = np.empty_like(U)

    X, Z, F = backprop.norm_fwd(U, P, d, W, Y, X, Z, F)
    assert np.allclose(X0, X)
Esempio n. 15
0
def test_factor_fwd():
    x, c, a, U, V, Y = get_matrices()

    d = np.empty_like(a)
    W = np.empty_like(V)
    S = np.empty((len(a), U.shape[1], U.shape[1]))

    d0, W0 = driver.factor(x, c, a, U, V, np.copy(a), np.copy(V))
    d, W, S = backprop.factor_fwd(x, c, a, U, V, d, W, S)

    assert np.allclose(d, d0)
    assert np.allclose(W, W0)
Esempio n. 16
0
def test_dot_tril_rev(vector):
    a, U, V, P, Y = get_matrices(vector=vector)
    d, W = driver.factor(U, P, a, V)

    Z = np.empty_like(Y)
    if vector:
        F = np.empty_like(U)
    else:
        F = np.empty((U.shape[0], U.shape[1] * Y.shape[1]))

    Z, F = backprop.dot_tril_fwd(U, P, d, W, Y, Z, F)

    check_grad(backprop.dot_tril_fwd, backprop.dot_tril_rev, [U, P, d, W, Y],
               [Z], [F])
Esempio n. 17
0
def test_dot_tril_fwd(vector):
    a, U, V, P, Y = get_matrices(vector=vector)
    d, W = driver.factor(U, P, a, V)

    Z0 = driver.dot_tril(U, P, d, W, np.copy(Y))

    Z = np.empty_like(Y)
    if vector:
        F = np.empty_like(U)
    else:
        F = np.empty((U.shape[0], U.shape[1] * Y.shape[1]))

    Z, F = backprop.dot_tril_fwd(U, P, d, W, Y, Z, F)
    assert np.allclose(Z0, Z)
Esempio n. 18
0
def test_conditional_mean():
    a, U, V, P, Y, U_star, V_star, inds = get_matrices(vector=True,
                                                       conditional=True)
    d, W = driver.factor(U, P, a, np.copy(V))
    z = driver.solve(U, P, d, W, Y)

    mu = driver.conditional_mean(U, V, P, z, U_star, V_star, inds,
                                 np.empty(len(inds), dtype=np.float64))

    check_op(
        ops.conditional_mean,
        [U, V, P, z, U_star, V_star, inds],
        [mu],
        grad=False,
    )
Esempio n. 19
0
def test_dot_tril(vector):
    a, U, V, P, K, Y = get_matrices(vector=vector, include_dense=True)

    # First compute the expected value
    expect = np.dot(np.linalg.cholesky(K), Y)

    # Then solve using celerite
    d, W = driver.factor(U, P, a, V)
    value = driver.dot_tril(U, P, d, W, Y)

    # Make sure that no copy is made if possible
    assert np.allclose(value, Y)

    # Check that the solution is correct
    assert np.allclose(value, expect)
Esempio n. 20
0
def test_solve_rev(vector):
    a, U, V, P, Y = get_matrices(vector=vector)
    d, W = driver.factor(U, P, a, V)

    X = np.empty_like(Y)
    Z = np.empty_like(Y)
    if vector:
        F = np.empty_like(U)
    else:
        F = np.empty((U.shape[0], U.shape[1] * Y.shape[1]))
    G = np.empty_like(F)

    X, Z, F, G = backprop.solve_fwd(U, P, d, W, Y, X, Z, F, G)

    check_grad(backprop.solve_fwd, backprop.solve_rev, [U, P, d, W, Y], [X],
               [Z, F, G])
Esempio n. 21
0
def test_solve_fwd(vector):
    a, U, V, P, Y = get_matrices(vector=vector)
    d, W = driver.factor(U, P, a, V)

    X0 = driver.solve(U, P, d, W, np.copy(Y))

