def diag(v, k=0): """ see numpy.diag """ assert isinstance(k, int) assert v.ndim == 1 n = size(v,0)+abs(k) out = cgt.zeros((n,n), v.dtype) out = inc_subtensor(out, (cgt.arange(n), cgt.arange(n)+k), v) return out
def __init__(self, n_actions): Serializable.__init__(self, n_actions) cgt.set_precision('double') n_in = 128 o_no = cgt.matrix("o_no",fixed_shape=(None,n_in)) a_n = cgt.vector("a_n",dtype='i8') q_n = cgt.vector("q_n") oldpdist_np = cgt.matrix("oldpdists") h0 = (o_no - 128.0)/128.0 nhid = 64 h1 = cgt.tanh(nn.Affine(128,nhid,weight_init=nn.IIDGaussian(std=.1))(h0)) probs_na = nn.softmax(nn.Affine(nhid,n_actions,weight_init=nn.IIDGaussian(std=0.01))(h1)) logprobs_na = cgt.log(probs_na) b = cgt.size(o_no, 0) logps_n = logprobs_na[cgt.arange(b), a_n] surr = (logps_n*q_n).mean() kl = (oldpdist_np * cgt.log(oldpdist_np/probs_na)).sum(axis=1).mean() params = nn.get_parameters(surr) gradsurr = cgt.grad(surr, params) flatgrad = cgt.concatenate([p.flatten() for p in gradsurr]) lam = cgt.scalar() penobj = surr - lam * kl self._f_grad_lagrangian = cgt.function([lam, oldpdist_np, o_no, a_n, q_n], cgt.concatenate([p.flatten() for p in cgt.grad(penobj,params)])) self.f_pdist = cgt.function([o_no], probs_na) self.f_probs = cgt.function([o_no], probs_na) self.f_surr_kl = cgt.function([oldpdist_np, o_no, a_n, q_n], [surr, kl]) self.f_gradlogp = cgt.function([oldpdist_np, o_no, a_n, q_n], flatgrad) self.pc = ParamCollection(params)
def to_one_hot(y, nb_class, dtype=None): """ Return a matrix where each row corresponds to the one hot encoding of each element in y. Parameters ---------- y A vector of integer value between 0 and nb_class - 1. nb_class : int The number of classes in y. dtype : data-type The dtype of the returned matrix. Default floatX. Returns ------- object A matrix of shape (y.shape[0], nb_class), where each row ``i`` is the one hot encoding of the corresponding ``y[i]`` value. """ fill_vals = cgt.ones((y.shape[0],)) ret = cgt.zeros((y.shape[0], nb_class), dtype) d1 = cgt.arange(y.shape[0]) d2 = cgt.cast(y, 'i1') ret = cgt.inc_subtensor(ret, [d1, d2], fill_vals) return ret
def to_one_hot(y, nb_class, dtype=None): """ Return a matrix where each row corresponds to the one hot encoding of each element in y. Parameters ---------- y A vector of integer value between 0 and nb_class - 1. nb_class : int The number of classes in y. dtype : data-type The dtype of the returned matrix. Default floatX. Returns ------- object A matrix of shape (y.shape[0], nb_class), where each row ``i`` is the one hot encoding of the corresponding ``y[i]`` value. """ fill_vals = cgt.ones((y.shape[0], )) ret = cgt.zeros((y.shape[0], nb_class), dtype) d1 = cgt.arange(y.shape[0]) d2 = cgt.cast(y, 'i1') ret = cgt.inc_subtensor(ret, [d1, d2], fill_vals) return ret
def main(): parser = argparse.ArgumentParser() parser.add_argument("--profile",action="store_true") parser.add_argument("--unittest",action="store_true") parser.add_argument("--epochs",type=int,default=10) args = parser.parse_args() batchsize = 64 Xshape = (batchsize, 3, 32, 32) X = cgt.tensor4("X", fixed_shape = Xshape) y = cgt.vector("y", fixed_shape = (batchsize,), dtype='i4') conv1 = nn.SpatialConvolution(3, 32, kernelshape=(5,5), pad=(2,2), weight_init=nn.IIDGaussian(std=1e-4))(X) relu1 = nn.rectify(conv1) pool1 = nn.max_pool_2d(relu1, kernelshape=(3,3), stride=(2,2)) conv2 = nn.SpatialConvolution(32, 32, kernelshape=(5,5), pad=(2,2), weight_init=nn.IIDGaussian(std=0.01))(pool1) relu2 = nn.rectify(conv2) pool2 = nn.max_pool_2d(relu2, kernelshape=(3,3), stride=(2,2)) conv3 = nn.SpatialConvolution(32, 