Esempio n. 1
0
    def test_Reshape(self):
        class Link(chainer.Chain):

            def __call__(self, x):
                return F.reshape(x, (-1,))

        caffe.export(Link(), [self.x], None, True, 'test')
Esempio n. 2
0
def main():
    parser = argparse.ArgumentParser(description='Export')
    parser.add_argument('--arch',
                        '-a',
                        type=str,
                        required=True,
                        choices=archs.keys(),
                        help='Arch name. models: ' + ', '.join(archs.keys()) +
                        '.')
    parser.add_argument('--out-dir',
                        '-o',
                        type=str,
                        required=True,
                        help='Output directory name. '
                        'chainer_model.prototxt, chainer_model.caffemodel'
                        ' will be created in it')
    args = parser.parse_args()

    if not os.path.exists(args.out_dir):
        print('Created output directory: ' + args.out_dir)
        os.mkdir(args.out_dir)
    else:
        print('Overwriting the existing directory: ' + args.out_dir)
    if not os.path.isdir(args.out_dir):
        raise ValueError(args.out_dir + ' exists but not a directory!')

    print("load model")
    model, input = get_network_for_imagenet(args.arch)

    print("convert to caffe model")
    caffe.export(model, [input], args.out_dir, True)
Esempio n. 3
0
def main():
    parser = argparse.ArgumentParser(description='Export')
    parser.add_argument(
        '--arch', '-a', type=str, required=True,
        choices=archs.keys(),
        help='Arch name. models: ' + ', '.join(archs.keys()) + '.')
    parser.add_argument(
        '--out-dir', '-o', type=str, required=True,
        help='Output directory name. '
             'chainer_model.prototxt, chainer_model.caffemodel'
             ' will be created in it')
    args = parser.parse_args()

    if not os.path.exists(args.out_dir):
        print('Created output directory: ' + args.out_dir)
        os.mkdir(args.out_dir)
    else:
        print('Overwriting the existing directory: ' + args.out_dir)
    if not os.path.isdir(args.out_dir):
        raise ValueError(args.out_dir + ' exists but not a directory!')

    print("load model")
    model, input = get_network_for_imagenet(args.arch)

    print("convert to caffe model")
    caffe.export(model, [input], args.out_dir, True)
Esempio n. 4
0
    def test_caffe_export_no_save(self):
        class Model(chainer.Chain):
            def __init__(self):
                super(Model, self).__init__()
                with self.init_scope():
                    self.l1 = L.Convolution2D(None, 1, 1, 1, 0)
                    self.b2 = L.BatchNormalization(1)
                    self.l3 = L.Linear(None, 1)

            def __call__(self, x):
                h = F.relu(self.l1(x))
                h = self.b2(h)
                return self.l3(h)

        caffe.export(Model(), [self.x], None, True, 'test')
Esempio n. 5
0
    def test_caffe_export_no_save(self):
        class Model(chainer.Chain):

            def __init__(self):
                super(Model, self).__init__()
                with self.init_scope():
                    self.l1 = L.Convolution2D(None, 1, 1, 1, 0)
                    self.b2 = L.BatchNormalization(1)
                    self.l3 = L.Linear(None, 1)

            def __call__(self, x):
                h = F.relu(self.l1(x))
                h = self.b2(h)
                return self.l3(h)

        caffe.export(Model(), [self.x], None, True, 'test')
Esempio n. 6
0
def export_and_import(l, args, export_params=True, graph_name='test'):
    """Exports the given Link as Caffe model and returns the re-imported Link.

    """

    with chainer.utils.tempdir() as tempdir:
        caffe.export(l, args, tempdir, export_params, graph_name)

        prototxt = os.path.join(tempdir, 'chainer_model.prototxt')
        caffemodel = os.path.join(tempdir, 'chainer_model.caffemodel')

        assert os.path.exists(prototxt)
        assert os.path.exists(caffemodel)

        # with open(prototxt) as f: print(f.read())
        return L.caffe.CaffeFunction(caffemodel)
Esempio n. 7
0
def export_and_import(l, args, export_params=True, graph_name='test'):
    """Exports the given Link as Caffe model and returns the re-imported Link.

