Esempio n. 1
0
def getCoachRating(team, year):
    df = pd.read_csv('./csv_Data/Coaching/1960-2019.csv', encoding = "ISO-8859-1")
    winPctDiff = []
    teams = []
    g = 0
    fName = "Error"
    lName = "Error"
    for index, row in df.iterrows():
        if (int(row["year"]) > year):
            break
        if (standardizeTeamName(row["school"],False) == team and year == int(row["year"])):
            if (int(row["games"]) > g):
                fName = row["first_name"]
                lName = row["last_name"]
                g = int(row["games"])
    for index, row in df.iterrows():
        if (int(row["year"]) == year):
            break
        if (fName == row["first_name"] and lName == row["last_name"]):
            if (standardizeTeamName(row["school"],False) not in teams):
                teams.append(standardizeTeamName(row["school"],False))
    for a in teams:
        winPctHist = []
        winPct = []
        for index, row in df.iterrows():
            if (int(row["year"]) == year):
                break
            if (standardizeTeamName(row["school"],False) == a and (fName != row["first_name"] or lName != row["last_name"])):
                winPctHist.append(int(row["wins"])/(int(row["losses"])+int(row["wins"])))
            elif (standardizeTeamName(row["school"],False) == a and (fName == row["first_name"] and lName == row["last_name"])):
                winPct.append(int(row["wins"])/(int(row["losses"])+int(row["wins"])))
        if (len(winPctHist) < 5):
            continue
        for bbb in winPct:
            winPctDiff.append(bbb - np.average(winPctHist))
    if (len(winPctDiff) > 0):
        return (np.average(winPctDiff))
    else:
        return 0
Esempio n. 2
0
df = pd.read_csv('./new_csv_data/2021/StatsWeek1.csv', encoding = "ISO-8859-1")
for w in range(2, weekMain):
    df = df.append(pd.read_csv('./new_csv_data/2021/StatsWeek' + str(w) + '.csv', encoding = "ISO-8859-1"), ignore_index=True)


dropRows = []
for index, row in df.iterrows():
    if (index > 0 and row["gameId"] == df.at[index-1,"gameId"]):
        dropRows.append(index)
df = df.drop(dropRows)
dict = {"Week":[],"Team":[],"Offense":{},"Defense":{}}
subDictOff = {"Ppa":[],"Sr":[],"Exp":[],"PwrS":[],"Stuff":[],"SecLevel":[],"OpenField":[],"StDownPpa":[],"StDownSr":[],"StDownExp":[],"PassDownPpa":[],"PassDownSr":[],"PassDownExp":[],"RushPpa":[],"RushSr":[],"RushExp":[],"PassPpa":[],"PassSr":[],"PassExp":[]}
subDictDef = {"Ppa":[],"Sr":[],"Exp":[],"PwrS":[],"Stuff":[],"SecLevel":[],"OpenField":[],"StDownPpa":[],"StDownSr":[],"StDownExp":[],"PassDownPpa":[],"PassDownSr":[],"PassDownExp":[],"RushPpa":[],"RushSr":[],"RushExp":[],"PassPpa":[],"PassSr":[],"PassExp":[]}
for index, row in df.iterrows():
    dict["Week"].append(row["week"])
    dict["Team"].append(standardizeTeamName(row["team"], False))
    dict["Week"].append(row["week"])
    dict["Team"].append(standardizeTeamName(row["opponent"], False))
    #Offense
    subDictOff["Ppa"].append(row["offense.ppa"])
    subDictDef["Ppa"].append(row["defense.ppa"])
    subDictOff["Ppa"].append(row["defense.ppa"])
    subDictDef["Ppa"].append(row["offense.ppa"])

    subDictOff["Sr"].append(row["offense.successRate"])
    subDictDef["Sr"].append(row["defense.successRate"])
    subDictOff["Sr"].append(row["defense.successRate"])
    subDictDef["Sr"].append(row["offense.successRate"])

