def test_pair_observer(self): if not available: self.skipTest(skip_msg) no_throw = True msg = "" bc = get_ternary_BC() ecis = get_example_ecis(bc=bc) atoms = bc.atoms.copy() calc = CE(atoms, bc, eci=ecis) atoms.set_calculator(calc) T = 1000 nn_names = [name for name in bc.cluster_family_names if int(name[1]) == 2] mc = FixedNucleusMC( atoms, T, network_name=nn_names, network_element=["Mg", "Si"]) mc.insert_symbol_random_places("Mg", swap_symbs=["Al"]) elements = {"Mg": 3, "Si": 3} mc.grow_cluster(elements) obs = PairObserver(mc.atoms, cutoff=4.1, elements=["Mg", "Si"]) mc.attach(obs) mc.runMC(steps=200) self.assertEqual(obs.num_pairs, obs.num_pairs_brute_force()) self.assertTrue(obs.symbols_is_synced())
def main(): atoms = atoms_with_calc(50) # mc = SoluteChainMC(atoms, 350, cluster_elements=["Mg", "Si"], # cluster_names=["c2_01nn_0"]) T = [10] snapshot = Snapshot(trajfile="data/solute_chain{}_nostrain.traj".format(T[0]), atoms=atoms) first = True nano_part = get_nanoparticle() for temp in T: print("Current temperature {}".format(T)) mc = FixedNucleusMC( atoms, temp, network_name=["c2_01nn_0"], network_element=["Mg", "Si"], max_constraint_attempts=1E6) backup = MCBackup(mc, overwrite_db_row=False, db_name="data/mc_solute_no_strain.db") mc.attach(backup, interval=20000) strain = get_strain_observer(mc) mc.add_bias(strain) if first: first = False #mc.grow_cluster({"Mg": 1000, "Si": 1000}) symbs = insert_nano_particle(atoms.copy(), nano_part) mc.set_symbols(symbs) tag_by_layer_type(mc.atoms) cnst = ConstrainElementByTag(atoms=mc.atoms, element_by_tag=[["Mg", "Al"], ["Si", "Al"]]) mc.add_constraint(cnst) #mc.build_chain({"Mg": 500, "Si": 500}) fix_layer = FixEdgeLayers(thickness=5.0, atoms=mc.atoms) mc.add_constraint(fix_layer) mc.attach(snapshot, interval=20000) mc.runMC(steps=19000, init_cluster=False)
def test_covariance_observer(self): """Test the covariance observer.""" if not available: self.skipTest("ASE version does not have CE!") msg = "" no_throw = True from cemc.mcmc import FixEdgeLayers from cemc.mcmc import CovarianceMatrixObserver bc, args = get_ternary_BC(ret_args=True) ecis = get_example_ecis(bc=bc) atoms = get_atoms_with_ce_calc(bc, args, eci=ecis, size=[8, 8, 8], db_name="covariance_obs.db") T = 200 nn_names = [name for name in bc.cluster_family_names if int(name[1]) == 2] mc = FixedNucleusMC( atoms, T, network_name=nn_names, network_element=["Mg", "Si"]) fixed_layers = FixEdgeLayers(atoms=mc.atoms, thickness=3.0) mc.add_constraint(fixed_layers) elements = {"Mg": 6, "Si": 6} mc.insert_symbol_random_places("Mg", num=1, swap_symbs=["Al"]) mc.grow_cluster(elements) cov_obs = CovarianceMatrixObserver(atoms=mc.atoms, cluster_elements=["Mg", "Si"]) mc.attach(cov_obs) for _ in range(10): mc.runMC(steps=100, elements=elements, init_cluster=False) obs_I = cov_obs.cov_matrix indices = [] for atom in mc.atoms: if atom.symbol in ["Mg", "Si"]: indices.append(atom.index) cluster = mc.atoms[indices] pos = cluster.get_positions() com = np.mean(pos, axis=0) pos -= com cov_matrix = np.zeros((3, 3)) for i in range(pos.shape[0]): x = pos[i, :] cov_matrix += np.outer(x, x) self.assertTrue(np.allclose(obs_I, cov_matrix)) os.remove("covariance_obs.db")
