def _initial_terminal( adata: AnnData, backward: bool = False, discrete: bool = False, states: Optional[Union[str, Sequence[str]]] = None, cluster_key: Optional[str] = None, mode: str = "embedding", time_key: str = "latent_time", **kwargs, ) -> None: pk = DummyKernel(adata=adata, backward=backward) mc = GPCCA(pk, read_from_adata=True, write_to_adata=False) if mc._get(P.FIN) is None: raise RuntimeError( f"Compute {_initial if backward else _terminal} states first as " f"`cellrank.tl.compute_{FinalStatesKey.BACKWARD if backward else FinalStatesKey.FORWARD}()`." ) n_states = len(mc._get(P.FIN).cat.categories) if n_states == 1 or ( states is not None and (isinstance(states, str) or len(states) == 1) ): kwargs["same_plot"] = True if kwargs.get("title", None) is None: if discrete: if kwargs.get("same_plot", True): kwargs["title"] = ( FinalStatesPlot.BACKWARD.s if backward else FinalStatesPlot.FORWARD.s ) elif ( mode == "embedding" and kwargs.get("title", None) is None and ( kwargs.get("same_plot", True) and n_states > 1 and ( states is None or (not isinstance(states, str) and len(states) > 1) ) ) ): kwargs["title"] = ( FinalStatesPlot.BACKWARD.s if backward else FinalStatesPlot.FORWARD.s ) _ = kwargs.pop("lineages", None) mc.plot_final_states( lineages=states, cluster_key=cluster_key, mode=mode, time_key=time_key, discrete=discrete, **kwargs, )
def lineage_drivers( adata: AnnData, backward: bool = False, lineages: Optional[Union[Sequence, str]] = None, method: str = TestMethod.FISCHER.s, cluster_key: Optional[str] = None, clusters: Optional[Union[Sequence, str]] = None, layer: str = "X", use_raw: bool = False, confidence_level: float = 0.95, n_perms: int = 1000, seed: Optional[int] = None, return_drivers: bool = True, **kwargs, ) -> Optional[pd.DataFrame]: # noqa """ %(lineage_drivers.full_desc)s Parameters ---------- %(adata)s %(backward)s %(lineage_drivers.parameters)s Returns ------- %(lineage_drivers.returns)s References ---------- %(lineage_drivers.references)s """ # create dummy kernel and estimator pk = DummyKernel(adata, backward=backward) g = GPCCA(pk, read_from_adata=True, write_to_adata=False) if g._get(P.ABS_PROBS) is None: raise RuntimeError( f"Compute absorption probabilities first as `cellrank.tl.lineages(..., backward={backward})`." ) # call the underlying function to compute and store the lineage drivers return g.compute_lineage_drivers( method=method, lineages=lineages, cluster_key=cluster_key, clusters=clusters, layer=layer, use_raw=use_raw, confidence_level=confidence_level, n_perms=n_perms, seed=seed, return_drivers=return_drivers, **kwargs, )
def lineages( adata: AnnData, lineages: Optional[Union[str, Sequence[str]]] = None, backward: bool = False, cluster_key: Optional[str] = None, mode: str = "embedding", time_key: str = "latent_time", **kwargs, ) -> None: """ Plot lineages that were uncovered using :func:`cellrank.tl.lineages`. For each lineage, we show all cells in an embedding (default is UMAP) and color them by their probability of belonging to this lineage. For cells that are already committed, this probability will be one for their respective lineage and zero otherwise. For naive cells, these probabilities will be more balanced, reflecting the fact that naive cells have the potential to develop towards multiple endpoints. Parameters ---------- %(adata)s lineages Plot only these lineages. If `None`, plot all lineages. %(backward)s cluster_key If given, plot cluster annotations left of the lineage probabilities. %(time_mode)s time_key Key in ``adata.obs`` where the pseudotime is stored. %(basis)s **kwargs Keyword arguments for :meth:`cellrank.tl.estimators.BaseEstimator.plot_absorption_probabilities`. Returns ------- %(just_plots)s """ pk = DummyKernel(adata, backward=backward) mc = GPCCA(pk, read_from_adata=True, write_to_adata=False) if mc._get(P.ABS_PROBS) is None: raise RuntimeError( f"Compute absorption probabilities first as `cellrank.tl.lineages(..., backward={backward})`." ) # plot using the MC object mc.plot_absorption_probabilities( lineages=lineages, cluster_key=cluster_key, mode=mode, time_key=time_key, **kwargs, )
def lineages( adata: AnnData, backward: bool = False, copy: bool = False, return_estimator: bool = False, **kwargs, ) -> Optional[AnnData]: """ Compute probabilistic lineage assignment using RNA velocity. For each cell `i` in :math:`{1, ..., N}` and %(initial_or_terminal)s state `j` in :math:`{1, ..., M}`, the probability is computed that cell `i` is either going to %(terminal)s state `j` (``backward=False``) or is coming from %(initial)s state `j` (``backward=True``). This function computes the absorption probabilities of a Markov chain towards the %(initial_or_terminal) states uncovered by :func:`cellrank.tl.initial_states` or :func:`cellrank.tl.terminal_states` using a highly efficient implementation that scales to large cell numbers. It's also possible to calculate mean and variance of the time until absorption for all or just a subset of the %(initial_or_terminal)s states. This can be seen as a pseudotemporal measure, either towards any terminal population of the state change trajectory, or towards specific ones. Parameters ---------- %(adata)s %(backward)s copy Whether to update the existing ``adata`` object or to return a copy. return_estimator Whether to return the estimator. Only available when ``copy=False``. **kwargs Keyword arguments for :meth:`cellrank.tl.estimators.BaseEstimator.compute_absorption_probabilities`. Returns ------- :class:`anndata.AnnData`, :class:`cellrank.tl.estimators.BaseEstimator` or :obj:`None` Depending on ``copy`` and ``return_estimator``, either updates the existing ``adata`` object, returns its copy or returns the estimator. """ if backward: lin_key = AbsProbKey.BACKWARD fs_key = TermStatesKey.BACKWARD fs_key_pretty = TerminalStatesPlot.BACKWARD else: lin_key = AbsProbKey.FORWARD fs_key = TermStatesKey.FORWARD fs_key_pretty = TerminalStatesPlot.FORWARD try: pk = PrecomputedKernel(adata=adata, backward=backward) except KeyError as e: raise RuntimeError( f"Compute transition matrix first as `cellrank.tl.transition_matrix(..., backward={backward})`." ) from e start = logg.info( f"Computing lineage probabilities towards {fs_key_pretty.s}") mc = GPCCA( pk, read_from_adata=True, inplace=not copy ) # GPCCA is more general than CFLARE, in terms of what is saves if mc._get(P.TERM) is None: raise RuntimeError( f"Compute the states first as `cellrank.tl.{fs_key.s}(..., backward={backward})`." ) # compute the absorption probabilities mc.compute_absorption_probabilities(**kwargs) logg.info(f"Adding lineages to `adata.obsm[{lin_key.s!r}]`\n Finish", time=start) return mc.adata if copy else mc if return_estimator else None