Esempio n. 1
0
    def test_custom_function(self, adata: AnnData, backward: bool):
        vk = VelocityKernel(adata, backward=backward)
        vk.compute_transition_matrix(mode="deterministic",
                                     softmax_scale=4,
                                     scheme=CustomFuncHessian())

        assert vk.params["scheme"] == str(CustomFuncHessian())
Esempio n. 2
0
    def test_estimate_softmax_scale(self, adata: AnnData):
        vk = VelocityKernel(adata)
        vk.compute_transition_matrix(mode="deterministic",
                                     show_progress_bar=False,
                                     softmax_scale=None)

        assert isinstance(vk.params["softmax_scale"], float)
Esempio n. 3
0
    def test_custom_function_stochastic_no_hessian(self, adata: AnnData):
        vk = VelocityKernel(adata)
        vk.compute_transition_matrix(mode="stochastic",
                                     scheme=CustomFunc(),
                                     softmax_scale=4,
                                     n_samples=10)

        assert vk.params["mode"] == "monte_carlo"
        assert vk.params["scheme"] == str(CustomFunc())
Esempio n. 4
0
    def test_row_normalized_dense_norm(self, adata: AnnData):
        vk = VelocityKernel(adata)
        vk.compute_transition_matrix(mode="deterministic", softmax_scale=4)
        T_det = vk.transition_matrix
        vk.compute_transition_matrix(mode="sampling")
        T_sam = vk.transition_matrix

        np.testing.assert_allclose(T_det.sum(1), 1, rtol=_rtol)
        np.testing.assert_allclose(T_sam.sum(1), 1, rtol=_rtol)
Esempio n. 5
0
    def test_constant_wrong_parentheses(self, adata: AnnData):
        k = VelocityKernel(adata).compute_transition_matrix(
            softmax_scale=4) + (
                ConnectivityKernel(adata).compute_transition_matrix() +
                ConnectivityKernel(adata).compute_transition_matrix())
        k.compute_transition_matrix()
        c1, c2, c3 = _is_bin_mult(k[0]), _is_bin_mult(k[1]), _is_bin_mult(k[2])

        assert c1.transition_matrix == 1 / 3
        assert c2.transition_matrix == 1 / 3
        assert c3.transition_matrix == 1 / 3
Esempio n. 6
0
    def test_function_and_string_key(self, adata: AnnData, key: str,
                                     fn: Callable):
        vk_k = VelocityKernel(adata)
        vk_fn = VelocityKernel(adata)

        vk_k.compute_transition_matrix(mode="deterministic",
                                       softmax_scale=4,
                                       scheme=key)
        vk_fn.compute_transition_matrix(mode="deterministic",
                                        softmax_scale=4,
                                        scheme=fn)

        np.testing.assert_allclose(vk_k.transition_matrix.A,
                                   vk_fn.transition_matrix.A)
Esempio n. 7
0
    def test_transition_probabilities_bwd(self, adata: AnnData):
        # test whether transition probabilities in cellrank match those from scvelo, backward case
        sigma_test = 3

        # compute transition probabilities using cellrank
        vk = VelocityKernel(adata, backward=True)
        vk.compute_transition_matrix(softmax_scale=sigma_test,
                                     mode="deterministic")
        T_cr = vk.transition_matrix

        pearson_correlation = vk.pearson_correlations
        T_exp = np.expm1(pearson_correlation * sigma_test)
        T_exp.data += 1
        T_exp = _normalize(T_exp)

        np.testing.assert_allclose(T_exp.A,
                                   T_cr.A)  # don't use data, can be reordered
Esempio n. 8
0
    def test_pearson_correlations_fwd(self, adata: AnnData):
        # test whether pearson correlations in cellrank match those from scvelo, forward case
        backward = False

        # compute pearson correlations using scvelo
        velo_graph = adata.uns["velocity_graph"] + adata.uns[
            "velocity_graph_neg"]

        # compute pearson correlations using cellrank
        vk = VelocityKernel(adata, backward=backward)
        vk.compute_transition_matrix(mode="deterministic", softmax_scale=4)
        pearson_correlations_cr = vk.pearson_correlations

        pc_r = velo_graph.copy()
        pc_r.data = np.array(
            pearson_correlations_cr[(velo_graph != 0)]).squeeze()

        assert np.max(np.abs((pc_r - velo_graph).data)) < _rtol
Esempio n. 9
0
    def test_mc_and_second_order_fwd(self, adata: AnnData):
        vk_mc = VelocityKernel(adata, backward=False)
        vk_mc.compute_transition_matrix(
            mode="monte_carlo",
            show_progress_bar=False,
            n_samples=1000,
            n_jobs=4,
            softmax_scale=4,
        )

