Esempio n. 1
0
 def check_invalid_key(self, gpu, label_key):
     link = Regressor(links.Linear(10, 3), label_key=label_key)
     if gpu:
         link.to_gpu()
     x = chainer.Variable(link.xp.asarray(self.x))
     with pytest.raises(ValueError):
         link(x)
def main():
    # Parse the arguments.
    args = parse_arguments()

    if args.label:
        labels = args.label
    else:
        raise ValueError('No target label was specified.')

    # Dataset preparation.
    def postprocess_label(label_list):
        return numpy.asarray(label_list, dtype=numpy.float32)

    print('Preprocessing dataset...')
    preprocessor = preprocess_method_dict[args.method]()
    parser = CSVFileParser(preprocessor,
                           postprocess_label=postprocess_label,
                           labels=labels,
                           smiles_col='SMILES')
    dataset = parser.parse(args.datafile)['dataset']

    # Load the standard scaler parameters, if necessary.
    if args.scale == 'standardize':
        with open(os.path.join(args.in_dir, 'scaler.pkl'), mode='rb') as f:
            scaler = pickle.load(f)
    else:
        scaler = None
    test = dataset

    print('Predicting...')
    # Set up the regressor.
    model_path = os.path.join(args.in_dir, args.model_filename)
    regressor = Regressor.load_pickle(model_path, device=args.gpu)
    scaled_predictor = ScaledGraphConvPredictor(regressor.predictor)
    scaled_predictor.scaler = scaler
    regressor.predictor = scaled_predictor

    # Perform the prediction.
    print('Evaluating...')
    test_iterator = SerialIterator(test, 16, repeat=False, shuffle=False)
    eval_result = Evaluator(test_iterator,
                            regressor,
                            converter=concat_mols,
                            device=args.gpu)()

    # Prevents the loss function from becoming a cupy.core.core.ndarray object
    # when using the GPU. This hack will be removed as soon as the cause of
    # the issue is found and properly fixed.
    loss = numpy.asscalar(cuda.to_cpu(eval_result['main/loss']))
    eval_result['main/loss'] = loss
    print('Evaluation result: ', eval_result)

    with open(os.path.join(args.in_dir, 'eval_result.json'), 'w') as f:
        json.dump(eval_result, f)
Esempio n. 3
0
    def check_call(self, gpu, label_key, args, kwargs, model_args,
                   model_kwargs, metrics_fun, compute_metrics):
        init_kwargs = {'label_key': label_key}
        if metrics_fun is not None:
            init_kwargs['metrics_fun'] = metrics_fun
        link = Regressor(chainer.Link(), **init_kwargs)

        if gpu:
            xp = cuda.cupy
            link.to_gpu()
        else:
            xp = numpy

        link.compute_metrics = compute_metrics

        y = chainer.Variable(self.y)
        link.predictor = mock.MagicMock(return_value=y)

        loss = link(*args, **kwargs)
        link.predictor.assert_called_with(*model_args, **model_kwargs)

        assert hasattr(link, 'y')
        assert link.y is not None

        assert hasattr(link, 'loss')
        xp.testing.assert_allclose(link.loss.data, loss.data)

        assert hasattr(link, 'metrics')
        if compute_metrics:
            assert link.metrics is not None
        else:
            assert link.metrics is None
Esempio n. 4
0
    def test_report_key(self, metrics_fun, compute_metrics):
        repo = chainer.Reporter()

        link = Regressor(predictor=DummyPredictor(), metrics_fun=metrics_fun)
        link.compute_metrics = compute_metrics
        repo.add_observer('target', link)
        with repo:
            observation = {}
            with reporter.report_scope(observation):
                link(self.x, self.t)

        # print('observation ', observation)
        actual_keys = set(observation.keys())
        if compute_metrics:
            if metrics_fun is None:
                assert set(['target/loss']) == actual_keys
            elif isinstance(metrics_fun, dict):
                assert set(['target/loss', 'target/user_key']) == actual_keys
            elif callable(metrics_fun):
                assert set(['target/loss', 'target/metrics']) == actual_keys
            else:
                raise TypeError()
        else:
            assert set(['target/loss']) == actual_keys
def main():
    # Parse the arguments.
    args = parse_arguments()

    if args.label:
        labels = args.label
    else:
        raise ValueError('No target label was specified.')

    # Dataset preparation.
    def postprocess_label(label_list):
        return numpy.asarray(label_list, dtype=numpy.float32)

    print('Preprocessing dataset...')
    preprocessor = preprocess_method_dict[args.method]()
    parser = CSVFileParser(preprocessor, postprocess_label=postprocess_label,
                           labels=labels, smiles_col='SMILES')
    dataset = parser.parse(args.datafile)['dataset']

    # Load the standard scaler parameters, if necessary.
    if args.scale == 'standardize':
        with open(os.path.join(args.in_dir, 'scaler.pkl'), mode='rb') as f:
            scaler = pickle.load(f)
    else:
        scaler = None
    test = dataset

    print('Predicting...')
    # Set up the regressor.
    model_path = os.path.join(args.in_dir, args.model_filename)
    regressor = Regressor.load_pickle(model_path, device=args.gpu)
    scaled_predictor = ScaledGraphConvPredictor(regressor.predictor)
    scaled_predictor.scaler = scaler
    regressor.predictor = scaled_predictor

    # Perform the prediction.
    print('Evaluating...')
    test_iterator = SerialIterator(test, 16, repeat=False, shuffle=False)
    eval_result = Evaluator(test_iterator, regressor, converter=concat_mols,
                            device=args.gpu)()
    print('Evaluation result: ', eval_result)

    with open(os.path.join(args.in_dir, 'eval_result.json'), 'w') as f:
        json.dump(eval_result, f)
def main():
    # Parse the arguments.
    args = parse_arguments()

    if args.label:
        labels = args.label
    else:
        raise ValueError('No target label was specified.')

    # Dataset preparation.
    def postprocess_label(label_list):
        return numpy.asarray(label_list, dtype=numpy.float32)

    print('Preprocessing dataset...')
    preprocessor = preprocess_method_dict[args.method]()
    parser = CSVFileParser(preprocessor,
                           postprocess_label=postprocess_label,
                           labels=labels,
                           smiles_col='SMILES')
    dataset = parser.parse(args.datafile)['dataset']

    test = dataset

    print('Predicting...')
    # Set up the regressor.
    device = chainer.get_device(args.device)
    model_path = os.path.join(args.in_dir, args.model_filename)
    regressor = Regressor.load_pickle(model_path, device=device)

    # Perform the prediction.
    print('Evaluating...')
    converter = converter_method_dict[args.method]
    test_iterator = SerialIterator(test, 16, repeat=False, shuffle=False)
    eval_result = Evaluator(test_iterator,
                            regressor,
                            converter=converter,
                            device=device)()
    print('Evaluation result: ', eval_result)

    save_json(os.path.join(args.in_dir, 'eval_result.json'), eval_result)
Esempio n. 7
0
def main():
    # Parse the arguments.
    args = parse_arguments()
    device = args.gpu

    # Set up some useful variables that will be used later on.
    method = args.method
    if args.label != 'all':
        label = args.label
        cache_dir = os.path.join('input', '{}_{}'.format(method, label))
        labels = [label]
    else:
        labels = D.get_qm9_label_names()
        cache_dir = os.path.join('input', '{}_all'.format(method))

    # Get the filename corresponding to the cached dataset, based on the amount
    # of data samples that need to be parsed from the original dataset.
    num_data = args.num_data
    if num_data >= 0:
        dataset_filename = 'data_{}.npz'.format(num_data)
    else:
        dataset_filename = 'data.npz'

    # Load the cached dataset.
    dataset_cache_path = os.path.join(cache_dir, dataset_filename)

    dataset = None
    if os.path.exists(dataset_cache_path):
        print('Loading cached data from {}.'.format(dataset_cache_path))
        dataset = NumpyTupleDataset.load(dataset_cache_path)
    if dataset is None:
        print('Preprocessing dataset...')
        preprocessor = preprocess_method_dict[method]()
        dataset = D.get_qm9(preprocessor, labels=labels)

        # Cache the newly preprocessed dataset.
        if not os.path.exists(cache_dir):
            os.mkdir(cache_dir)
        NumpyTupleDataset.save(dataset_cache_path, dataset)

    # Use a predictor with scaled output labels.
    model_path = os.path.join(args.in_dir, args.model_filename)
    regressor = Regressor.load_pickle(model_path, device=device)
    scaler = regressor.predictor.scaler

    if scaler is not None:
        original_t = dataset.get_datasets()[-1]
        if args.gpu >= 0:
            scaled_t = cuda.to_cpu(scaler.transform(
                cuda.to_gpu(original_t)))
        else:
            scaled_t = scaler.transform(original_t)

        dataset = NumpyTupleDataset(*(dataset.get_datasets()[:-1] +
                                      (scaled_t,)))

    # Split the dataset into training and testing.
    train_data_size = int(len(dataset) * args.train_data_ratio)
    _, test = split_dataset_random(dataset, train_data_size, args.seed)

    # This callback function extracts only the inputs and discards the labels.
    def extract_inputs(batch, device=None):
        return concat_mols(batch, device=device)[:-1]

    def postprocess_fn(x):
        if scaler is not None:
            scaled_x = scaler.inverse_transform(x)
            return scaled_x
        else:
            return x

    # Predict the output labels.
    print('Predicting...')
    y_pred = regressor.predict(
        test, converter=extract_inputs,
        postprocess_fn=postprocess_fn)

    # Extract the ground-truth labels.
    t = concat_mols(test, device=device)[-1]
    original_t = cuda.to_cpu(scaler.inverse_transform(t))

    # Construct dataframe.
    df_dict = {}
    for i, l in enumerate(labels):
        df_dict.update({'y_pred_{}'.format(l): y_pred[:, i],
                        't_{}'.format(l): original_t[:, i], })
    df = pandas.DataFrame(df_dict)

    # Show a prediction/ground truth table with 5 random examples.
    print(df.sample(5))

    n_eval = 10
    for target_label in range(y_pred.shape[1]):
        label_name = labels[target_label]
        diff = y_pred[:n_eval, target_label] - original_t[:n_eval,
                                                          target_label]
        print('label_name = {}, y_pred = {}, t = {}, diff = {}'
              .format(label_name, y_pred[:n_eval, target_label],
                      original_t[:n_eval, target_label], diff))