    subDictOff["Exp"].append(row["offense.explosiveness"])
    subDictDef["Exp"].append(row["defense.explosiveness"])
Esempio n. 3
0
import pandas as pd
import numpy as np
import operator
from cfbFcns import standardizeTeamName

curElo = {}
teamDf = pd.read_csv('./csv_Data/majorDivTeams.csv', encoding="ISO-8859-1")
for index, row in teamDf.iterrows():
    curElo[standardizeTeamName(row["school"], False)] = {"Elo": 1500, "G": 0}
#Adding Idaho Manually since they are no longer FBS
curElo["Idaho"] = {"Elo": 1500, "G": 0}
#{Spread : Prob of Fav winning that spread}
pDict = {}
pChart = pd.read_csv('./csv_data/spreadProbChart.csv', encoding="ISO-8859-1")
for index, row in pChart.iterrows():
    pDict[float(row["spread"])] = float(row["fav win"].split("%")[0]) / 100

#k function is a complete gut call
years = []
zzz = 1999
while (zzz <= 2019):
    years.append(zzz)
    zzz += 1
for year in years:
    print(year)
    incEloHome = []
    incEloRoad = []
    resEloHome = []
    resEloRoad = []
    eloLoss = 0
    if (year >= 2002):
Esempio n. 4
0
     encoding="ISO-8859-1").drop(columns=["Unnamed: 0"])
 for gamesIndex, gamesRow in games.iterrows():
     if (gamesRow["Week"] == "Bowl"
             or int(gamesRow["Week"]) > week):
         break
     #Case that aggregates later weeks in season
     if (week == 999):
         if (int(gamesRow["Week"]) > 10):
             for col in games.columns:
                 statsDict[col].append(gamesRow[col])
             for statsIndex, statsRow in stats.iterrows():
                 if (statsRow["Week"] == "Year End" or int(
                         statsRow["Week"]) > int(gamesRow["Week"])):
                     break
                 if (standardizeTeamName(
                         gamesRow["Home Team"],
                         False) == standardizeTeamName(
                             statsRow["Team"], False)):
                     if (not appendedHome):
                         for col in stats.columns:
                             if (col != "Week" and col != "Team"):
                                 statsDict["Home " + col].append(
                                     statsRow[col])
                         appendedHome = True
                     else:
                         for col in stats.columns:
                             if (col != "Week" and col != "Team"):
                                 del statsDict["Home " + col][-1]
                                 statsDict["Home " + col].append(
                                     statsRow[col])
                 if (standardizeTeamName(
Esempio n. 5
0
        return sum(arr)/len(arr)
    return np.nan

for year in years:
    df = pd.read_csv('./new_csv_data/advStatsGame/' + year + '.csv', encoding = "ISO-8859-1")
    dropRows = []
    for index, row in df.iterrows():
        if (index > 0 and row["gameId"] == df.at[index-1,"gameId"]):
            dropRows.append(index)
    df = df.drop(dropRows)
    dict = {"Week":[],"Team":[],"Offense":{},"Defense":{}}
    subDictOff = {"Ppa":[],"Sr":[],"Exp":[],"PwrS":[],"Stuff":[],"SecLevel":[],"OpenField":[],"StDownPpa":[],"StDownSr":[],"StDownExp":[],"PassDownPpa":[],"PassDownSr":[],"PassDownExp":[],"RushPpa":[],"RushSr":[],"RushExp":[],"PassPpa":[],"PassSr":[],"PassExp":[]}
    subDictDef = {"Ppa":[],"Sr":[],"Exp":[],"PwrS":[],"Stuff":[],"SecLevel":[],"OpenField":[],"StDownPpa":[],"StDownSr":[],"StDownExp":[],"PassDownPpa":[],"PassDownSr":[],"PassDownExp":[],"RushPpa":[],"RushSr":[],"RushExp":[],"PassPpa":[],"PassSr":[],"PassExp":[]}
    for index, row in df.iterrows():
        dict["Week"].append(row["week"])
        dict["Team"].append(standardizeTeamName(row["team"], False))
        dict["Week"].append(row["week"])
        dict["Team"].append(standardizeTeamName(row["opponent"], False))
        #Offense
        subDictOff["Ppa"].append(row["offense.ppa"])
        subDictDef["Ppa"].append(row["defense.ppa"])
        subDictOff["Ppa"].append(row["defense.ppa"])
        subDictDef["Ppa"].append(row["offense.ppa"])