def test_with_covariance_reac_crd(self): if not available: self.skipTest("ASE version does not have CE!") msg = "" no_throw = True try: bc = get_ternary_BC() atoms = bc.atoms.copy() ecis = get_example_ecis(bc=bc) calc = CE(atoms, bc, eci=ecis) #bc.atoms.set_calculator(calc) T = 200 nn_names = [name for name in bc.cluster_family_names if int(name[1]) == 2] mc = FixedNucleusMC( atoms, T, network_name=nn_names, network_element=["Mg", "Si"]) elements = {"Mg": 4, "Si": 4} mc.insert_symbol_random_places("Mg", num=1, swap_symbs=["Al"]) mc.grow_cluster(elements) conc_init = CovarianceCrdInitializer( fixed_nucl_mc=mc, matrix_element="Al", cluster_elements=["Mg", "Si"]) mc.runMC(steps=100, init_cluster=False) match, match_msg = self._spherical_nano_particle_matches(conc_init) self.assertTrue(match, msg=match_msg) except Exception as exc: no_throw = False msg = str(exc) self.assertTrue(no_throw, msg=msg)
def main(option="relax", size=8): from copy import deepcopy ceBulk = BulkCrystal( **kwargs ) bc_copy = deepcopy(ceBulk) print (ecis) al,mg = get_pure_energies(ecis) print ("Al energy: {} eV/atom".format(al)) print ("Mg energy: {} eV/atom".format(mg)) #exit() #calc = CE( ceBulk, ecis, size=(3,3,3) ) calc = get_ce_calc(ceBulk, kwargs, ecis, size=[15,15,15]) ceBulk = calc.BC ceBulk.atoms.set_calculator( calc ) #pure_energy = calc.get_energy() #print (pure_energy) #energy = calc.calculate( ceBulk.atoms, ["energy"],[(0,"Al","Mg")]) #print (energy) #energy = calc.calculate( ceBulk.atoms, ["energy"], [()]) #exit() if option == "heat": print("Running with cluser size {}".format(size)) mc = FixedNucleusMC( ceBulk.atoms, 293, network_name=["c2_4p050_3"], network_element=["Mg"] ) cluster_entropy(mc, size=size) return elif option == "pure_phase": pure_phase_entropy(bc_copy) return else: sizes = range(3,51) #sizes = np.arange(3, 51) energies = [] cell = ceBulk.atoms.get_cell() diag = 0.5*(cell[0, :] + cell[1, :] + cell[2, :]) pos = ceBulk.atoms.get_positions() pos -= diag lengths = np.sum(pos**2, axis=1) indx = np.argmin(lengths) symbs = [atom.symbol for atom in ceBulk.atoms] symbs[indx] = "Mg" print("Orig energy: {}".format(calc.get_energy())) calc.set_symbols(symbs) print("One atom: {}".format(calc.get_energy())) exit() for size in sizes: elements = {"Mg": size} T = np.linspace(50,1000,40)[::-1] # Reset the symbols to only Mg calc.set_symbols(symbs) mc = FixedNucleusMC( ceBulk.atoms, T, network_name=["c2_4p050_3"], network_element=["Mg"] ) mc.grow_cluster(elements) mc.current_energy = calc.get_energy() low_en = LowestEnergyStructure( calc, mc, verbose=True ) mc.attach( low_en ) for temp in T: print ("Temperature {}K".format(temp)) mc.T = temp mc.runMC(steps=10000, init_cluster=False) mc.reset() mc.is_first = False # atoms,clust = mc.get_atoms( atoms=low_en.atoms ) write( "{}cluster{}_all.cif".format(folder,size), low_en.atoms ) # write( "{}cluster{}_cluster.cif".format(folder,size), clust ) energies.append(low_en.lowest_energy) print (sizes,energies) data = np.vstack((sizes,energies)).T np.savetxt( "{}energies_run2.txt".format(folder), data, delimiter=",")