        vk_s = VelocityKernel(adata, backward=False)
        vk_s.compute_transition_matrix(mode="stochastic",
                                       show_progress_bar=False,
                                       n_jobs=4,
                                       softmax_scale=4)

        val = np.mean(
            np.abs(vk_mc.transition_matrix.data - vk_s.transition_matrix.data))
        assert val < 1e-3, val
Esempio n. 10
0
    def test_combination_correct_parameters(self, adata: AnnData):
        from cellrank.tl.kernels import CosineScheme

        k = VelocityKernel(adata).compute_transition_matrix(
            softmax_scale=4,
            seed=42,
            scheme="cosine",
        ) + (ConnectivityKernel(adata).compute_transition_matrix(
            density_normalize=False) +
             ConnectivityKernel(adata).compute_transition_matrix(
                 density_normalize=True))
        k.compute_transition_matrix()

        assert isinstance(k.params, dict)
        assert len(k.params) == 3
        assert {"dnorm": True} in k.params.values()
        assert {"dnorm": False} in k.params.values()
        assert {
            "softmax_scale": 4,
            "mode": "deterministic",
            "seed": 42,
            "scheme": str(CosineScheme()),
        } in k.params.values()
Esempio n. 11
0
    def test_implementations_differ(self, adata: AnnData, backward: bool):
        vk_dot = VelocityKernel(adata, backward=backward)
        vk_dot.compute_transition_matrix(mode="deterministic",
                                         softmax_scale=4,
                                         scheme="dot_product")
        vk_cos = VelocityKernel(adata, backward=backward)
        vk_cos.compute_transition_matrix(mode="deterministic",
                                         softmax_scale=4,
                                         scheme="cosine")
        vk_cor = VelocityKernel(adata, backward=backward)
        vk_cor.compute_transition_matrix(mode="deterministic",
                                         softmax_scale=4,
                                         scheme="correlation")

        np.testing.assert_allclose(vk_dot.transition_matrix.sum(1), 1.0)
        np.testing.assert_allclose(vk_cor.transition_matrix.sum(1), 1.0)
        np.testing.assert_allclose(vk_cor.transition_matrix.sum(1), 1.0)

        assert not np.allclose(vk_dot.transition_matrix.A,
                               vk_cos.transition_matrix.A)
        assert not np.allclose(vk_cos.transition_matrix.A,
                               vk_cor.transition_matrix.A)
        assert not np.allclose(vk_cor.transition_matrix.A,
                               vk_dot.transition_matrix.A)
Esempio n. 12
0
    def test_uninitialized_both(self, adata: AnnData):
        k = VelocityKernel(adata) + ConnectivityKernel(adata)

        with pytest.raises(RuntimeError):
            k.compute_transition_matrix()
Esempio n. 13
0
 def test_not_callable_object(self, adata: AnnData):
     vk = VelocityKernel(adata)
     with pytest.raises(TypeError,
                        match="Expected `scheme` to be a function object"):
         vk.compute_transition_matrix(scheme=CustomFunc)
Esempio n. 14
0
    def test_row_normalized_dense_norm_stoch(self, adata: AnnData):
        vk = VelocityKernel(adata)
        vk.compute_transition_matrix(mode="stochastic", softmax_scale=4)
        T_stoch = vk.transition_matrix

        np.testing.assert_allclose(T_stoch.sum(1), 1, rtol=_rtol)
Esempio n. 15
0
 def test_custom_function_not_sum_to_1(self, adata: AnnData):
     vk = VelocityKernel(adata)
     with pytest.raises(ValueError, match=r"Matrix is not row-stochastic."):
         vk.compute_transition_matrix(scheme=InvalidFuncProbs())
Esempio n. 16
0
    def test_row_normalized(self, adata: AnnData):
        vk = VelocityKernel(adata)

        vk.compute_transition_matrix(density_normalize=False, softmax_scale=4)
        T = vk.transition_matrix
        np.testing.assert_allclose(T.sum(1), 1, rtol=_rtol)
Esempio n. 17
0
 def test_custom_function_invalid_hessian(self, adata: AnnData):
     vk = VelocityKernel(adata)
     with pytest.raises(ValueError, match=r"Expected full Hessian matrix"):
         vk.compute_transition_matrix(mode="stochastic",
                                      scheme=InvalidFuncHessianShape(),
                                      softmax_scale=4)
Esempio n. 18
0
def transition_matrix(
    adata: AnnData,
    backward: bool = False,
    vkey: str = "velocity",
    xkey: str = "Ms",
    gene_subset: Optional[Iterable] = None,
    mode: str = VelocityMode.DETERMINISTIC.s,
    backward_mode: str = BackwardMode.TRANSPOSE.s,
    scheme: str = Scheme.CORRELATION.s,
    softmax_scale: Optional[float] = None,
    weight_connectivities: Optional[float] = 0.2,
    density_normalize: bool = True,
    key: Optional[str] = None,
    **kwargs,
) -> KernelExpression:
    """
    Compute a transition matrix based on a combination of RNA Velocity and transcriptomic similarity.