    # Run an evaluator on the test dataset.
    print('Evaluating...')
    test_iterator = SerialIterator(test, 16, repeat=False, shuffle=False)
    eval_result = Evaluator(test_iterator, regressor, converter=concat_mols,
                            device=device)()
    print('Evaluation result: ', eval_result)
    # Save the evaluation results.
    save_json(os.path.join(args.in_dir, 'eval_result.json'), eval_result)

    # Calculate mean abs error for each label
    mae = numpy.mean(numpy.abs(y_pred - original_t), axis=0)
    eval_result = {}
    for i, l in enumerate(labels):
        eval_result.update({l: mae[i]})
    save_json(os.path.join(args.in_dir, 'eval_result_mae.json'), eval_result)
Esempio n. 8
0
def main():
    # Supported preprocessing/network list
    method_list = ['nfp', 'ggnn', 'schnet', 'weavenet', 'rsgcn']
    label_names = [
        'A', 'B', 'C', 'mu', 'alpha', 'h**o', 'lumo', 'gap', 'r2', 'zpve',
        'U0', 'U', 'H', 'G', 'Cv'
    ]
    scale_list = ['standardize', 'none']

    parser = argparse.ArgumentParser(description='Regression with QM9.')
    parser.add_argument('--method',
                        '-m',
                        type=str,
                        choices=method_list,
                        default='nfp')
    parser.add_argument('--label',
                        '-l',
                        type=str,
                        choices=label_names,
                        default='',
                        help='target label for regression, '
                        'empty string means to predict all '
                        'property at once')
    parser.add_argument('--scale',
                        type=str,
                        choices=scale_list,
                        default='standardize',
                        help='Label scaling method')
    parser.add_argument('--conv-layers', '-c', type=int, default=4)
    parser.add_argument('--batchsize', '-b', type=int, default=32)
    parser.add_argument('--gpu', '-g', type=int, default=-1)
    parser.add_argument('--out', '-o', type=str, default='result')
    parser.add_argument('--epoch', '-e', type=int, default=20)
    parser.add_argument('--unit-num', '-u', type=int, default=16)
    parser.add_argument('--seed', '-s', type=int, default=777)
    parser.add_argument('--train-data-ratio', '-t', type=float, default=0.7)
    parser.add_argument('--protocol', type=int, default=2)
    parser.add_argument('--model-filename', type=str, default='regressor.pkl')
    parser.add_argument('--num-data',
                        type=int,
                        default=-1,
                        help='Number of data to be parsed from parser.'
                        '-1 indicates to parse all data.')
    args = parser.parse_args()

    seed = args.seed
    train_data_ratio = args.train_data_ratio
    method = args.method
    if args.label:
        labels = args.label
        cache_dir = os.path.join('input', '{}_{}'.format(method, labels))
        class_num = len(labels) if isinstance(labels, list) else 1
    else:
        labels = None
        cache_dir = os.path.join('input', '{}_all'.format(method))
        class_num = len(D.get_qm9_label_names())

    # Dataset preparation
    dataset = None

    num_data = args.num_data
    if num_data >= 0:
        dataset_filename = 'data_{}.npz'.format(num_data)
    else:
        dataset_filename = 'data.npz'
    dataset_cache_path = os.path.join(cache_dir, dataset_filename)
    if os.path.exists(dataset_cache_path):
        print('load from cache {}'.format(dataset_cache_path))
        dataset = NumpyTupleDataset.load(dataset_cache_path)
    if dataset is None:
        print('preprocessing dataset...')
        preprocessor = preprocess_method_dict[method]()
        if num_data >= 0:
            # only use first 100 for debug
            target_index = numpy.arange(num_data)
            dataset = D.get_qm9(preprocessor,
                                labels=labels,
                                target_index=target_index)
        else:
            dataset = D.get_qm9(preprocessor, labels=labels)
        os.makedirs(cache_dir)
        NumpyTupleDataset.save(dataset_cache_path, dataset)

    if args.scale == 'standardize':
        # Standard Scaler for labels
        ss = StandardScaler()
        labels = ss.fit_transform(dataset.get_datasets()[-1])
    else:
        ss = None
    dataset = NumpyTupleDataset(*(dataset.get_datasets()[:-1] + (labels, )))

    train_data_size = int(len(dataset) * train_data_ratio)
    train, val = split_dataset_random(dataset, train_data_size, seed)

    # Network
    n_unit = args.unit_num
    conv_layers = args.conv_layers
    if method == 'nfp':
        print('Train NFP model...')
        model = GraphConvPredictor(
            NFP(out_dim=n_unit, hidden_dim=n_unit, n_layers=conv_layers),
            MLP(out_dim=class_num, hidden_dim=n_unit))
    elif method == 'ggnn':
        print('Train GGNN model...')
        model = GraphConvPredictor(
            GGNN(out_dim=n_unit, hidden_dim=n_unit, n_layers=conv_layers),
            MLP(out_dim=class_num, hidden_dim=n_unit))
    elif method == 'schnet':
        print('Train SchNet model...')
        model = GraphConvPredictor(
            SchNet(out_dim=class_num, hidden_dim=n_unit, n_layers=conv_layers),
            None)
    elif method == 'weavenet':
        print('Train WeaveNet model...')
        n_atom = 20
        n_sub_layer = 1
        weave_channels = [50] * conv_layers
        model = GraphConvPredictor(
            WeaveNet(weave_channels=weave_channels,
                     hidden_dim=n_unit,
                     n_sub_layer=n_sub_layer,
                     n_atom=n_atom), MLP(out_dim=class_num, hidden_dim=n_unit))
    elif method == 'rsgcn':
        print('Train RSGCN model...')
        model = GraphConvPredictor(
            RSGCN(out_dim=n_unit, hidden_dim=n_unit, n_layers=conv_layers),
            MLP(out_dim=class_num, hidden_dim=n_unit))
    else:
        raise ValueError('[ERROR] Invalid method {}'.format(method))

    train_iter = I.SerialIterator(train, args.batchsize)
    val_iter = I.SerialIterator(val,
                                args.batchsize,
                                repeat=False,
                                shuffle=False)

    regressor = Regressor(
        model,
        lossfun=F.mean_squared_error,
        metrics_fun={'abs_error': ScaledAbsError(scale=args.scale, ss=ss)},
        device=args.gpu)

    optimizer = O.Adam()
    optimizer.setup(regressor)

    updater = training.StandardUpdater(train_iter,
                                       optimizer,
                                       device=args.gpu,
                                       converter=concat_mols)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
    trainer.extend(
        E.Evaluator(val_iter,
                    regressor,
                    device=args.gpu,
                    converter=concat_mols))
    trainer.extend(E.snapshot(), trigger=(args.epoch, 'epoch'))
    trainer.extend(E.LogReport())
    trainer.extend(
        E.PrintReport([
            'epoch', 'main/loss', 'main/abs_error', 'validation/main/loss',
            'validation/main/abs_error', 'elapsed_time'
        ]))
    trainer.extend(E.ProgressBar())
    trainer.run()

    # --- save regressor & standardscaler ---
    protocol = args.protocol
    regressor.save_pickle(os.path.join(args.out, args.model_filename),
                          protocol=protocol)
    if args.scale == 'standardize':
        with open(os.path.join(args.out, 'ss.pkl'), mode='wb') as f:
            pickle.dump(ss, f, protocol=protocol)
def main():
    args = parse_arguments()

    # Set up some useful variables that will be used later on.
    dataset_name = args.dataset
    method = args.method
    num_data = args.num_data

    if args.label:
        labels = args.label
        cache_dir = os.path.join(
            'input', '{}_{}_{}'.format(dataset_name, method, labels))
    else:
        labels = None
        cache_dir = os.path.join('input',
                                 '{}_{}_all'.format(dataset_name, method))

    # Load the cached dataset.
    filename = dataset_part_filename('test', num_data)
    path = os.path.join(cache_dir, filename)
    if os.path.exists(path):
        print('Loading cached dataset from {}.'.format(path))
        test = NumpyTupleDataset.load(path)
    else:
        _, _, test = download_entire_dataset(dataset_name, num_data, labels,
                                             method, cache_dir)


#    # Load the standard scaler parameters, if necessary.
#    if args.scale == 'standardize':
#        scaler_path = os.path.join(args.in_dir, 'scaler.pkl')
#        print('Loading scaler parameters from {}.'.format(scaler_path))
#        with open(scaler_path, mode='rb') as f:
#            scaler = pickle.load(f)
#    else:
#        print('No standard scaling was selected.')
#        scaler = None

# Model-related data is stored this directory.
    model_dir = os.path.join(args.in_dir, os.path.basename(cache_dir))

    model_filename = {
        'classification': 'classifier.pkl',
        'regression': 'regressor.pkl'
    }
    task_type = molnet_default_config[dataset_name]['task_type']
    model_path = os.path.join(model_dir, model_filename[task_type])
    print("model_path=" + model_path)
    print('Loading model weights from {}...'.format(model_path))

    if task_type == 'classification':
        model = Classifier.load_pickle(model_path, device=args.gpu)
    elif task_type == 'regression':
        model = Regressor.load_pickle(model_path, device=args.gpu)
    else:
        raise ValueError('Invalid task type ({}) encountered when processing '
                         'dataset ({}).'.format(task_type, dataset_name))

    # Proposed by Ishiguro
    # ToDo: consider go/no-go with following modification
    # Re-load the best-validation score snapshot
    serializers.load_npz(
        os.path.join(model_dir, "best_val_" + model_filename[task_type]),
        model)

    #    # Replace the default predictor with one that scales the output labels.
    #    scaled_predictor = ScaledGraphConvPredictor(model.predictor)
    #    scaled_predictor.scaler = scaler
    #    model.predictor = scaled_predictor

    # Run an evaluator on the test dataset.
    print('Evaluating...')
    test_iterator = SerialIterator(test, 16, repeat=False, shuffle=False)
    eval_result = Evaluator(test_iterator,
                            model,
                            converter=concat_mols,
                            device=args.gpu)()
    print('Evaluation result: ', eval_result)

    # Proposed by Ishiguro: add more stats
    # ToDo: considre go/no-go with the following modification

    if task_type == 'regression':
        # loss = cuda.to_cpu(numpy.array(eval_result['main/loss']))
        # eval_result['main/loss'] = loss