64, kernelshape=(5,5), pad=(2,2), weight_init=nn.IIDGaussian(std=0.01))(pool2) pool3 = nn.max_pool_2d(conv3, kernelshape=(3,3), stride=(2,2)) relu3 = nn.rectify(pool3) d0,d1,d2,d3 = relu3.shape flatlayer = relu3.reshape([d0,d1*d2*d3]) nfeats = cgt.infer_shape(flatlayer)[1] ip1 = nn.Affine(nfeats, 10)(flatlayer) logprobs = nn.logsoftmax(ip1) loss = -logprobs[cgt.arange(batchsize), y].mean() params = nn.get_parameters(loss) updates = rmsprop_updates(loss, params, stepsize=1e-3) train = cgt.function(inputs=[X, y], outputs=[loss], updates=updates) if args.profile: cgt.profiler.start() data = fetch_dataset("http://rll.berkeley.edu/cgt-data/cifar10.npz") Xtrain = data["X_train"] ytrain = data["y_train"] print fmt_row(10, ["Epoch","Train NLL","Train Err","Test NLL","Test Err","Epoch Time"]) for i_epoch in xrange(args.epochs): for start in xrange(0, Xtrain.shape[0], batchsize): tstart = time.time() end = start+batchsize print train(Xtrain[start:end], ytrain[start:end]), time.time()-tstart if start > batchsize*5: break # elapsed = time.time() - tstart # trainerr, trainloss = computeloss(Xtrain[:len(Xtest)], ytrain[:len(Xtest)]) # testerr, testloss = computeloss(Xtest, ytest) # print fmt_row(10, [i_epoch, trainloss, trainerr, testloss, testerr, elapsed]) if args.profile: cgt.profiler.print_stats() return if args.unittest: break
def main(): parser = argparse.ArgumentParser() parser.add_argument("--profile",action="store_true") parser.add_argument("--unittest",action="store_true") parser.add_argument("--epochs",type=int,default=10) args = parser.parse_args() batchsize = 64 Xshape = (batchsize, 3, 32, 32) X = cgt.tensor4("X", fixed_shape = Xshape) y = cgt.vector("y", fixed_shape = (batchsize,), dtype='i4') conv1 = nn.SpatialConvolution(3, 32, kernelshape=(5,5), pad=(2,2), weight_init=nn.IIDGaussian(std=1e-4))(X) relu1 = nn.rectify(conv1) pool1 = nn.max_pool_2d(relu1, kernelshape=(3,3), stride=(2,2)) conv2 = nn.SpatialConvolution(32, 32, kernelshape=(5,5), pad=(2,2), weight_init=nn.IIDGaussian(std=0.01))(relu1) relu2 = nn.rectify(conv2) pool2 = nn.max_pool_2d(relu2, kernelshape=(3,3), stride=(2,2)) conv3 = nn.SpatialConvolution(32, 64, kernelshape=(5,5), pad=(2,2), weight_init=nn.IIDGaussian(std=0.01))(pool2) pool3 = nn.max_pool_2d(conv3, kernelshape=(3,3), stride=(2,2)) relu3 = nn.rectify(pool3) d0,d1,d2,d3 = relu3.shape flatlayer = relu3.reshape([d0,d1*d2*d3]) nfeats = cgt.infer_shape(flatlayer)[1] ip1 = nn.Affine(nfeats, 10)(flatlayer) logprobs = nn.logsoftmax(ip1) loss = -logprobs[cgt.arange(batchsize), y].mean() params = nn.get_parameters(loss) updates = rmsprop_updates(loss, params, stepsize=1e-3) train = cgt.function(inputs=[X, y], outputs=[loss], updates=updates) if args.profile: cgt.profiler.start() data = np.load("/Users/joschu/Data/cifar-10-batches-py/cifar10.npz") Xtrain = data["X_train"] ytrain = data["y_train"] print fmt_row(10, ["Epoch","Train NLL","Train Err","Test NLL","Test Err","Epoch Time"]) for i_epoch in xrange(args.epochs): for start in xrange(0, Xtrain.shape[0], batchsize): tstart = time.time() end = start+batchsize print train(Xtrain[start:end], ytrain[start:end]), time.time()-tstart if start > batchsize*5: break # elapsed = time.time() - tstart # trainerr, trainloss = computeloss(Xtrain[:len(Xtest)], ytrain[:len(Xtest)]) # testerr, testloss = computeloss(Xtest, ytest) # print fmt_row(10, [i_epoch, trainloss, trainerr, testloss, testerr, elapsed]) if args.profile: cgt.profiler.print_stats() return if args.unittest: break
