Esempio n. 1
0
def compute_curvature_dmat_sub(dmat,N,idx):
    K = []
    for i in idx:
        L0 = dmat[N[i][:,0],i]**2
        L1 = dmat[N[i][:,1],i]**2
        D = dmat[N[i][:,0],N[i][:,1]]**2
        c1 = (L0+L1-D)/(2*F.sqrt(L0*L1))
        arg = 2*np.pi-F.sum(F.arccos(c1))
        K.append(arg)
    return(K)
Esempio n. 2
0
 def loss(self, logits, labels):
     xp = chainer.cuda.get_array_module(logits)
     # add margin
     z = 1 - 1e-6
     theta = F.arccos(F.clip(logits, -z, z))
     target_logits = F.cos(theta + self.m)
     one_hot = xp.eye(self.class_num)[labels]
     output = logits * (1 - one_hot) + target_logits * one_hot
     # feature re-scale
     output *= self.s
     loss = F.softmax_cross_entropy(output, labels)
     return loss
Esempio n. 3
0
def compute_curvature(vert,face,xp):
    # Obsolite: replaced with compute_curvature_sub which is more efficient
    K = Variable(xp.full((len(vert),), 2*xp.pi))
    for f in face:
        n = len(f)
        id_p = xp.array([f[(i-1)%n] for i in range(n+1)])
        id = xp.array([f[i%n] for i in range(n+1)])
        id_n = xp.array([f[(i+1)%n] for i in range(n)])
        L = F.sum((vert[id_p] - vert[id])**2, axis=1)
        D = F.sum((vert[id_n] - vert[ id_p[:-1] ])**2, axis=1)
        c1 = (L[:n]+L[1:]-D)/(2*F.sqrt(L[:n]*L[1:]))
        K = F.scatter_add(K,f,-F.arccos(c1))
    return K
Esempio n. 4
0
 def loss(self, logits, labels):
     xp = chainer.cuda.get_array_module(logits)
     # add margin
     z = 1 - 1e-6
     theta = F.arccos(F.clip(logits, -z, z))
     one_hot = xp.eye(self.class_num)[labels]
     
     
     B_avg = xp.where(one_hot < 1, xp.clip(xp.exp(self.s * logits.data), -z, z), xp.zeros_like(logits.data))
     B_avg = xp.sum(B_avg) / logits.shape[0]
     theta_med = xp.asarray(np.median(to_cpu(theta.data[one_hot == 1])))
     self.s = math.log(B_avg) / math.cos(min([math.pi/4, theta_med]))
     
     output = self.s * logits
     loss = F.softmax_cross_entropy(output, labels)
     return loss
Esempio n. 5
0
def compute_curvature_sub(vert,N,idx,force_upward=False,verbose=False):
    K = []
    for i in idx:
        L0 = F.sum((vert[N[i][:,0]] - vert[i])**2, axis=1)
        L1 = F.sum((vert[N[i][:,1]] - vert[i])**2, axis=1)
        D = F.sum((vert[N[i][:,1]] - vert[N[i][:,0]])**2, axis=1)
        c1 = (L0+L1-D)/(2*F.sqrt(L0*L1))
        arg = 2*np.pi-F.sum(F.arccos(c1))
        if force_upward:
            up = F.sum(vert[i]-vert[N[i][:,0]],axis=0)
            fn = [0,0,0]
            for k in range(len(N[i])):
                q = cross(vert[N[i][k,1]] - vert[i], vert[N[i][k,0]] - vert[i])
                fn[0] += q[0]
                fn[1] += q[1]
                fn[2] += q[2]
            s = F.sign(inprod(fn,up))
            if verbose and s.array<0:
                print(i,s)
            arg *= F.sign(inprod(fn,up))
        K.append(arg)
    return(K)
Esempio n. 6
0
 def arccos(self, x):
     return F.arccos(x)
Esempio n. 7
0
 def forward(self, x):
     y1 = F.arccos(x)
     return y1
Esempio n. 8
0
    def forward(self, *args, **kwargs):

        if 'train' in kwargs.keys():
            self.train = kwargs['train']
            del kwargs['train']

        if 'epoch' in kwargs.keys():
            if self.target_epoch is not None:
                self.margin = kwargs[
                    'epoch'] / self.target_epoch * self.final_margin
                self.scale = 1 + kwargs['epoch'] / self.target_epoch * (
                    self.final_scale - 1)
            del kwargs['epoch']

        if isinstance(self.label_key, int):
            if not (-len(args) <= self.label_key < len(args)):
                msg = 'Label key %d is out of bounds' % self.label_key
                raise ValueError(msg)
            t = args[self.label_key]
            if self.label_key == -1:
                args = args[:-1]
            else:
                args = args[:self.label_key] + args[self.label_key + 1:]
        elif isinstance(self.label_key, str):
            if self.label_key not in kwargs:
                msg = 'Label key "%s" is not found' % self.label_key
                raise ValueError(msg)
            t = kwargs[self.label_key]
            del kwargs[self.label_key]

        self.y = None
        self.hidden_feature = None
        self.loss = None
        self.accuracy = None

        self.hidden_feature = self.predictor(*args, **kwargs)
        self.y = self.cosine_similarity(self.hidden_feature)

        if self.train:
            xp = chainer.backend.cuda.get_array_module(self.y)
            if self.method == 'sphereface':
                penalty = xp.zeros_like(self.y)
                rows = xp.arange(t.size)
                penalty[rows,
                        t] = (F.cos(F.arccos(self.y[rows, t]) * self.margin) -
                              self.y[rows, t]).data
                self.y += penalty
            elif self.method == 'arcface':
                penalty = xp.zeros_like(self.y)
                rows = xp.arange(t.size)
                penalty[rows,
                        t] = (F.cos(F.arccos(self.y[rows, t]) + self.margin) -
                              self.y[rows, t]).data
                self.y += penalty
            elif self.method == 'cosface':
                self.y[xp.arange(t.size), t] -= self.margin
            else:
                raise NotImplementedError
        self.y *= self.scale

        self.loss = self.lossfun(self.y, t)
        reporter.report({'loss': self.loss}, self)
        if self.compute_accuracy:
            self.accuracy = self.accfun(self.y, t)
            reporter.report({'accuracy': self.accuracy}, self)
        return self.loss