        # convert to native values..
        for k, v in eval_result.items():
            eval_result[k] = float(v)

        save_json(os.path.join(args.in_dir, 'eval_result.json'), eval_result)
    elif task_type == "classification":
        # For Classifier, we do not equip the model with ROC-AUC evalation function
        # use a seperate ROC-AUC Evaluator here
        rocauc_result = ROCAUCEvaluator(test_iterator,
                                        model,
                                        converter=concat_mols,
                                        device=args.gpu,
                                        eval_func=model.predictor,
                                        name='test',
                                        ignore_labels=-1)()
        print('ROCAUC Evaluation result: ', rocauc_result)
        save_json(os.path.join(args.in_dir, 'eval_result.json'), rocauc_result)
    else:
        pass

    # Save the evaluation results.
    save_json(os.path.join(model_dir, 'eval_result.json'), eval_result)
Esempio n. 10
0
def main():
    args = parse_arguments()

    # Set up some useful variables that will be used later on.
    dataset_name = args.dataset
    method = args.method
    num_data = args.num_data
    n_unit = args.unit_num
    conv_layers = args.conv_layers

    task_type = molnet_default_config[dataset_name]['task_type']
    model_filename = {
        'classification': 'classifier.pkl',
        'regression': 'regressor.pkl'
    }

    print('Using dataset: {}...'.format(dataset_name))

    # Set up some useful variables that will be used later on.
    if args.label:
        labels = args.label
        cache_dir = os.path.join(
            'input', '{}_{}_{}'.format(dataset_name, method, labels))
        class_num = len(labels) if isinstance(labels, list) else 1
    else:
        labels = None
        cache_dir = os.path.join('input',
                                 '{}_{}_all'.format(dataset_name, method))
        class_num = len(molnet_default_config[args.dataset]['tasks'])

    # Load the train and validation parts of the dataset.
    filenames = [
        dataset_part_filename(p, num_data) for p in ['train', 'valid']
    ]

    paths = [os.path.join(cache_dir, f) for f in filenames]
    if all([os.path.exists(path) for path in paths]):
        dataset_parts = []
        for path in paths:
            print('Loading cached dataset from {}.'.format(path))
            dataset_parts.append(NumpyTupleDataset.load(path))
    else:
        dataset_parts = download_entire_dataset(dataset_name, num_data, labels,
                                                method, cache_dir)
    train, valid = dataset_parts[0], dataset_parts[1]

    #    # Scale the label values, if necessary.
    #    if args.scale == 'standardize':
    #        if task_type == 'regression':
    #            print('Applying standard scaling to the labels.')
    #            datasets, scaler = standardize_dataset_labels(datasets)
    #        else:
    #            print('Label scaling is not available for classification tasks.')
    #    else:
    #        print('No label scaling was selected.')
    #        scaler = None

    # Set up the predictor.
    predictor = set_up_predictor(method, n_unit, conv_layers, class_num)

    # Set up the iterators.
    train_iter = iterators.SerialIterator(train, args.batchsize)
    valid_iter = iterators.SerialIterator(valid,
                                          args.batchsize,
                                          repeat=False,
                                          shuffle=False)

    # Load metrics for the current dataset.
    metrics = molnet_default_config[dataset_name]['metrics']
    metrics_fun = {
        k: v
        for k, v in metrics.items() if isinstance(v, types.FunctionType)
    }
    loss_fun = molnet_default_config[dataset_name]['loss']

    if task_type == 'regression':
        model = Regressor(predictor,
                          lossfun=loss_fun,
                          metrics_fun=metrics_fun,
                          device=args.gpu)
        # TODO: Use standard scaler for regression task
    elif task_type == 'classification':
        model = Classifier(predictor,
                           lossfun=loss_fun,
                           metrics_fun=metrics_fun,
                           device=args.gpu)
    else:
        raise ValueError('Invalid task type ({}) encountered when processing '
                         'dataset ({}).'.format(task_type, dataset_name))

    # Set up the optimizer.
    optimizer = optimizers.Adam()
    optimizer.setup(model)

    # Save model-related output to this directory.
    model_dir = os.path.join(args.out, os.path.basename(cache_dir))
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)

    # Set up the updater.
    updater = training.StandardUpdater(train_iter,
                                       optimizer,
                                       device=args.gpu,
                                       converter=concat_mols)

    # Set up the trainer.
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=model_dir)
    trainer.extend(
        E.Evaluator(valid_iter, model, device=args.gpu, converter=concat_mols))
    trainer.extend(E.snapshot(), trigger=(args.epoch, 'epoch'))
    trainer.extend(E.LogReport())

    # Report various metrics.
    print_report_targets = ['epoch', 'main/loss', 'validation/main/loss']
    for metric_name, metric_fun in metrics.items():
        if isinstance(metric_fun, types.FunctionType):
            print_report_targets.append('main/' + metric_name)
            print_report_targets.append('validation/main/' + metric_name)
        elif issubclass(metric_fun, BatchEvaluator):
            trainer.extend(
                metric_fun(valid_iter,
                           model,
                           device=args.gpu,
                           eval_func=predictor,
                           converter=concat_mols,
                           name='val',
                           raise_value_error=False))
            print_report_targets.append('val/main/' + metric_name)
        else:
            raise TypeError('{} is not a supported metrics function.'.format(
                type(metrics_fun)))
    print_report_targets.append('elapsed_time')

    trainer.extend(E.PrintReport(print_report_targets))
    trainer.extend(E.ProgressBar())
    trainer.run()

    # Save the model's parameters.
    model_path = os.path.join(model_dir, model_filename[task_type])
    print('Saving the trained model to {}...'.format(model_path))
    model.save_pickle(model_path, protocol=args.protocol)
Esempio n. 11
0
def main():
    # Parse the arguments.
    args = parse_arguments()

    # Set up some useful variables that will be used later on.
    method = args.method
    if args.label != 'all':
        label = args.label
        cache_dir = os.path.join('input', '{}_{}'.format(method, label))
        labels = [label]
    else:
        labels = D.get_qm9_label_names()
        cache_dir = os.path.join('input', '{}_all'.format(method))

    # Get the filename corresponding to the cached dataset, based on the amount
    # of data samples that need to be parsed from the original dataset.
    num_data = args.num_data
    if num_data >= 0:
        dataset_filename = 'data_{}.npz'.format(num_data)
    else:
        dataset_filename = 'data.npz'

    # Load the cached dataset.
    dataset_cache_path = os.path.join(cache_dir, dataset_filename)

    dataset = None
    if os.path.exists(dataset_cache_path):
        print('Loading cached data from {}.'.format(dataset_cache_path))
        dataset = NumpyTupleDataset.load(dataset_cache_path)
    if dataset is None:
        print('Preprocessing dataset...')
        preprocessor = preprocess_method_dict[method]()
        dataset = D.get_qm9(preprocessor, labels=labels)

        # Cache the newly preprocessed dataset.
        if not os.path.exists(cache_dir):
            os.mkdir(cache_dir)
        NumpyTupleDataset.save(dataset_cache_path, dataset)

    # Use a predictor with scaled output labels.
    model_path = os.path.join(args.in_dir, args.model_filename)
    regressor = Regressor.load_pickle(model_path, device=args.gpu)
    scaler = regressor.predictor.scaler

    if scaler is not None:
        scaled_t = scaler.transform(dataset.get_datasets()[-1])
        dataset = NumpyTupleDataset(*(dataset.get_datasets()[:-1] +
                                      (scaled_t, )))

    # Split the dataset into training and testing.
    train_data_size = int(len(dataset) * args.train_data_ratio)
    _, test = split_dataset_random(dataset, train_data_size, args.seed)

    # This callback function extracts only the inputs and discards the labels.
    def extract_inputs(batch, device=None):
        return concat_mols(batch, device=device)[:-1]

    def postprocess_fn(x):
        if scaler is not None:
            scaled_x = scaler.inverse_transform(x)
            return scaled_x
        else:
            return x

    # Predict the output labels.
    print('Predicting...')
    y_pred = regressor.predict(test,
                               converter=extract_inputs,
                               postprocess_fn=postprocess_fn)

    # Extract the ground-truth labels.
    t = concat_mols(test, device=-1)[-1]
    original_t = scaler.inverse_transform(t)

    # Construct dataframe.
    df_dict = {}
    for i, l in enumerate(labels):
        df_dict.update({
            'y_pred_{}'.format(l): y_pred[:, i],
            't_{}'.format(l): original_t[:, i],
        })
    df = pandas.DataFrame(df_dict)

    # Show a prediction/ground truth table with 5 random examples.
    print(df.sample(5))

    n_eval = 10
    for target_label in range(y_pred.shape[1]):
        label_name = labels[target_label]
        diff = y_pred[:n_eval, target_label] - original_t[:n_eval,
                                                          target_label]
        print('label_name = {}, y_pred = {}, t = {}, diff = {}'.format(
            label_name, y_pred[:n_eval, target_label],
            original_t[:n_eval, target_label], diff))

    # Run an evaluator on the test dataset.
    print('Evaluating...')
    test_iterator = SerialIterator(test, 16, repeat=False, shuffle=False)
    eval_result = Evaluator(test_iterator,
                            regressor,
                            converter=concat_mols,
                            device=args.gpu)()
    print('Evaluation result: ', eval_result)
    # Save the evaluation results.
    save_json(os.path.join(args.in_dir, 'eval_result.json'), eval_result)

    # Calculate mean abs error for each label
    mae = numpy.mean(numpy.abs(y_pred - original_t), axis=0)
    eval_result = {}
    for i, l in enumerate(labels):
        eval_result.update({l: mae[i]})
    save_json(os.path.join(args.in_dir, 'eval_result_mae.json'), eval_result)
Esempio n. 12
0
def main():
    # Parse the arguments.
    args = parse_arguments()

    # Set up some useful variables that will be used later on.
    method = args.method
    if args.label != 'all':
        labels = args.label
        cache_dir = os.path.join('input', '{}_{}'.format(method, labels))
        class_num = len(labels) if isinstance(labels, list) else 1
    else:
        labels = None
        cache_dir = os.path.join('input', '{}_all'.format(method))
        class_num = len(D.get_qm9_label_names())

    # Get the filename corresponding to the cached dataset, based on the amount
    # of data samples that need to be parsed from the original dataset.
    num_data = args.num_data
    if num_data >= 0:
        dataset_filename = 'data_{}.npz'.format(num_data)
    else:
        dataset_filename = 'data.npz'