        subDictOff["Sr"].append(row["offense.successRate"])
        subDictDef["Sr"].append(row["defense.successRate"])
        subDictOff["Sr"].append(row["defense.successRate"])
        subDictDef["Sr"].append(row["offense.successRate"])

        subDictOff["Exp"].append(row["offense.explosiveness"])
        subDictDef["Exp"].append(row["defense.explosiveness"])
Esempio n. 6
0
ouNum = 0
spreadVol = 0
ouVol = 0

configuration = cfbd.Configuration()
configuration.api_key[
    'Authorization'] = 'XBWTTfw3Jo8o/r/jmDnRA6SsnoHp0MKKPBEE0UGID/hPKqzKLV/+0Ljn06dCbQRS'
configuration.api_key_prefix['Authorization'] = 'Bearer'
api_instance = cfbd.GamesApi(cfbd.ApiClient(configuration))
year = 2021
api_response = api_instance.get_games(year=year,
                                      week=week,
                                      season_type="regular")
for index, row in bets.iterrows():
    for x in api_response:
        if (standardizeTeamName(x.home_team, False) == standardizeTeamName(
                row["Home Team"], False)
                and standardizeTeamName(x.away_team, False)
                == standardizeTeamName(row["Road Team"], False)):
            if (not pd.isnull(row["Spread Bet"])):
                spreadNum += 1
                spreadVol += float(row["Spread Amt"])
                if ('+' in row["Spread Bet"]):
                    team = row["Spread Bet"].split(" +")[0]
                    points = float(row["Spread Bet"].split(" +")[1])
                    if (team == standardizeTeamName(x.home_team, False)):
                        if (float(x.home_points) + points > float(
                                x.away_points)):
                            spreadSum += float(row["Spread Amt"]) * (
                                float(row["Spread Odds"]) - 1)
                        elif (float(x.home_points) + points < float(
Esempio n. 7
0
Hadded = False
Radded = False
dict = {}
for year in years:
    print(year)
    a = pd.read_csv('./csv_Data/advStatsSeason/' + str(year - 1) + '.csv',
                    encoding="ISO-8859-1")
    for index, row in bigboy.iterrows():
        Hadded = False
        Radded = False
        if (int(row["Year"]) > year):
            break
        elif (int(row["Year"]) < year):
            continue
        for i, r in a.iterrows():
            if (row["HTeam"] == standardizeTeamName(r["team"], False)):
                Hadded = True
                for col in a.columns:
                    if (col != "team" and col != "season"
                            and col != "conference"):
                        if ("offense" in col):
                            letter = "o"
                        else:
                            letter = "d"
                        if ("H" + letter + "_lastYear_" + col.split("ense.")[1]
                                not in dict):
                            dict["H" + letter + "_lastYear_" +
                                 col.split("ense.")[1]] = []
                        dict["H" + letter + "_lastYear_" +
                             col.split("ense.")[1]].append(r[col])
            elif (row["RTeam"] == standardizeTeamName(r["team"], False)):
Esempio n. 8
0
import pandas as pd
import numpy as np
import operator
from cfbFcns import standardizeTeamName
import cfbd
from cfbd.rest import ApiException

curWeek = 5

curElo = {}
teamDf = pd.read_csv('./csv_Data/majorDivTeams.csv', encoding = "ISO-8859-1")
for index, row in teamDf.iterrows():
    curElo[standardizeTeamName(row["school"],False)] = {"Elo":1500,"G":0}
#Adding Idaho Manually since they are no longer FBS
curElo["Idaho"] = {"Elo":1500,"G":0}
#{Spread : Prob of Fav winning that spread}
pDict = {}
pChart = pd.read_csv('./csv_data/spreadProbChart.csv', encoding = "ISO-8859-1")
for index, row in pChart.iterrows():
    pDict[float(row["spread"])] = float(row["fav win"].split("%")[0])/100