    X = np.empty_like(Y)
    Z = np.empty_like(Y)
    if vector:
        F = np.empty_like(U)
    else:
        F = np.empty((U.shape[0], U.shape[1] * Y.shape[1]))
    G = np.empty_like(F)

    X, Z, F, G = backprop.solve_fwd(U, P, d, W, Y, X, Z, F, G)
    assert np.allclose(X0, X)
Esempio n. 22
0
def test_solve_lower_rev(vector):
    x, c, a, U, V, Y = get_matrices(vector=vector)
    if vector:
        Y = Y[:, None]

    d, W = driver.factor(x, c, a, U, V, a, V)

    Z = np.empty_like(Y)
    F = np.empty((U.shape[0], U.shape[1], Y.shape[1]))
    Z, F = backprop.solve_lower_fwd(x, c, U, W, Y, Z, F)

    check_grad(
        backprop.solve_lower_fwd,
        backprop.solve_lower_rev,
        [x, c, U, W, Y],
        [Z],
        [F],
    )
Esempio n. 23
0
def test_solve_upper(vector):
    x, c, a, U, V, K, Y = get_matrices(vector=vector, include_dense=True)

    if vector:
        Y = Y[:, None]

    # First compute the expected value
    expect = np.linalg.solve(np.linalg.cholesky(K).T, Y)

    # Then solve using celerite
    d, W = driver.factor(x, c, a, U, V, a, V)
    Y /= np.sqrt(d)[:, None]
    value = driver.solve_upper(x, c, U, W, Y, Y)

    # Make sure that no copy is made if possible
    assert np.allclose(value, Y)

    # Check that the solution is correct
    assert np.allclose(value, expect)
Esempio n. 24
0
def test_solve_upper():
    x, c, a, U, V, Y = get_matrices()
    d, W = driver.factor(x, c, a, U, V, np.copy(a), np.copy(V))
    Z = driver.solve_upper(x, c, U, W, Y, np.zeros_like(Y))
    check_op(ops.solve_upper, [x, c, U, W, Y], [Z])
    check_op(jit(ops.solve_upper), [x, c, U, W, Y], [Z])
Esempio n. 25
0
def test_factor():
    x, c, a, U, V, Y = get_matrices()
    d, W = driver.factor(x, c, a, U, V, np.copy(a), np.copy(V))
    check_op(ops.factor, [x, c, a, U, V], [d, W])
    check_op(jit(ops.factor), [x, c, a, U, V], [d, W])
Esempio n. 26
0
def test_dot_tril(vector):
    a, U, V, P, Y = get_matrices(vector=vector)
    d, W = driver.factor(U, P, a, V)
    X = driver.dot_tril(U, P, d, W, np.copy(Y))
    check_op(ops.dot_tril, [U, P, d, W, Y], [X])
    check_op(jit(ops.dot_tril), [U, P, d, W, Y], [X])
Esempio n. 27
0
def test_norm():
    a, U, V, P, Y = get_matrices(vector=True)
    d, W = driver.factor(U, P, a, V)
    X = driver.norm(U, P, d, W, np.copy(Y))
    check_op(ops.norm, [U, P, d, W, Y], [X])
    check_op(jit(ops.norm), [U, P, d, W, Y], [X])
Esempio n. 28
0
def test_solve(vector):
    a, U, V, P, Y = get_matrices(vector=vector)
    d, W = driver.factor(U, P, a, V)
    X = driver.solve(U, P, d, W, np.copy(Y))
    check_op(ops.solve, [U, P, d, W, Y], [X])
    check_op(jit(ops.solve), [U, P, d, W, Y], [X])
Esempio n. 29
0
def test_factor():
    a, U, V, P, Y = get_matrices()
    d, W = driver.factor(U, P, np.copy(a), np.copy(V))
    check_op(ops.factor, [a, U, V, P], [d, W])
    check_op(jit(ops.factor), [a, U, V, P], [d, W])