    # Load the cached dataset.
    dataset_cache_path = os.path.join(cache_dir, dataset_filename)

    dataset = None
    if os.path.exists(dataset_cache_path):
        print('Loading cached dataset from {}.'.format(dataset_cache_path))
        dataset = NumpyTupleDataset.load(dataset_cache_path)
    if dataset is None:
        print('Preprocessing dataset...')
        preprocessor = preprocess_method_dict[method]()

        if num_data >= 0:
            # Select the first `num_data` samples from the dataset.
            target_index = numpy.arange(num_data)
            dataset = D.get_qm9(preprocessor, labels=labels,
                                target_index=target_index)
        else:
            # Load the entire dataset.
            dataset = D.get_qm9(preprocessor, labels=labels)

        # Cache the laded dataset.
        if not os.path.exists(cache_dir):
            os.makedirs(cache_dir)
        NumpyTupleDataset.save(dataset_cache_path, dataset)

    # Scale the label values, if necessary.
    if args.scale == 'standardize':
        print('Applying standard scaling to the labels.')
        scaler = StandardScaler()
        scaled_t = scaler.fit_transform(dataset.get_datasets()[-1])
        dataset = NumpyTupleDataset(*(dataset.get_datasets()[:-1]
                                      + (scaled_t,)))
    else:
        print('No standard scaling was selected.')
        scaler = None

    # Split the dataset into training and validation.
    train_data_size = int(len(dataset) * args.train_data_ratio)
    train, valid = split_dataset_random(dataset, train_data_size, args.seed)

    # Set up the predictor.
    predictor = set_up_predictor(method, args.unit_num, args.conv_layers,
                                 class_num, scaler)

    # Set up the iterators.
    train_iter = iterators.SerialIterator(train, args.batchsize)
    valid_iter = iterators.SerialIterator(valid, args.batchsize, repeat=False,
                                          shuffle=False)

    # Set up the regressor.
    device = args.gpu
    metrics_fun = {'mae': MeanAbsError(scaler=scaler),
                   'rmse': RootMeanSqrError(scaler=scaler)}
    regressor = Regressor(predictor, lossfun=F.mean_squared_error,
                          metrics_fun=metrics_fun, device=device)

    # Set up the optimizer.
    optimizer = optimizers.Adam()
    optimizer.setup(regressor)

    # Set up the updater.
    updater = training.StandardUpdater(train_iter, optimizer, device=device,
                                       converter=concat_mols)

    # Set up the trainer.
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
    trainer.extend(E.Evaluator(valid_iter, regressor, device=device,
                               converter=concat_mols))
    trainer.extend(E.snapshot(), trigger=(args.epoch, 'epoch'))
    trainer.extend(E.LogReport())
    trainer.extend(E.PrintReport([
        'epoch', 'main/loss', 'main/mae', 'main/rmse', 'validation/main/loss',
        'validation/main/mae', 'validation/main/rmse', 'elapsed_time']))
    trainer.extend(E.ProgressBar())
    trainer.run()

    # Save the regressor's parameters.
    model_path = os.path.join(args.out, args.model_filename)
    print('Saving the trained model to {}...'.format(model_path))
    regressor.save_pickle(model_path, protocol=args.protocol)
Esempio n. 13
0
def main():
    # Parse the arguments.
    args = parse_arguments()

    # Set up some useful variables that will be used later on.
    method = args.method
    if args.label != 'all':
        labels = args.label
        cache_dir = os.path.join('input', '{}_{}'.format(method, labels))
        class_num = len(labels) if isinstance(labels, list) else 1
    else:
        labels = None
        cache_dir = os.path.join('input', '{}_all'.format(method))
        class_num = len(D.get_qm9_label_names())

    # Get the filename corresponding to the cached dataset, based on the amount
    # of data samples that need to be parsed from the original dataset.
    num_data = args.num_data
    if num_data >= 0:
        dataset_filename = 'data_{}.npz'.format(num_data)
    else:
        dataset_filename = 'data.npz'

    # Load the cached dataset.
    dataset_cache_path = os.path.join(cache_dir, dataset_filename)

    dataset = None
    if os.path.exists(dataset_cache_path):
        print('Loading cached dataset from {}.'.format(dataset_cache_path))
        dataset = NumpyTupleDataset.load(dataset_cache_path)
    if dataset is None:
        print('Preprocessing dataset...')
        preprocessor = preprocess_method_dict[method]()

        if num_data >= 0:
            # Select the first `num_data` samples from the dataset.
            target_index = numpy.arange(num_data)
            dataset = D.get_qm9(preprocessor, labels=labels,
                                target_index=target_index)
        else:
            # Load the entire dataset.
            dataset = D.get_qm9(preprocessor, labels=labels)

        # Cache the laded dataset.
        if not os.path.exists(cache_dir):
            os.makedirs(cache_dir)
        NumpyTupleDataset.save(dataset_cache_path, dataset)

    # Scale the label values, if necessary.
    if args.scale == 'standardize':
        print('Applying standard scaling to the labels.')
        scaler = StandardScaler()
        scaled_t = scaler.fit_transform(dataset.get_datasets()[-1])
        dataset = NumpyTupleDataset(*(dataset.get_datasets()[:-1]
                                      + (scaled_t,)))
    else:
        print('No standard scaling was selected.')
        scaler = None

    # Split the dataset into training and validation.
    train_data_size = int(len(dataset) * args.train_data_ratio)
    train, valid = split_dataset_random(dataset, train_data_size, args.seed)

    # Set up the predictor.
    predictor = set_up_predictor(method, args.unit_num, args.conv_layers,
                                 class_num, scaler)

    # Set up the iterators.
    train_iter = iterators.SerialIterator(train, args.batchsize)
    valid_iter = iterators.SerialIterator(valid, args.batchsize, repeat=False,
                                          shuffle=False)

    # Set up the regressor.
    device = args.gpu
    metrics_fun = {'mae': MeanAbsError(scaler=scaler),
                   'rmse': RootMeanSqrError(scaler=scaler)}
    regressor = Regressor(predictor, lossfun=F.mean_squared_error,
                          metrics_fun=metrics_fun, device=device)

    # Set up the optimizer.
    optimizer = optimizers.Adam()
    optimizer.setup(regressor)

    # Set up the updater.
    updater = training.StandardUpdater(train_iter, optimizer, device=device,
                                       converter=concat_mols)

    # Set up the trainer.
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
    trainer.extend(E.Evaluator(valid_iter, regressor, device=device,
                               converter=concat_mols))
    trainer.extend(E.snapshot(), trigger=(args.epoch, 'epoch'))
    trainer.extend(E.LogReport())
    trainer.extend(E.PrintReport([
        'epoch', 'main/loss', 'main/mae', 'main/rmse', 'validation/main/loss',
        'validation/main/mae', 'validation/main/rmse', 'elapsed_time']))
    trainer.extend(E.ProgressBar())
    trainer.run()

    # Save the regressor's parameters.
    model_path = os.path.join(args.out, args.model_filename)
    print('Saving the trained model to {}...'.format(model_path))
    regressor.save_pickle(model_path, protocol=args.protocol)
Esempio n. 14
0
def main():
    args = parse_arguments()

    # Set up some useful variables that will be used later on.
    dataset_name = args.dataset
    method = args.method
    num_data = args.num_data
    n_unit = args.unit_num
    conv_layers = args.conv_layers

    task_type = molnet_default_config[dataset_name]['task_type']
    model_filename = {
        'classification': 'classifier.pkl',
        'regression': 'regressor.pkl'
    }

    print('Using dataset: {}...'.format(dataset_name))

    # Set up some useful variables that will be used later on.
    if args.label:
        labels = args.label
        cache_dir = os.path.join(
            'input', '{}_{}_{}'.format(dataset_name, method, labels))
        class_num = len(labels) if isinstance(labels, list) else 1
    else:
        labels = None
        cache_dir = os.path.join('input',
                                 '{}_{}_all'.format(dataset_name, method))
        class_num = len(molnet_default_config[args.dataset]['tasks'])

    # Load the train and validation parts of the dataset.
    filenames = [
        dataset_part_filename(p, num_data) for p in ['train', 'valid']
    ]

    paths = [os.path.join(cache_dir, f) for f in filenames]
    if all([os.path.exists(path) for path in paths]):
        dataset_parts = []
        for path in paths:
            print('Loading cached dataset from {}.'.format(path))
            dataset_parts.append(NumpyTupleDataset.load(path))
    else:
        dataset_parts = download_entire_dataset(dataset_name, num_data, labels,
                                                method, cache_dir)
    train, valid = dataset_parts[0], dataset_parts[1]

    # Scale the label values, if necessary.
    scaler = None
    if args.scale == 'standardize':
        if task_type == 'regression':
            print('Applying standard scaling to the labels.')
            scaler = fit_scaler(dataset_parts)
        else:
            print('Label scaling is not available for classification tasks.')
    else:
        print('No label scaling was selected.')

    # Set up the predictor.
    predictor = set_up_predictor(method,
                                 n_unit,
                                 conv_layers,
                                 class_num,
                                 label_scaler=scaler)

    # Set up the iterators.
    train_iter = iterators.SerialIterator(train, args.batchsize)
    valid_iter = iterators.SerialIterator(valid,
                                          args.batchsize,
                                          repeat=False,
                                          shuffle=False)

    # Load metrics for the current dataset.
    metrics = molnet_default_config[dataset_name]['metrics']
    metrics_fun = {
        k: v
        for k, v in metrics.items() if isinstance(v, types.FunctionType)
    }
    loss_fun = molnet_default_config[dataset_name]['loss']

    device = chainer.get_device(args.device)
    if task_type == 'regression':
        model = Regressor(predictor,
                          lossfun=loss_fun,
                          metrics_fun=metrics_fun,
                          device=device)
    elif task_type == 'classification':
        model = Classifier(predictor,
                           lossfun=loss_fun,
                           metrics_fun=metrics_fun,
                           device=device)
    else:
        raise ValueError('Invalid task type ({}) encountered when processing '
                         'dataset ({}).'.format(task_type, dataset_name))

    # Set up the optimizer.
    optimizer = optimizers.Adam()
    optimizer.setup(model)

    # Save model-related output to this directory.
    model_dir = os.path.join(args.out, os.path.basename(cache_dir))
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)

    # Set up the updater.
    updater = training.StandardUpdater(train_iter,
                                       optimizer,
                                       device=device,
                                       converter=concat_mols)