#k function is a complete gut call
years = []
zzz = 1999
while (zzz <= 2020):
    years.append(zzz)
    zzz += 1
for year in years:
    eloLoss = 0
    if (year >= 2002 and year <= 2019):
        curYearDf = pd.read_csv('./csv_Data/BettingResults/' + str(year) + '.csv', encoding = "ISO-8859-1")
Esempio n. 9
0
browser = webdriver.Chrome(executable_path='chromedriver.exe')
browser.get("https://www.pinnacle.com/en/football/ncaa/matchups/#period:0")
browser.maximize_window()
time.sleep(5)
for i in range(25):
    soup = BeautifulSoup(browser.page_source, 'html.parser')
    main = soup.find(class_="contentBlock square")
    games = main.find_all(class_="style_row__3q4g_ style_row__3hCMX")
    for game in games:
        dict["Week"].append(week)
        dict["Neutral Field"].append(0)
        dict["Home Team"].append(
            standardizeTeamName(
                game.find_all(
                    class_=
                    "ellipsis event-row-participant style_participant__H8-ku")
                [1].text, True))
        dict["Road Team"].append(
            standardizeTeamName(
                game.find_all(
                    class_=
                    "ellipsis event-row-participant style_participant__H8-ku")
                [0].text, True))
        spread = game.find(class_="style_buttons__XEQem")
        try:
            if (float(spread.find(class_="style_label__2KJur").text) < 0):
                dict["Favorite"].append(
                    standardizeTeamName(
                        game.find_all(
                            class_=
    "Neutral Field": [],
    "Night Game": [],
    "Postseason Game": [],
    "Favorite": [],
    "Spread": [],
    "O/U": [],
    "Home Score": [],
    "Road Score": [],
    "Spread Winner": [],
    "O/U Outcome": []
}
idsUsed = []

for index, row in bets.iterrows():
    if (row["id"] not in idsUsed):
        dict["Home Team"].append(standardizeTeamName((row["homeTeam"]), False))
        dict["Road Team"].append(standardizeTeamName((row["awayTeam"]), False))
        dict["Home Score"].append(row["homeScore"])
        dict["Road Score"].append(row["awayScore"])
        k = 0
        curGame = row["id"]
        consensusFound = False
        while (k + index < len(bets.index)
               and bets.iat[k + index, 0] == curGame):
            if (bets.iat[k + index, 5] == "consensus"):
                consensusFound = True
                dict["O/U"].append(bets.iat[k + index, 6])
                if (int(bets.iat[k + index, 2]) + int(bets.iat[k + index, 4]) >
                        float(bets.iat[k + index, 6])):
                    dict["O/U Outcome"].append("Over")
                elif (int(bets.iat[k + index, 2]) +
Esempio n. 11
0
import CFBScrapy as cfb
from cfbFcns import standardizeTeamName
import pandas