    To learn more about the way in which the transition matrices are computed, see
    :class:`cellrank.tl.kernels.VelocityKernel` for the velocity-based transition matrix and
    :class:`cellrank.tl.kernels.ConnectivityKernel` for the transcriptomic-similarity-based transition matrix.

    Parameters
    ----------
    %(adata)s
    %(backward)s
    vkey
        Key from ``adata.layers`` to access the velocities.
    xkey
        Key in ``adata.layers`` where expected gene expression counts are stored.
    gene_subset
        List of genes to be used to compute transition probabilities.
        By default, genes from ``adata.var['velocity_genes']`` are used.
    %(velocity_mode)s
    %(velocity_backward_mode_high_lvl)s
    %(velocity_scheme)s
    %(softmax_scale)s
    weight_connectivities
        Weight given to transcriptomic similarities as opposed to velocities. Must be in `[0, 1]`.
    density_normalize
        Whether to use density correction when computing the transition probabilities based on connectivities.
        Density correction is done as by [Haghverdi16]_.
    %(write_to_adata.parameters)s
    **kwargs
        Keyword arguments for :meth:`cellrank.tl.kernels.VelocityKernel.compute_transition_matrix`.

    Returns
    -------
    :class:`cellrank.tl.KernelExpression`
        A kernel expression object containing the computed transition matrix.

        %(write_to_adata)s
    """

    # initialise the velocity kernel and compute transition matrix
    vk = VelocityKernel(adata,
                        backward=backward,
                        vkey=vkey,
                        xkey=xkey,
                        gene_subset=gene_subset)
    vk.compute_transition_matrix(
        softmax_scale=softmax_scale,
        mode=mode,
        backward_mode=backward_mode,
        scheme=scheme,
        **kwargs,
    )

    if weight_connectivities is not None:
        if 0 < weight_connectivities < 1:
            logg.info(
                f"Using a connectivity kernel with weight `{weight_connectivities}`"
            )
            ck = ConnectivityKernel(
                adata, backward=backward).compute_transition_matrix(
                    density_normalize=density_normalize)
            final = ((1 - weight_connectivities) * vk +
                     weight_connectivities * ck).compute_transition_matrix()
        elif weight_connectivities == 0:
            final = vk
        elif weight_connectivities == 1:
            final = ConnectivityKernel(
                adata, backward=backward).compute_transition_matrix(
                    density_normalize=density_normalize)
        else:
            raise ValueError(
                f"Parameter `weight_connectivities` must be in range `[0, 1]`, found `{weight_connectivities}`."
            )
    else:
        final = vk

    final.write_to_adata(key=key)

    return final
Esempio n. 19
0
 def test_not_callable(self, adata: AnnData):
     vk = VelocityKernel(adata)
     with pytest.raises(TypeError,
                        match="Expected `scheme` to be a function, found"):
         vk.compute_transition_matrix(scheme=1311)
Esempio n. 20
0
for key in samples:
    scv.tl.velocity_graph(samples[key],
                          mode_neighbors='connectivities',
                          compute_uncertainties=True)

# Forward direction (final states)
outdir = 'results/trajectory/cellrank/forward'
if not os.path.exists(outdir):
    os.makedirs(outdir)

scv.settings.figdir = outdir

for key in samples:
    vk = VelocityKernel(samples[key])
    vk.compute_transition_matrix(softmax_scale=None)
    g = GPCCA(vk)
    g.compute_schur(n_components=20)
    g.plot_spectrum(real_only=False, save="{}_eigenvalues.png".format(key))
    if key == "H508_EV" or key == "HT29_EV":
        g.plot_schur(use=4,
                     cluster_key=clusters,
                     show=False,
                     dpi=300,
                     save='{}_schur.png'.format(key))
        g.compute_metastable_states(n_states=4, cluster_key=clusters)
        g.plot_metastable_states(show=False,
                                 dpi=300,
                                 save='{}_metastable.png'.format(key))
        g.plot_metastable_states(
            same_plot=False,
Esempio n. 21
0
 def test_invalid_string_key(self, adata: AnnData):
     vk = VelocityKernel(adata)
     with pytest.raises(ValueError):
         vk.compute_transition_matrix(scheme="foobar")