Esempio n. 1
0
    analyze_cmd.add_argument(
        "--dataset",
        type=str,
        default='swbd_verification',
        choices=['swbd_recognition', 'swbd_verification', 'swbd_short'],
        help="Which dataset to use")
    rng = numpy.random.RandomState(1)
    args = ap.parse_args()
    t_start = time.time()

    if args.cmd == 'analyze':
        batchsize = args.batchsize
        filename = args.load_from
        print "load from %s" % filename
        #        model = pickle.load(open(filename,'rb'))
        model = NN_parallel({}, njobs=1)
        model.load(filename)
        npz_tst = numpy.load(
            "/data2/tawara/work/ttic/data/icassp15.0/swbd.test.npz")
        npz_trn = numpy.load(
            "/data2/tawara/work/ttic/data/icassp15.0/swbd.train.npz")
        utt_ids_trn = sorted(npz_trn.keys())
        utt_ids_tst = sorted(npz_tst.keys())
        x_train = numpy.array([npz_trn[i]
                               for i in utt_ids_trn]).astype(numpy.float32)
        x_test = numpy.array([npz_tst[i]
                              for i in utt_ids_tst]).astype(numpy.float32)
        tmp = []
        for l in x_test:
            tmp.append([l])
        x_test = numpy.array(tmp)
Esempio n. 2
0
        ali_to_pdf=KaldiCommand('bin/ali-to-pdf', option='/data2/tawara/work/ttic/MyPython/src/kaldi/timit/exp/tri3_ali/final.mdl')
#        feats=KaldiCommand('featbin/apply-cmvn', '--norm-means=true --norm-vars=true --utt2spk=ark:/data2/tawara/work/ttic/MyPython/src/kaldi/timit/data/fbank/train_tr90/utt2spk scp:/data2/tawara/work/ttic/MyPython/src/kaldi/timit/data/fbank/train_tr90/cmvn.scp')
        x_train, y_train = load_timit_labelled_kaldi(\
#            feats('/data2/tawara/work/ttic/MyPython/src/kaldi/timit/data/fbank/train_tr90/feats.scp'),
            KaldiArk('/data2/tawara/work/ttic/MyPython/src/kaldi/timit/feats_cmvn.ark'),
                ali_to_pdf('\"gunzip -c /data2/tawara/work/ttic/MyPython/src/kaldi/timit/exp/tri3_ali/ali.*.gz |\"'), \
                nnet_transf = '/data2/tawara/work/ttic/MyPython/src/kaldi/timit/final.feature_transform')

        feats=KaldiCommand('featbin/apply-cmvn', '--norm-means=true --norm-vars=true --utt2spk=ark:/data2/tawara/work/ttic/MyPython/src/kaldi/timit/data/fbank/train_cv10/utt2spk scp:/data2/tawara/work/ttic/MyPython/src/kaldi/timit/data/fbank/train_cv10/cmvn.scp')
        x_valid, y_valid  = load_timit_labelled_kaldi( \
            feats('/data2/tawara/work/ttic/MyPython/src/kaldi/timit/data/fbank/train_cv10/feats.scp'),
                ali_to_pdf('\"gunzip -c /data2/tawara/work/ttic/MyPython/src/kaldi/timit/exp/tri3_ali/ali.*.gz |\"'), \
                nnet_transf = '/data2/tawara/work/ttic/MyPython/src/kaldi/timit/final.feature_transform')


        model = NN_parallel(option_dict, njobs=1)
        nnet_file='/data2/tawara/work/ttic/MyPython/src/kaldi/timit/exp/fbank/dnn4_nn5_1024_cmvn_splice10_pretrain-dbn_dnn/nnet_dbn_dnn.init'
        if nnet_file is not None:
            model.load_parameters_from_nnet(nnet_file)
        model.initialize()

        N_train_all = x_train.shape[0]
        indexes_l   = range(N_train_all)
        indexes_ul  = list(set(range(0,N_train_all))-set(indexes_l))
        N_train_l   = len(indexes_l)
        N_train_ul  = len(indexes_ul)
        assert N_train_all == N_train_l + N_train_ul
        
        N_valid = x_valid.shape[0]
        indexes_valid = range(0, N_valid)
        for epoch in xrange(n_epoch):
Esempio n. 3
0
    analyze_cmd.add_argument("--data_type", type=str, default='test',   help="Data type to evaluate on")
    analyze_cmd.add_argument("--save_to",   type=str, default='noname', help="Destination to save the state and results")
    analyze_cmd.add_argument("--layer",     type=int, default=0,        help="Extract layer")
    analyze_cmd.add_argument("--batchsize", type=int, default=default_options_dict['batch_size'],    help="batchsize")
    analyze_cmd.add_argument("--dataset", type=str, default='swbd_verification',
                           choices=['swbd_recognition', 'swbd_verification', 'swbd_short'], help="Which dataset to use")
    rng = numpy.random.RandomState(1)
    args = ap.parse_args()
    t_start = time.time()

    if args.cmd == 'analyze':
        batchsize = args.batchsize
        filename = args.load_from
        print "load from %s" % filename
#        model = pickle.load(open(filename,'rb'))
        model = NN_parallel({}, njobs=1)
        model.load(filename)
        npz_tst = numpy.load("/data2/tawara/work/ttic/data/icassp15.0/swbd.test.npz")
        npz_trn = numpy.load("/data2/tawara/work/ttic/data/icassp15.0/swbd.train.npz")
        utt_ids_trn = sorted(npz_trn.keys())
        utt_ids_tst = sorted(npz_tst.keys())
        x_train = numpy.array([npz_trn[i] for i in utt_ids_trn]).astype(numpy.float32)
        x_test  = numpy.array([npz_tst[i] for i in utt_ids_tst]).astype(numpy.float32)
        tmp=[]
        for l in x_test:
            tmp.append([l])
        x_test=numpy.array(tmp)
        tmp=[]
        for l in x_train:
            tmp.append([l])
        x_train=numpy.array(tmp)