    # Set up the trainer.
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=model_dir)
    trainer.extend(
        E.Evaluator(valid_iter, model, device=device, converter=concat_mols))
    trainer.extend(E.snapshot(), trigger=(args.epoch, 'epoch'))
    trainer.extend(E.LogReport())

    # TODO: consider go/no-go of the following block
    # # (i) more reporting for val/evalutaion
    # # (ii) best validation score snapshot
    # if task_type == 'regression':
    #     metric_name_list = list(metrics.keys())
    #     if 'RMSE' in metric_name_list:
    #         trainer.extend(E.snapshot_object(model, "best_val_" + model_filename[task_type]),
    #                        trigger=training.triggers.MinValueTrigger('validation/main/RMSE'))
    #     elif 'MAE' in metric_name_list:
    #         trainer.extend(E.snapshot_object(model, "best_val_" + model_filename[task_type]),
    #                        trigger=training.triggers.MinValueTrigger('validation/main/MAE'))
    #     else:
    #         print("[WARNING] No validation metric defined?")
    #
    # elif task_type == 'classification':
    #     train_eval_iter = iterators.SerialIterator(
    #         train, args.batchsize, repeat=False, shuffle=False)
    #     trainer.extend(ROCAUCEvaluator(
    #         train_eval_iter, predictor, eval_func=predictor,
    #         device=args.gpu, converter=concat_mols, name='train',
    #         pos_labels=1, ignore_labels=-1, raise_value_error=False))
    #     # extension name='validation' is already used by `Evaluator`,
    #     # instead extension name `val` is used.
    #     trainer.extend(ROCAUCEvaluator(
    #         valid_iter, predictor, eval_func=predictor,
    #         device=args.gpu, converter=concat_mols, name='val',
    #         pos_labels=1, ignore_labels=-1, raise_value_error=False))
    #
    #     trainer.extend(E.snapshot_object(
    #         model, "best_val_" + model_filename[task_type]),
    #         trigger=training.triggers.MaxValueTrigger('val/main/roc_auc'))
    # else:
    #     raise NotImplementedError(
    #         'Not implemented task_type = {}'.format(task_type))

    trainer.extend(AutoPrintReport())
    trainer.extend(E.ProgressBar())
    trainer.run()

    # Save the model's parameters.
    model_path = os.path.join(model_dir, model_filename[task_type])
    print('Saving the trained model to {}...'.format(model_path))
    model.save_pickle(model_path, protocol=args.protocol)
Esempio n. 15
0
def main():
    # Supported preprocessing/network list
    method_list = ['nfp', 'ggnn', 'schnet', 'weavenet', 'rsgcn']
    label_names = [
        'A', 'B', 'C', 'mu', 'alpha', 'h**o', 'lumo', 'gap', 'r2', 'zpve',
        'U0', 'U', 'H', 'G', 'Cv'
    ]
    scale_list = ['standardize', 'none']

    parser = argparse.ArgumentParser(description='Regression with QM9.')
    parser.add_argument('--method',
                        '-m',
                        type=str,
                        choices=method_list,
                        default='nfp')
    parser.add_argument('--label',
                        '-l',
                        type=str,
                        choices=label_names,
                        default='',
                        help='target label for regression, '
                        'empty string means to predict all '
                        'property at once')
    parser.add_argument('--scale',
                        type=str,
                        choices=scale_list,
                        default='standardize',
                        help='Label scaling method')
    parser.add_argument('--batchsize', '-b', type=int, default=32)
    parser.add_argument('--gpu', '-g', type=int, default=-1)
    parser.add_argument('--in-dir', '-i', type=str, default='result')
    parser.add_argument('--seed', '-s', type=int, default=777)
    parser.add_argument('--train-data-ratio', '-t', type=float, default=0.7)
    parser.add_argument('--model-filename', type=str, default='regressor.pkl')
    parser.add_argument('--num-data',
                        type=int,
                        default=-1,
                        help='Number of data to be parsed from parser.'
                        '-1 indicates to parse all data.')
    args = parser.parse_args()

    seed = args.seed
    train_data_ratio = args.train_data_ratio
    method = args.method
    if args.label:
        labels = args.label
        cache_dir = os.path.join('input', '{}_{}'.format(method, labels))
        # class_num = len(labels) if isinstance(labels, list) else 1
    else:
        labels = D.get_qm9_label_names()
        cache_dir = os.path.join('input', '{}_all'.format(method))
        # class_num = len(labels)

    # Dataset preparation
    dataset = None

    num_data = args.num_data
    if num_data >= 0:
        dataset_filename = 'data_{}.npz'.format(num_data)
    else:
        dataset_filename = 'data.npz'

    dataset_cache_path = os.path.join(cache_dir, dataset_filename)
    if os.path.exists(dataset_cache_path):
        print('load from cache {}'.format(dataset_cache_path))
        dataset = NumpyTupleDataset.load(dataset_cache_path)
    if dataset is None:
        print('preprocessing dataset...')
        preprocessor = preprocess_method_dict[method]()
        dataset = D.get_qm9(preprocessor, labels=labels)
        if not os.path.exists(cache_dir):
            os.mkdir(cache_dir)
        NumpyTupleDataset.save(dataset_cache_path, dataset)

    if args.scale == 'standardize':
        # Standard Scaler for labels
        with open(os.path.join(args.in_dir, 'ss.pkl'), mode='rb') as f:
            ss = pickle.load(f)
    else:
        ss = None

    train_data_size = int(len(dataset) * train_data_ratio)
    train, val = split_dataset_random(dataset, train_data_size, seed)

    regressor = Regressor.load_pickle(os.path.join(args.in_dir,
                                                   args.model_filename),
                                      device=args.gpu)  # type: Regressor

    # We need to feed only input features `x` to `predict`/`predict_proba`.
    # This converter extracts only inputs (x1, x2, ...) from the features which
    # consist of input `x` and label `t` (x1, x2, ..., t).
    def extract_inputs(batch, device=None):
        return concat_mols(batch, device=device)[:-1]

    def postprocess_fn(x):
        if ss is not None:
            # Model's output is scaled by StandardScaler,
            # so we need to rescale back.
            if isinstance(x, Variable):
                x = x.data
                scaled_x = ss.inverse_transform(cuda.to_cpu(x))
                return scaled_x
        else:
            return x

    print('Predicting...')
    y_pred = regressor.predict(val,
                               converter=extract_inputs,
                               postprocess_fn=postprocess_fn)

    print('y_pred.shape = {}, y_pred[:5, 0] = {}'.format(
        y_pred.shape, y_pred[:5, 0]))

    t = concat_mols(val, device=-1)[-1]
    n_eval = 10

    # Construct dataframe
    df_dict = {}
    for i, l in enumerate(labels):
        df_dict.update({
            'y_pred_{}'.format(l): y_pred[:, i],
            't_{}'.format(l): t[:, i],
        })
    df = pandas.DataFrame(df_dict)

    # Show random 5 example's prediction/ground truth table
    print(df.sample(5))

    for target_label in range(y_pred.shape[1]):
        diff = y_pred[:n_eval, target_label] - t[:n_eval, target_label]
        print('target_label = {}, y_pred = {}, t = {}, diff = {}'.format(
            target_label, y_pred[:n_eval, target_label],
            t[:n_eval, target_label], diff))

    # --- evaluate ---
    # To calc loss/accuracy, we can use `Evaluator`, `ROCAUCEvaluator`
    print('Evaluating...')
    val_iterator = SerialIterator(val, 16, repeat=False, shuffle=False)
    eval_result = Evaluator(val_iterator,
                            regressor,
                            converter=concat_mols,
                            device=args.gpu)()
    print('Evaluation result: ', eval_result)
Esempio n. 16
0
 def test_predict_gpu(self):
     clf = Regressor(self.predictor, device=0)
     actual_t = clf.predict(self.x)
     assert numpy.alltrue(actual_t == self.t)
Esempio n. 17
0
 def test_predict_cpu(self):
     clf = Regressor(self.predictor)
     actual_t = clf.predict(self.x)
     assert actual_t.shape == (3, 2)
     assert actual_t.dtype == numpy.float32
     assert numpy.alltrue(actual_t == self.t)
Esempio n. 18
0
 def setup_class(cls):
     cls.link = Regressor(links.Linear(10, 3))
     cls.x = numpy.random.uniform(-1, 1, (5, 10)).astype(numpy.float32)
Esempio n. 19
0
 def test_invalid_label_key_type(self):
     with pytest.raises(TypeError):
         Regressor(links.Linear(10, 3), label_key=None)
Esempio n. 20
0
def main():
    args = parse_arguments()

    # Set up some useful variables that will be used later on.
    dataset_name = args.dataset
    method = args.method
    num_data = args.num_data

    if args.label:
        labels = args.label
        cache_dir = os.path.join(
            'input', '{}_{}_{}'.format(dataset_name, method, labels))
    else:
        labels = None
        cache_dir = os.path.join('input',
                                 '{}_{}_all'.format(dataset_name, method))

    # Load the cached dataset.
    filename = dataset_part_filename('test', num_data)
    path = os.path.join(cache_dir, filename)
    if os.path.exists(path):
        print('Loading cached dataset from {}.'.format(path))
        test = NumpyTupleDataset.load(path)
    else:
        _, _, test = download_entire_dataset(dataset_name, num_data, labels,
                                             method, cache_dir)

    # Model-related data is stored this directory.
    model_dir = os.path.join(args.in_dir, os.path.basename(cache_dir))

    model_filename = {
        'classification': 'classifier.pkl',
        'regression': 'regressor.pkl'
    }
    task_type = molnet_default_config[dataset_name]['task_type']
    model_path = os.path.join(model_dir, model_filename[task_type])
    print("model_path=" + model_path)
    print('Loading model weights from {}...'.format(model_path))

    if task_type == 'classification':
        model = Classifier.load_pickle(model_path, device=args.gpu)
    elif task_type == 'regression':
        model = Regressor.load_pickle(model_path, device=args.gpu)
    else:
        raise ValueError('Invalid task type ({}) encountered when processing '
                         'dataset ({}).'.format(task_type, dataset_name))

    # Re-load the best-validation score snapshot
    # serializers.load_npz(os.path.join(
    #     model_dir, "best_val_" + model_filename[task_type]), model)

    # Run an evaluator on the test dataset.
    print('Evaluating...')
    test_iterator = SerialIterator(test, 16, repeat=False, shuffle=False)
    eval_result = Evaluator(test_iterator,
                            model,
                            converter=concat_mols,
                            device=args.gpu)()
    print('Evaluation result: ', eval_result)

