def main(_): console.start('{} on CIFAR-10 task'.format(model_name.upper())) th = core.th # --------------------------------------------------------------------------- # 0. date set setup # --------------------------------------------------------------------------- # --------------------------------------------------------------------------- # 1. folder/file names and device # --------------------------------------------------------------------------- th.job_dir += '/{:02d}_{}'.format(id, model_name) summ_name = model_name th.prefix = '{}_'.format(date_string()) th.suffix = '_t00' th.visible_gpu_id = 0 # --------------------------------------------------------------------------- # 2. model setup # --------------------------------------------------------------------------- th.model = model th.centralize_data = True th.num_layers = 50 th.layer_width = 100 th.spatial_activation = 'tanh' th.bias_initializer = -5. # --------------------------------------------------------------------------- # 3. trainer setup # --------------------------------------------------------------------------- th.epoch = 200 th.batch_size = 128 th.validation_per_round = 1 th.optimizer = tf.train.AdamOptimizer th.learning_rate = 0.0004 th.patience = 5 th.early_stop = False th.validate_train_set = True th.val_decimals = 6 # --------------------------------------------------------------------------- # 4. summary and note setup th.export_tensors_upon_validation = True # th.export_gates = True th.train = True th.save_model = True th.overwrite = True # --------------------------------------------------------------------------- # 5. other stuff and activate # --------------------------------------------------------------------------- th.mark = '{}({}x{}-{})'.format( model_name, th.layer_width, th.num_layers, th.spatial_activation) th.gather_summ_name = th.prefix + summ_name + th.suffix + '.sum' core.activate()
def main(_): console.start('{} on CIFAR-10 task'.format(model_name.upper())) th = core.th # --------------------------------------------------------------------------- # 0. date set setup # --------------------------------------------------------------------------- # --------------------------------------------------------------------------- # 1. folder/file names and device # --------------------------------------------------------------------------- th.job_dir += '/{:02d}_{}'.format(id, model_name) summ_name = model_name prefix = '{}_'.format(date_string()) suffix = '' th.visible_gpu_id = 0 # --------------------------------------------------------------------------- # 2. model setup # --------------------------------------------------------------------------- th.model = model th.dropout = 0.2 # --------------------------------------------------------------------------- # 3. trainer setup # --------------------------------------------------------------------------- th.epoch = 1000 th.batch_size = 64 th.validation_per_round = 5 th.optimizer = tf.train.AdamOptimizer th.learning_rate = 0.001 th.patience = 5 # --------------------------------------------------------------------------- # 4. summary and note setup # --------------------------------------------------------------------------- th.train = True th.save_model = True th.overwrite = True # --------------------------------------------------------------------------- # 5. other stuff and activate # --------------------------------------------------------------------------- tail = suffix th.mark = prefix + '{}({}){}'.format(model_name, th.num_layers, tail) th.gather_summ_name = prefix + summ_name + tail + '.sum' core.activate(True)
def main(_): console.start('{} on CIFAR-10 task'.format(model_name.upper())) th = core.th # --------------------------------------------------------------------------- # 0. date set setup # --------------------------------------------------------------------------- # --------------------------------------------------------------------------- # 1. folder/file names and device # --------------------------------------------------------------------------- th.job_dir += '/{:02d}_{}'.format(id, model_name) summ_name = model_name th.prefix = '{}_'.format(date_string()) th.visible_gpu_id = 1 # --------------------------------------------------------------------------- # 2. model setup # --------------------------------------------------------------------------- th.model = model th.spatial_activation = 'relu' th.developer_code = '1024-512' th.fc_dims = [int(s) for s in th.developer_code.split('-')] th.use_batchnorm = False th.dropout = 0.0 th.centralize_data = True # --------------------------------------------------------------------------- # 3. trainer setup # --------------------------------------------------------------------------- th.epoch = 1 th.batch_size = 64 th.validation_per_round = 5 th.optimizer = tf.train.AdamOptimizer th.learning_rate = 0.001 th.patience = 5 th.lives = 1 th.lr_decay = 0.6 th.clip_threshold = 10.0 th.reset_optimizer_after_resurrection = False th.summary = True # --------------------------------------------------------------------------- # 4. summary and note setup # --------------------------------------------------------------------------- th.train = True th.save_model = True th.overwrite = True th.print_cycle = 20 # --------------------------------------------------------------------------- # 5. other stuff and activate # --------------------------------------------------------------------------- tail = '' th.mark = '{}({})'.format(model_name, '-'.join( [str(dim) for dim in th.fc_dims])) + tail th.gather_summ_name = th.prefix + summ_name + tail + '.sum' core.activate()