    """

    with chainer.utils.tempdir() as tempdir:
        caffe.export(l, args, tempdir, export_params, graph_name)

        prototxt = os.path.join(tempdir, 'chainer_model.prototxt')
        caffemodel = os.path.join(tempdir, 'chainer_model.caffemodel')

        assert os.path.exists(prototxt)
        assert os.path.exists(caffemodel)

        # with open(prototxt) as f: print(f.read())
        return L.caffe.CaffeFunction(caffemodel)
def main():
    for key, value in srcnn.archs.items():
        model_dir = '../models/{}'.format(key.lower())
        for filename in os.listdir(model_dir):
            basename, ext = os.path.splitext(filename)
            onnx_path = os.path.join(model_dir, basename + '.onnx')
            if ext == '.npz':
                model_path = os.path.join(model_dir, filename)
                print(model_path)
                channels = 3 if 'rgb' in filename else 1
                model = value(channels)
                size = 64 + model.offset
                data = np.zeros((1, channels, size, size), dtype=np.float32)
                x = chainer.Variable(data)
                try:
                    chainer.serializers.load_npz(model_path, model)
                    caffe.export(model, [x], model_dir, True, basename)
                    rename_caffe_model(model_dir, basename)
                except Exception:
                    print('Skipped caffe model export')
                onnx_chainer.export(model, x, filename=onnx_path)
Esempio n. 9
0
def rename_caffe_model(dir, filename):
    model_path = os.path.join(dir, 'chainer_model.caffemodel')
    prototxt_path = os.path.join(dir, 'chainer_model.prototxt')
    new_model_path = os.path.join(dir, filename + '.caffemodel')
    new_prototxt_path = os.path.join(dir, filename + '.prototxt')
    os.rename(model_path, new_model_path)
    os.rename(prototxt_path, new_prototxt_path)


if __name__ == '__main__':
    for key, value in srcnn.archs.items():
        model_dir = '../models/{}'.format(key.lower())
        for filename in os.listdir(model_dir):
            basename, ext = os.path.splitext(filename)
            onnx_path = os.path.join(model_dir, basename + '.onnx')
            if ext == '.npz':
                model_path = os.path.join(model_dir, filename)
                print(model_path)
                channels = 3 if 'rgb' in filename else 1
                model = value(channels)
                size = 64 + model.offset
                data = np.zeros((1, channels, size, size), dtype=np.float32)
                x = chainer.Variable(data)
                try:
                    chainer.serializers.load_npz(model_path, model)
                    caffe.export(model, [x], model_dir, True, basename)
                    rename_caffe_model(model_dir, basename)
                except Exception:
                    print('Skipped caffe model export')
                onnx_chainer.export(model, x, filename=onnx_path)
Esempio n. 10
0
    def test_Add(self):
        class Link(chainer.Chain):
            def __call__(self, x):
                return x + x

        caffe.export(Link(), [self.x], None, True, 'test')
Esempio n. 11
0
    def test_Softmax(self):
        class Link(chainer.Chain):
            def __call__(self, x):
                return F.softmax(x)

        caffe.export(Link(), [self.x], None, True, 'test')
Esempio n. 12
0
    def test_MaxPooling2D(self):
        class Link(chainer.Chain):
            def __call__(self, x):
                return F.max_pooling_2d(x, 1, 1, 0)

        caffe.export(Link(), [self.x], None, True, 'test')
Esempio n. 13
0
    def test_Reshape(self):
        class Link(chainer.Chain):
            def __call__(self, x):
                return F.reshape(x, (-1, ))

        caffe.export(Link(), [self.x], None, True, 'test')
Esempio n. 14
0
    def test_Add(self):
        class Link(chainer.Chain):
            def __call__(self, x):
                return x + x

        caffe.export(Link(), [self.x], None, True, 'test')
Esempio n. 15
0
    def test_Softmax(self):
        class Link(chainer.Chain):
            def __call__(self, x):
                return F.softmax(x)

        caffe.export(Link(), [self.x], None, True, 'test')
Esempio n. 16
0
    def test_MaxPooling2D(self):
        class Link(chainer.Chain):
            def __call__(self, x):
                return F.max_pooling_2d(x, 1, 1, 0)

        caffe.export(Link(), [self.x], None, True, 'test')