    # Add more stats
    if task_type == 'regression':
        # loss = cuda.to_cpu(numpy.array(eval_result['main/loss']))
        # eval_result['main/loss'] = loss

        # convert to native values..
        for k, v in eval_result.items():
            eval_result[k] = float(v)

    elif task_type == "classification":
        # For Classifier, we do not equip the model with ROC-AUC evalation function
        # use a seperate ROC-AUC Evaluator here
        rocauc_result = ROCAUCEvaluator(test_iterator,
                                        model,
                                        converter=concat_mols,
                                        device=args.gpu,
                                        eval_func=model.predictor,
                                        name='test',
                                        ignore_labels=-1)()
        print('ROCAUC Evaluation result: ', rocauc_result)
        save_json(os.path.join(model_dir, 'rocauc_result.json'), rocauc_result)
    else:
        print('[WARNING] unknown task_type {}.'.format(task_type))

    # Save the evaluation results.
    save_json(os.path.join(model_dir, 'eval_result.json'), eval_result)
Esempio n. 21
0
def train(gpu, method, epoch, batchsize, n_unit, conv_layers, dataset, smiles,
          M, n_split, split_idx, order):
    n = len(dataset)
    assert len(order) == n
    left_idx = (n // n_split) * split_idx
    is_right_most_split = (n_split == split_idx + 1)
    if is_right_most_split:
        test_order = order[left_idx:]
        train_order = order[:left_idx]
    else:
        right_idx = (n // n_split) * (split_idx + 1)
        test_order = order[left_idx:right_idx]
        train_order = np.concatenate([order[:left_idx], order[right_idx:]])

    new_order = np.concatenate([train_order, test_order])
    n_train = len(train_order)

    # Standard Scaler for labels
    ss = StandardScaler()
    labels = dataset.get_datasets()[-1]
    train_label = labels[new_order[:n_train]]
    ss = ss.fit(train_label)  # fit only by train
    labels = ss.transform(dataset.get_datasets()[-1])
    dataset = NumpyTupleDataset(*(dataset.get_datasets()[:-1] + (labels, )))

    dataset_train = SubDataset(dataset, 0, n_train, new_order)
    dataset_test = SubDataset(dataset, n_train, n, new_order)

    # Network
    model = predictor.build_predictor(method,
                                      n_unit,
                                      conv_layers,
                                      1,
                                      dropout_ratio=0.25,
                                      n_layers=1)

    train_iter = I.SerialIterator(dataset_train, batchsize)
    val_iter = I.SerialIterator(dataset_test,
                                batchsize,
                                repeat=False,
                                shuffle=False)

    def scaled_abs_error(x0, x1):
        if isinstance(x0, Variable):
            x0 = cuda.to_cpu(x0.data)
        if isinstance(x1, Variable):
            x1 = cuda.to_cpu(x1.data)
        scaled_x0 = ss.inverse_transform(cuda.to_cpu(x0))
        scaled_x1 = ss.inverse_transform(cuda.to_cpu(x1))
        diff = scaled_x0 - scaled_x1
        return np.mean(np.absolute(diff), axis=0)[0]

    regressor = Regressor(model,
                          lossfun=F.mean_squared_error,
                          metrics_fun={'abs_error': scaled_abs_error},
                          device=gpu)

    optimizer = O.Adam(alpha=0.0005)
    optimizer.setup(regressor)

    updater = training.StandardUpdater(train_iter,
                                       optimizer,
                                       device=gpu,
                                       converter=concat_mols)

    dir_path = get_dir_path(batchsize, n_unit, conv_layers, M, method)
    dir_path = os.path.join(dir_path, str(split_idx) + "-" + str(n_split))
    os.makedirs(dir_path, exist_ok=True)
    print('creating ', dir_path)
    np.save(os.path.join(dir_path, "test_idx"), np.array(test_order))

    trainer = training.Trainer(updater, (epoch, 'epoch'), out=dir_path)
    trainer.extend(
        E.Evaluator(val_iter, regressor, device=gpu, converter=concat_mols))
    trainer.extend(E.LogReport())
    trainer.extend(
        E.PrintReport([
            'epoch', 'main/loss', 'main/abs_error', 'validation/main/loss',
            'validation/main/abs_error', 'elapsed_time'
        ]))
    trainer.extend(E.ProgressBar())
    trainer.run()

    # --- Plot regression evaluation result ---
    dataset_test = SubDataset(dataset, n_train, n, new_order)
    batch_all = concat_mols(dataset_test, device=gpu)
    serializers.save_npz(os.path.join(dir_path, "model.npz"), model)
    result = model(batch_all[0], batch_all[1])
    result = ss.inverse_transform(cuda.to_cpu(result.data))
    answer = ss.inverse_transform(cuda.to_cpu(batch_all[2]))
    plot_result(result,
                answer,
                save_filepath=os.path.join(dir_path, "result.png"))

    # --- Plot regression evaluation result end ---
    np.save(os.path.join(dir_path, "output.npy"), result)
    np.save(os.path.join(dir_path, "answer.npy"), answer)
    smiles_part = np.array(smiles)[test_order]
    np.save(os.path.join(dir_path, "smiles.npy"), smiles_part)

    # calculate saliency and save it.
    save_result(dataset, model, dir_path, M)
Esempio n. 22
0
def main():
    # Parse the arguments.
    args = parse_arguments()

    # Set up some useful variables that will be used later on.
    method = args.method
    if args.label != 'all':
        labels = args.label
        cache_dir = os.path.join('input', '{}_{}'.format(method, labels))
        class_num = len(labels) if isinstance(labels, list) else 1
    else:
        labels = None
        cache_dir = os.path.join('input', '{}_all'.format(method))
        class_num = len(D.get_qm9_label_names())

    # Get the filename corresponding to the cached dataset, based on the amount
    # of data samples that need to be parsed from the original dataset.
    num_data = args.num_data
    if num_data >= 0:
        dataset_filename = 'data_{}.npz'.format(num_data)
    else:
        dataset_filename = 'data.npz'

    # Load the cached dataset.
    dataset_cache_path = os.path.join(cache_dir, dataset_filename)

    dataset = None
    if os.path.exists(dataset_cache_path):
        print('Loading cached dataset from {}.'.format(dataset_cache_path))
        dataset = NumpyTupleDataset.load(dataset_cache_path)
    if dataset is None:
        print('Preprocessing dataset...')
        preprocessor = preprocess_method_dict[method]()

        if num_data >= 0:
            # Select the first `num_data` samples from the dataset.
            target_index = numpy.arange(num_data)
            dataset = D.get_qm9(preprocessor,
                                labels=labels,
                                target_index=target_index)
        else:
            # Load the entire dataset.
            dataset = D.get_qm9(preprocessor, labels=labels)

        # Cache the laded dataset.
        if not os.path.exists(cache_dir):
            os.makedirs(cache_dir)
        NumpyTupleDataset.save(dataset_cache_path, dataset)

    # Scale the label values, if necessary.
    if args.scale == 'standardize':
        print('Fit StandardScaler to the labels.')
        scaler = StandardScaler()
        scaler.fit(dataset.get_datasets()[-1])
    else:
        print('No standard scaling was selected.')
        scaler = None

    # Split the dataset into training and validation.
    train_data_size = int(len(dataset) * args.train_data_ratio)
    train, valid = split_dataset_random(dataset, train_data_size, args.seed)

    # Set up the predictor.
    predictor = set_up_predictor(method, args.unit_num, args.conv_layers,
                                 class_num, scaler)

    # Set up the regressor.
    device = chainer.get_device(args.device)
    metrics_fun = {'mae': F.mean_absolute_error, 'rmse': rmse}
    regressor = Regressor(predictor,
                          lossfun=F.mean_squared_error,
                          metrics_fun=metrics_fun,
                          device=device)

    print('Training...')
    run_train(regressor,
              train,
              valid=valid,
              batch_size=args.batchsize,
              epoch=args.epoch,
              out=args.out,
              extensions_list=None,
              device=device,
              converter=concat_mols,
              resume_path=None)

    # Save the regressor's parameters.
    model_path = os.path.join(args.out, args.model_filename)
    print('Saving the trained model to {}...'.format(model_path))
    regressor.save_pickle(model_path, protocol=args.protocol)
Esempio n. 23
0
def save_result(dataset, model, dir_path, M):
    regressor = Regressor(model, lossfun=F.mean_squared_error)

    # model.to_cpu()

    def preprocess_fun(*inputs):
        atom, adj, t = inputs
        # HACKING for now...
        atom_embed = regressor.predictor.graph_conv.embed(atom)
        return atom_embed, adj, t

    def eval_fun(*inputs):
        atom_embed, adj, t = inputs
        prob = regressor.predictor(atom_embed, adj)
        out = F.sum(prob)
        return out

    gradient_calculator = GradientCalculator(regressor,
                                             eval_fun=eval_fun,
                                             target_key=0,
                                             multiply_target=True)

    def clip_original_size(saliency_, num_atoms_):
        """`saliency` array is 0 padded, this method align to have original
        molecule's length
        """
        assert len(saliency_) == len(num_atoms_)
        saliency_list = []
        for i in range(len(saliency_)):
            saliency_list.append(saliency_[i, :num_atoms_[i]])
        return saliency_list

    atoms = dataset.features[:, 0]
    num_atoms = [len(a) for a in atoms]

    print('calculating saliency... M={}'.format(M))
    # --- VanillaGrad ---
    saliency_arrays = gradient_calculator.compute_vanilla(
        dataset, converter=concat_mols, preprocess_fn=preprocess_fun)
    saliency = gradient_calculator.transform(saliency_arrays,
                                             ch_axis=3,
                                             method='raw')
    saliency_vanilla = clip_original_size(saliency, num_atoms)
    np.save(os.path.join(dir_path, "saliency_vanilla"), saliency_vanilla)

    # --- SmoothGrad ---
    saliency_arrays = gradient_calculator.compute_smooth(
        dataset, converter=concat_mols, preprocess_fn=preprocess_fun, M=M)
    saliency = gradient_calculator.transform(saliency_arrays,
                                             ch_axis=3,
                                             method='raw')
    saliency_smooth = clip_original_size(saliency, num_atoms)
    np.save(os.path.join(dir_path, "saliency_smooth"), saliency_smooth)