def build_fc_return_loss(X, y): """ Build fully connected network and return loss """ np.random.seed(0) h1 = nn.rectify(nn.Affine(28 * 28, 256, weight_init=nn.IIDGaussian(std=0.1))(X)) h2 = nn.rectify(nn.Affine(256, 256, weight_init=nn.IIDGaussian(std=0.1))(h1)) logprobs = nn.logsoftmax(nn.Affine(256, 10, weight_init=nn.IIDGaussian(std=0.1))(h2)) neglogliks = -logprobs[cgt.arange(X.shape[0]), y] loss = neglogliks.mean() return loss
def build_fc_return_loss(X, y): """ Build fully connected network and return loss """ np.random.seed(0) h1 = nn.rectify( nn.Affine(28 * 28, 256, weight_init=nn.IIDGaussian(std=.1))(X)) h2 = nn.rectify( nn.Affine(256, 256, weight_init=nn.IIDGaussian(std=.1))(h1)) logprobs = nn.logsoftmax( nn.Affine(256, 10, weight_init=nn.IIDGaussian(std=.1))(h2)) neglogliks = -logprobs[cgt.arange(X.shape[0]), y] loss = neglogliks.mean() return loss
def build_convnet_return_loss(X, y): np.random.seed(0) conv1 = nn.rectify( nn.SpatialConvolution(1, 32, kernelshape=(3, 3), pad=(0, 0), weight_init=nn.IIDGaussian(std=0.1))(X) ) pool1 = nn.max_pool_2d(conv1, kernelshape=(3, 3), stride=(2, 2)) conv2 = nn.rectify( nn.SpatialConvolution(32, 32, kernelshape=(3, 3), pad=(0, 0), weight_init=nn.IIDGaussian(std=0.1))(pool1) ) pool2 = nn.max_pool_2d(conv2, kernelshape=(3, 3), stride=(2, 2)) d0, d1, d2, d3 = pool2.shape flatlayer = pool2.reshape([d0, d1 * d2 * d3]) nfeats = cgt.infer_shape(flatlayer)[1] logprobs = nn.logsoftmax(nn.Affine(nfeats, 10)(flatlayer)) loss = -logprobs[cgt.arange(X.shape[0]), y].mean() return loss
def build_convnet_return_loss(X, y): np.random.seed(0) conv1 = nn.rectify( nn.SpatialConvolution(1, 32, kernelshape=(3, 3), pad=(0, 0), weight_init=nn.IIDGaussian(std=.1))(X)) pool1 = nn.max_pool_2d(conv1, kernelshape=(3, 3), stride=(2, 2)) conv2 = nn.rectify( nn.SpatialConvolution(32, 32, kernelshape=(3, 3), pad=(0, 0), weight_init=nn.IIDGaussian(std=.1))(pool1)) pool2 = nn.max_pool_2d(conv2, kernelshape=(3, 3), stride=(2, 2)) d0, d1, d2, d3 = pool2.shape flatlayer = pool2.reshape([d0, d1 * d2 * d3]) nfeats = cgt.infer_shape(flatlayer)[1] logprobs = nn.logsoftmax(nn.Affine(nfeats, 10)(flatlayer)) loss = -logprobs[cgt.arange(X.shape[0]), y].mean() return loss
def __init__(self, n_actions): Serializable.__init__(self, n_actions) cgt.set_precision('double') n_in = 128 o_no = cgt.matrix("o_no", fixed_shape=(None, n_in)) a_n = cgt.vector("a_n", dtype='i8') q_n = cgt.vector("q_n") oldpdist_np = cgt.matrix("oldpdists") h0 = (o_no - 128.0) / 128.0 nhid = 64 h1 = cgt.tanh( nn.Affine(128, nhid, weight_init=nn.IIDGaussian(std=.1))(h0)) probs_na = nn.softmax( nn.Affine(nhid, n_actions, weight_init=nn.IIDGaussian(std=0.01))(h1)) logprobs_na = cgt.log(probs_na) b = cgt.size(o_no, 0) logps_n = logprobs_na[cgt.arange(b), a_n] surr = (logps_n * q_n).mean() kl = (oldpdist_np * cgt.log(oldpdist_np / probs_na)).sum(axis=1).mean() params = nn.get_parameters(surr) gradsurr = cgt.grad(surr, params) flatgrad = cgt.concatenate([p.flatten() for p in gradsurr]) lam = cgt.scalar() penobj = surr - lam * kl self._f_grad_lagrangian = cgt.function( [lam, oldpdist_np, o_no, a_n, q_n], cgt.concatenate([p.flatten() for p in cgt.grad(penobj, params)])) self.f_pdist = cgt.function([o_no], probs_na) self.f_probs = cgt.function([o_no], probs_na) self.f_surr_kl = cgt.function([oldpdist_np, o_no, a_n, q_n], [surr, kl]) self.f_gradlogp = cgt.function([oldpdist_np, o_no, a_n, q_n], flatgrad) self.pc = ParamCollection(params)
def loglik(self, labels, p): return cgt.log(p[cgt.arange(cgt.size(labels, 0)), labels])
def arange(x): return cgt.arange(x)
def loglik(self, labels, p): return cgt.log(p[cgt.arange(cgt.size(labels,0)),labels])