thisYear = 2015
t = cfb.get_team_talent(year=thisYear)
t = t.drop(columns=["year"])
pwrRate = []
for i in range(len(t.index)):
    pwrRate.append(float(t.at[i,"talent"])/float(t.at[0,"talent"]))
t["pwrRating"] = pwrRate
dropRows = []
for i in range(len(t.index)):
    if (len(standardizeTeamName(t.at[i,"school"]).split("Error")) > 1):
        dropRows.append(i)
    else:
        t.at[i,"school"] = standardizeTeamName(t.at[i,"school"])
t = t.drop(dropRows)
dropRows = []
a = pandas.read_csv("./csv_Data/AdvancedStatsSeason/2014.csv", encoding = "ISO-8859-1")
for i in range(len(a.index)):
    if (len(standardizeTeamName(a.at[i,"team"]).split("Error")) > 1):
        dropRows.append(i)
    else:
        a.at[i,"team"] = standardizeTeamName(a.at[i,"team"])
a = a.drop(dropRows)
print (t)
print (a)
for i in range(len(t.index)):
    for j in range(len(a.index)):
        if (t.at[i,"school"] == )
Esempio n. 12
0
for year in years:
    dict[str(year)] = {}
    for w in weeks:
        try:
            a = pd.read_csv('./csv_Data/teamGameStats/' + str(year) + '_' +
                            str(w) + '.csv',
                            encoding="ISO-8859-1")
        except FileNotFoundError:
            continue
        print(year, w)
        if (path.exists('./csv_Data/teamGameStats/' + str(year) + '_' +
                        str(w) + '.csv')):
            for index, row in a.iterrows():
                #print (row, index)
                if (standardizeTeamName(row["school"], False)
                        not in dict[str(year)]):
                    dict[str(year)][standardizeTeamName(row["school"],
                                                        False)] = {}
                if ("Week " + str(w)
                        not in dict[str(year)][standardizeTeamName(
                            row["school"], False)]):
                    dict[str(year)][standardizeTeamName(
                        row["school"], False)]["Week " + str(w)] = {
                            "Points For": 0,
                            "Points Against": 0,
                            "Completions": 0,
                            "Attempts": 0,
                            "Opponent Completions": 0,
                            "Opponent Attempts": 0,
                            "TOP": 0,
Esempio n. 13
0
                     0].split("-6ot")[0].split("-7ot")[0]
     else:
         teamString = teamString + " " + row[k].split(
             "-ot")[0].split("-OT")[0].split("#")[0].split(
                 "-2ot")[0].split("-3ot")[0].split(
                     "-4ot")[0].split("-5ot")[0].split(
                         "-6ot")[0].split("-7ot")[0]
     k = k + 1
     if (k == len(row)):
         getOut = True
         break
 if (getOut):
     j += 1
     continue
 if (len(
         standardizeTeamName(teamString,
                             True).split("Error: ")) > 1):
     print(standardizeTeamName(teamString, True))
 if (len(
         standardizeTeamName(
             lines[i -
                   1].split(" (AT)")[0].split(" (P.A.T.)")
             [0].split(" (FT)")[0].split("\n")[0],
             True).split("Error: ")) > 1):
     print(
         standardizeTeamName(
             lines[i -
                   1].split(" (AT)")[0].split(" (P.A.T.)")
             [0].split(" (FT)")[0].split("\n")[0], True))
 if (len(row[0].split("*")) == 2):
     NG = True
 else:
Esempio n. 14
0
from cfbFcns import standardizeTeamName
import pandas as pd

print(standardizeTeamName("San José State", True))
str = "San José State"
print(str.lower())
stats = pd.read_csv('./csv_Data/advStatsFwdLooking/2016.csv',
                    encoding="ISO-8859-1").drop(columns=["Unnamed: 0"])
print(stats.iat[70, 1].lower())
Esempio n. 15
0
bigboy = pd.read_csv('./new_csv_Data/bigboy.csv', encoding="ISO-8859-1")

Fresh = []
Soph = []
Jun = []
Sen = []
added = False

for index, row in bigboy.iterrows():
    print(index)
    df = pd.read_csv('./csv_Data/Recruiting/' + str(row["Year"]) + '.csv',
                     encoding="ISO-8859-1")
    added = False
    for indexx, roww in df.iterrows():
        if (row["Team"] == standardizeTeamName(roww["team"], False)):
            Fresh.append(float(roww["points"]))
            added = True
            break
    if (not added):
        Fresh.append(0)
    df = pd.read_csv('./csv_Data/Recruiting/' + str(int(row["Year"]) - 1) +
                     '.csv',
                     encoding="ISO-8859-1")
    added = False
    for indexx, roww in df.iterrows():
        if (row["Team"] == standardizeTeamName(roww["team"], False)):
            Soph.append(float(roww["points"]))
            added = True
            break
    if (not added):