    # --- BayesGrad ---
    # train=True corresponds to BayesGrad
    saliency_arrays = gradient_calculator.compute_vanilla(
        dataset,
        converter=concat_mols,
        preprocess_fn=preprocess_fun,
        M=M,
        train=True)
    saliency = gradient_calculator.transform(saliency_arrays,
                                             ch_axis=3,
                                             method='raw',
                                             lam=0)
    saliency_bayes = clip_original_size(saliency, num_atoms)
    np.save(os.path.join(dir_path, "saliency_bayes"), saliency_bayes)
def main():
    # Parse the arguments.
    args = parse_arguments()

    # Set up some useful variables that will be used later on.
    method = args.method
    if args.label:
        labels = args.label
        cache_dir = os.path.join('input', '{}_{}'.format(method, labels))
    else:
        labels = D.get_qm9_label_names()
        cache_dir = os.path.join('input', '{}_all'.format(method))

    # Get the filename corresponding to the cached dataset, based on the amount
    # of data samples that need to be parsed from the original dataset.
    num_data = args.num_data
    if num_data >= 0:
        dataset_filename = 'data_{}.npz'.format(num_data)
    else:
        dataset_filename = 'data.npz'

    # Load the cached dataset.
    dataset_cache_path = os.path.join(cache_dir, dataset_filename)

    dataset = None
    if os.path.exists(dataset_cache_path):
        print('Loading cached data from {}.'.format(dataset_cache_path))
        dataset = NumpyTupleDataset.load(dataset_cache_path)
    if dataset is None:
        print('Preprocessing dataset...')
        preprocessor = preprocess_method_dict[method]()
        dataset = D.get_qm9(preprocessor, labels=labels)

        # Cache the newly preprocessed dataset.
        if not os.path.exists(cache_dir):
            os.mkdir(cache_dir)
        NumpyTupleDataset.save(dataset_cache_path, dataset)

    # Load the standard scaler parameters, if necessary.
    if args.scale == 'standardize':
        scaler_path = os.path.join(args.in_dir, 'scaler.pkl')
        print('Loading scaler parameters from {}.'.format(scaler_path))
        with open(scaler_path, mode='rb') as f:
            scaler = pickle.load(f)
    else:
        print('No standard scaling was selected.')
        scaler = None

    # Split the dataset into training and testing.
    train_data_size = int(len(dataset) * args.train_data_ratio)
    _, test = split_dataset_random(dataset, train_data_size, args.seed)

    # Use a predictor with scaled output labels.
    model_path = os.path.join(args.in_dir, args.model_filename)
    regressor = Regressor.load_pickle(model_path, device=args.gpu)

    # Replace the default predictor with one that scales the output labels.
    scaled_predictor = ScaledGraphConvPredictor(regressor.predictor)
    scaled_predictor.scaler = scaler
    regressor.predictor = scaled_predictor

    # This callback function extracts only the inputs and discards the labels.
    def extract_inputs(batch, device=None):
        return concat_mols(batch, device=device)[:-1]

    # Predict the output labels.
    print('Predicting...')
    y_pred = regressor.predict(test, converter=extract_inputs)

    # Extract the ground-truth labels.
    t = concat_mols(test, device=-1)[-1]
    n_eval = 10

    # Construct dataframe.
    df_dict = {}
    for i, l in enumerate(labels):
        df_dict.update({
            'y_pred_{}'.format(l): y_pred[:, i],
            't_{}'.format(l): t[:, i],
        })
    df = pandas.DataFrame(df_dict)

    # Show a prediction/ground truth table with 5 random examples.
    print(df.sample(5))
    for target_label in range(y_pred.shape[1]):
        diff = y_pred[:n_eval, target_label] - t[:n_eval, target_label]
        print('target_label = {}, y_pred = {}, t = {}, diff = {}'.format(
            target_label, y_pred[:n_eval, target_label],
            t[:n_eval, target_label], diff))

    # Run an evaluator on the test dataset.
    print('Evaluating...')
    test_iterator = SerialIterator(test, 16, repeat=False, shuffle=False)
    eval_result = Evaluator(test_iterator,
                            regressor,
                            converter=concat_mols,
                            device=args.gpu)()

    # Prevents the loss function from becoming a cupy.core.core.ndarray object
    # when using the GPU. This hack will be removed as soon as the cause of
    # the issue is found and properly fixed.
    loss = numpy.asscalar(cuda.to_cpu(eval_result['main/loss']))
    eval_result['main/loss'] = loss
    print('Evaluation result: ', eval_result)

    # Save the evaluation results.
    with open(os.path.join(args.in_dir, 'eval_result.json'), 'w') as f:
        json.dump(eval_result, f)
Esempio n. 25
0
def main():
    args = parse_arguments()

    # Set up some useful variables that will be used later on.
    dataset_name = args.dataset
    method = args.method
    num_data = args.num_data

    if args.label:
        labels = args.label
        cache_dir = os.path.join(
            'input', '{}_{}_{}'.format(dataset_name, method, labels))
    else:
        labels = None
        cache_dir = os.path.join('input',
                                 '{}_{}_all'.format(dataset_name, method))

    # Load the cached dataset.
    filename = dataset_part_filename('test', num_data)
    path = os.path.join(cache_dir, filename)
    if os.path.exists(path):
        print('Loading cached dataset from {}.'.format(path))
        test = NumpyTupleDataset.load(path)
    else:
        _, _, test = download_entire_dataset(dataset_name, num_data, labels,
                                             method, cache_dir)

#    # Load the standard scaler parameters, if necessary.
#    if args.scale == 'standardize':
#        scaler_path = os.path.join(args.in_dir, 'scaler.pkl')
#        print('Loading scaler parameters from {}.'.format(scaler_path))
#        with open(scaler_path, mode='rb') as f:
#            scaler = pickle.load(f)
#    else:
#        print('No standard scaling was selected.')
#        scaler = None

# Model-related data is stored this directory.
    model_dir = os.path.join(args.in_dir, os.path.basename(cache_dir))

    model_filename = {
        'classification': 'classifier.pkl',
        'regression': 'regressor.pkl'
    }
    task_type = molnet_default_config[dataset_name]['task_type']
    model_path = os.path.join(model_dir, model_filename[task_type])
    print('Loading model weights from {}...'.format(model_path))

    if task_type == 'classification':
        model = Classifier.load_pickle(model_path, device=args.gpu)
    elif task_type == 'regression':
        model = Regressor.load_pickle(model_path, device=args.gpu)
    else:
        raise ValueError('Invalid task type ({}) encountered when processing '
                         'dataset ({}).'.format(task_type, dataset_name))


#    # Replace the default predictor with one that scales the output labels.
#    scaled_predictor = ScaledGraphConvPredictor(model.predictor)
#    scaled_predictor.scaler = scaler
#    model.predictor = scaled_predictor

# Run an evaluator on the test dataset.
    print('Evaluating...')
    test_iterator = SerialIterator(test, 16, repeat=False, shuffle=False)
    eval_result = Evaluator(test_iterator,
                            model,
                            converter=concat_mols,
                            device=args.gpu)()
    print('Evaluation result: ', eval_result)

    # Save the evaluation results.
    with open(os.path.join(model_dir, 'eval_result.json'), 'w') as f:
        json.dump(eval_result, f)
Esempio n. 26
0
def main():
    args = parse_arguments()

    # Set up some useful variables that will be used later on.
    dataset_name = args.dataset
    method = args.method
    num_data = args.num_data
    n_unit = args.unit_num
    conv_layers = args.conv_layers

    task_type = molnet_default_config[dataset_name]['task_type']
    model_filename = {'classification': 'classifier.pkl',
                      'regression': 'regressor.pkl'}

    print('Using dataset: {}...'.format(dataset_name))

    # Set up some useful variables that will be used later on.
    if args.label:
        labels = args.label
        cache_dir = os.path.join('input', '{}_{}_{}'.format(dataset_name,
                                                            method, labels))
        class_num = len(labels) if isinstance(labels, list) else 1
    else:
        labels = None
        cache_dir = os.path.join('input', '{}_{}_all'.format(dataset_name,
                                                             method))
        class_num = len(molnet_default_config[args.dataset]['tasks'])

    # Load the train and validation parts of the dataset.
    filenames = [dataset_part_filename(p, num_data)
                 for p in ['train', 'valid']]

    paths = [os.path.join(cache_dir, f) for f in filenames]
    if all([os.path.exists(path) for path in paths]):
        dataset_parts = []
        for path in paths:
            print('Loading cached dataset from {}.'.format(path))
            dataset_parts.append(NumpyTupleDataset.load(path))
    else:
        dataset_parts = download_entire_dataset(dataset_name, num_data, labels,
                                                method, cache_dir)
    train, valid = dataset_parts[0], dataset_parts[1]

#    # Scale the label values, if necessary.
#    if args.scale == 'standardize':
#        if task_type == 'regression':
#            print('Applying standard scaling to the labels.')
#            datasets, scaler = standardize_dataset_labels(datasets)
#        else:
#            print('Label scaling is not available for classification tasks.')
#    else:
#        print('No label scaling was selected.')
#        scaler = None

    # Set up the predictor.
    predictor = set_up_predictor(method, n_unit, conv_layers, class_num)

    # Set up the iterators.
    train_iter = iterators.SerialIterator(train, args.batchsize)
    valid_iter = iterators.SerialIterator(valid, args.batchsize, repeat=False,
                                          shuffle=False)

    # Load metrics for the current dataset.
    metrics = molnet_default_config[dataset_name]['metrics']
    metrics_fun = {k: v for k, v in metrics.items()
                   if isinstance(v, types.FunctionType)}
    loss_fun = molnet_default_config[dataset_name]['loss']

    if task_type == 'regression':
        model = Regressor(predictor, lossfun=loss_fun,
                          metrics_fun=metrics_fun, device=args.gpu)
        # TODO: Use standard scaler for regression task
    elif task_type == 'classification':
        model = Classifier(predictor, lossfun=loss_fun,
                           metrics_fun=metrics_fun, device=args.gpu)
    else:
        raise ValueError('Invalid task type ({}) encountered when processing '
                         'dataset ({}).'.format(task_type, dataset_name))

    # Set up the optimizer.
    optimizer = optimizers.Adam()
    optimizer.setup(model)

    # Save model-related output to this directory.
    model_dir = os.path.join(args.out, os.path.basename(cache_dir))
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)

    # Set up the updater.
    updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu,
                                       converter=concat_mols)

    # Set up the trainer.
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=model_dir)
    trainer.extend(E.Evaluator(valid_iter, model, device=args.gpu,
                               converter=concat_mols))
    trainer.extend(E.snapshot(), trigger=(args.epoch, 'epoch'))
    trainer.extend(E.LogReport())

    # Report various metrics.
    print_report_targets = ['epoch', 'main/loss', 'validation/main/loss']
    for metric_name, metric_fun in metrics.items():
        if isinstance(metric_fun, types.FunctionType):
            print_report_targets.append('main/' + metric_name)
            print_report_targets.append('validation/main/' + metric_name)
        elif issubclass(metric_fun, BatchEvaluator):
            trainer.extend(metric_fun(valid_iter, model, device=args.gpu,
                                      eval_func=predictor,
                                      converter=concat_mols, name='val',
                                      raise_value_error=False))
            print_report_targets.append('val/main/' + metric_name)
        else:
            raise TypeError('{} is not a supported metrics function.'
                            .format(type(metrics_fun)))
    print_report_targets.append('elapsed_time')

    # Augmented by Ishiguro
    # ToDo: consider go/no-go of the following block
    # (i) more reporting for val/evalutaion
    # (ii) best validation score snapshot
    if task_type == 'regression':
        if 'RMSE' in metric_name:
            trainer.extend(E.snapshot_object(model, "best_val_" + model_filename[task_type]), trigger=training.triggers.MinValueTrigger('validation/main/RMSE'))
        elif 'MAE' in metric_name:
            trainer.extend(E.snapshot_object(model, "best_val_" + model_filename[task_type]), trigger=training.triggers.MinValueTrigger('validation/main/MAE'))
        else:
            print("No validation metric defined?")
            assert(False)

    elif task_type == 'classification':
        train_eval_iter = iterators.SerialIterator(train, args.batchsize,repeat=False, shuffle=False)
        trainer.extend(ROCAUCEvaluator(
            train_eval_iter, predictor, eval_func=predictor,
            device=args.gpu, converter=concat_mols, name='train',
            pos_labels=1, ignore_labels=-1, raise_value_error=False))
        # extension name='validation' is already used by `Evaluator`,
        # instead extension name `val` is used.
        trainer.extend(ROCAUCEvaluator(
            valid_iter, predictor, eval_func=predictor,
            device=args.gpu, converter=concat_mols, name='val',
            pos_labels=1, ignore_labels=-1))
        print_report_targets.append('train/main/roc_auc')
        print_report_targets.append('validation/main/loss')
        print_report_targets.append('val/main/roc_auc')

        trainer.extend(E.snapshot_object(model, "best_val_" + model_filename[task_type]), trigger=training.triggers.MaxValueTrigger('val/main/roc_auc'))
    else:
        raise NotImplementedError(
            'Not implemented task_type = {}'.format(task_type))


    trainer.extend(E.PrintReport(print_report_targets))
    trainer.extend(E.ProgressBar())
    trainer.run()

    # Save the model's parameters.
    model_path = os.path.join(model_dir,  model_filename[task_type])
    print('Saving the trained model to {}...'.format(model_path))
    model.save_pickle(model_path, protocol=args.protocol)
Esempio n. 27
0
def main():
    method_list = ['nfp', 'ggnn', 'schnet', 'weavenet', 'rsgcn']
    dataset_names = list(molnet_default_config.keys())

    parser = argparse.ArgumentParser(description='molnet example')
    parser.add_argument('--method',
                        '-m',
                        type=str,
                        choices=method_list,
                        default='nfp')
    parser.add_argument('--label',
                        '-l',
                        type=str,
                        default='',
                        help='target label for regression, empty string means '
                        'to predict all property at once')
    parser.add_argument('--conv-layers', '-c', type=int, default=4)
    parser.add_argument('--batchsize', '-b', type=int, default=32)
    parser.add_argument('--gpu', '-g', type=int, default=-1)
    parser.add_argument('--out', '-o', type=str, default='result')
    parser.add_argument('--epoch', '-e', type=int, default=20)
    parser.add_argument('--unit-num', '-u', type=int, default=16)
    parser.add_argument('--dataset',
                        '-d',
                        type=str,
                        choices=dataset_names,
                        default='bbbp')
    parser.add_argument('--protocol', type=int, default=2)
    parser.add_argument('--model-filename', type=str, default='regressor.pkl')
    parser.add_argument('--num-data',
                        type=int,
                        default=-1,
                        help='Number of data to be parsed from parser.'
                        '-1 indicates to parse all data.')
    args = parser.parse_args()
    dataset_name = args.dataset
    method = args.method
    num_data = args.num_data
    n_unit = args.unit_num
    conv_layers = args.conv_layers
    print('Use {} dataset'.format(dataset_name))

    if args.label:
        labels = args.label
        cache_dir = os.path.join(
            'input', '{}_{}_{}'.format(dataset_name, method, labels))
        class_num = len(labels) if isinstance(labels, list) else 1
    else:
        labels = None
        cache_dir = os.path.join('input',
                                 '{}_{}_all'.format(dataset_name, method))
        class_num = len(molnet_default_config[args.dataset]['tasks'])

    # Dataset preparation
    def get_dataset_paths(cache_dir, num_data):
        filepaths = []
        for filetype in ['train', 'valid', 'test']:
            filename = filetype + '_data'
            if num_data >= 0:
                filename += '_' + str(num_data)
            filename += '.npz'
            filepath = os.path.join(cache_dir, filename)
            filepaths.append(filepath)
        return filepaths

    filepaths = get_dataset_paths(cache_dir, num_data)
    if all([os.path.exists(fpath) for fpath in filepaths]):
        datasets = []
        for fpath in filepaths:
            print('load from cache {}'.format(fpath))
            datasets.append(NumpyTupleDataset.load(fpath))
    else:
        print('preprocessing dataset...')
        preprocessor = preprocess_method_dict[method]()
        # only use first 100 for debug if num_data >= 0
        target_index = numpy.arange(num_data) if num_data >= 0 else None
        datasets = D.molnet.get_molnet_dataset(dataset_name,
                                               preprocessor,
                                               labels=labels,
                                               target_index=target_index)
        if not os.path.exists(cache_dir):
            os.makedirs(cache_dir)
        datasets = datasets['dataset']
        for i, fpath in enumerate(filepaths):
            NumpyTupleDataset.save(fpath, datasets[i])

    train, val, _ = datasets

    # Network
    if method == 'nfp':
        print('Train NFP model...')
        predictor = GraphConvPredictor(
            NFP(out_dim=n_unit, hidden_dim=n_unit, n_layers=conv_layers),
            MLP(out_dim=class_num, hidden_dim=n_unit))
    elif method == 'ggnn':
        print('Train GGNN model...')
        predictor = GraphConvPredictor(
            GGNN(out_dim=n_unit, hidden_dim=n_unit, n_layers=conv_layers),
            MLP(out_dim=class_num, hidden_dim=n_unit))
    elif method == 'schnet':
        print('Train SchNet model...')
        predictor = GraphConvPredictor(
            SchNet(out_dim=class_num, hidden_dim=n_unit, n_layers=conv_layers),
            None)
    elif method == 'weavenet':
        print('Train WeaveNet model...')
        n_atom = 20
        n_sub_layer = 1
        weave_channels = [50] * conv_layers
        predictor = GraphConvPredictor(
            WeaveNet(weave_channels=weave_channels,
                     hidden_dim=n_unit,
                     n_sub_layer=n_sub_layer,
                     n_atom=n_atom), MLP(out_dim=class_num, hidden_dim=n_unit))
    elif method == 'rsgcn':
        print('Train RSGCN model...')
        predictor = GraphConvPredictor(
            RSGCN(out_dim=n_unit, hidden_dim=n_unit, n_layers=conv_layers),
            MLP(out_dim=class_num, hidden_dim=n_unit))
    else:
        raise ValueError('[ERROR] Invalid method {}'.format(method))

    train_iter = iterators.SerialIterator(train, args.batchsize)
    val_iter = iterators.SerialIterator(val,
                                        args.batchsize,
                                        repeat=False,
                                        shuffle=False)

    metrics_fun = molnet_default_config[dataset_name]['metrics']
    loss_fun = molnet_default_config[dataset_name]['loss']
    task_type = molnet_default_config[dataset_name]['task_type']
    if task_type == 'regression':
        model = Regressor(predictor,
                          lossfun=loss_fun,
                          metrics_fun=metrics_fun,
                          device=args.gpu)
        # TODO(nakago): Use standard scaler for regression task
    elif task_type == 'classification':
        model = Classifier(predictor,
                           lossfun=loss_fun,
                           metrics_fun=metrics_fun,
                           device=args.gpu)
    else:
        raise NotImplementedError(
            'Not implemented task_type = {}'.format(task_type))

    optimizer = optimizers.Adam()
    optimizer.setup(model)

    updater = training.StandardUpdater(train_iter,
                                       optimizer,
                                       device=args.gpu,
                                       converter=concat_mols)
    trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out)
    trainer.extend(
        E.Evaluator(val_iter, model, device=args.gpu, converter=concat_mols))
    trainer.extend(E.snapshot(), trigger=(args.epoch, 'epoch'))
    trainer.extend(E.LogReport())
    print_report_targets = ['epoch', 'main/loss', 'validation/main/loss']
    if metrics_fun is not None and type(metrics_fun) == dict:
        for m_k in metrics_fun.keys():
            print_report_targets.append('main/' + m_k)
            print_report_targets.append('validation/main/' + m_k)
    if task_type == 'classification':
        # Evaluation for train data takes time, skip for now.
        # trainer.extend(ROCAUCEvaluator(
        #     train_iter, model, device=args.gpu, eval_func=predictor,
        #     converter=concat_mols, name='train', raise_value_error=False))
        # print_report_targets.append('train/main/roc_auc')
        trainer.extend(
            ROCAUCEvaluator(val_iter,
                            model,
                            device=args.gpu,
                            eval_func=predictor,
                            converter=concat_mols,
                            name='val',
                            raise_value_error=False))
        print_report_targets.append('val/main/roc_auc')
    print_report_targets.append('elapsed_time')
    trainer.extend(E.PrintReport(print_report_targets))
    trainer.extend(E.ProgressBar())
    trainer.run()

    # --- save model ---
    protocol = args.protocol
    model.save_pickle(os.path.join(args.out, args.model_filename),
                      protocol=protocol)