def test_directory_parsing_label_dataset(self):
        dataset = DirectoryParsingLabelDataset(
            self.tmp_dir, color=self.color)

        if self.depth == 1:
            expected_legnth = self.n_img_per_class * self.n_class
        elif self.depth == 2:
            expected_legnth =\
                self.n_img_per_class * self.n_sub_directory * self.n_class
        self.assertEqual(len(dataset), expected_legnth)

        assert_is_label_dataset(dataset, self.n_class, color=self.color)

        label_names = directory_parsing_label_names(self.tmp_dir)
        self.assertEqual(
            label_names, ['class_{}'.format(i) for i in range(self.n_class)])

        if self.depth == 1:
            self.assertEqual(
                dataset.img_paths,
                ['{}/class_{}/img{}.{}'.format(self.tmp_dir, i, j, self.suffix)
                 for i in range(self.n_class)
                 for j in range(self.n_img_per_class)])
        elif self.depth == 2:
            self.assertEqual(
                dataset.img_paths,
                ['{}/class_{}/nested_{}/img{}.{}'.format(
                    self.tmp_dir, i, j, k, self.suffix)
                 for i in range(self.n_class)
                 for j in range(self.n_sub_directory)
                 for k in range(self.n_img_per_class)])
    def test_directory_parsing_label_dataset(self):
        dataset = DirectoryParsingLabelDataset(
            self.tmp_dir, color=self.color)

        if self.depth == 1:
            expected_legnth = self.n_img_per_class * self.n_class
        elif self.depth == 2:
            expected_legnth =\
                self.n_img_per_class * self.n_sub_directory * self.n_class
        self.assertEqual(len(dataset), expected_legnth)

        assert_is_label_dataset(dataset, self.n_class, color=self.color)

        label_names = directory_parsing_label_names(self.tmp_dir)
        self.assertEqual(
            label_names, ['class_{}'.format(i) for i in range(self.n_class)])

        if self.depth == 1:
            self.assertEqual(
                dataset.img_paths,
                ['{}/class_{}/img{}.{}'.format(self.tmp_dir, i, j, self.suffix)
                 for i in range(self.n_class)
                 for j in range(self.n_img_per_class)])
        elif self.depth == 2:
            self.assertEqual(
                dataset.img_paths,
                ['{}/class_{}/nested_{}/img{}.{}'.format(
                    self.tmp_dir, i, j, k, self.suffix)
                 for i in range(self.n_class)
                 for j in range(self.n_sub_directory)
                 for k in range(self.n_img_per_class)])
    def test_numerical_sort(self):
        dataset = DirectoryParsingLabelDataset(
            self.tmp_dir, numerical_sort=True)

        assert_is_label_dataset(dataset, self.n_class)

        label_names = directory_parsing_label_names(
            self.tmp_dir, numerical_sort=True)
        self.assertEqual(
            label_names, ['{}'.format(i) for i in range(self.n_class)])
    def test_numerical_sort(self):
        dataset = DirectoryParsingLabelDataset(
            self.tmp_dir, numerical_sort=True)

        assert_is_label_dataset(dataset, self.n_class)

        label_names = directory_parsing_label_names(
            self.tmp_dir, numerical_sort=True)
        self.assertEqual(
            label_names, ['{}'.format(i) for i in range(self.n_class)])
    def test_assert_is_label_dataset(self):
        if hasattr(self, 'option'):
            dataset = self.dataset(self.color, self.option)
        else:
            dataset = self.dataset(self.color)

        if self.valid:
            assert_is_label_dataset(dataset, 20, color=self.color)
        else:
            with self.assertRaises(AssertionError):
                assert_is_label_dataset(dataset, 20, color=self.color)
    def test_assert_is_label_dataset(self):
        if hasattr(self, 'option'):
            dataset = self.dataset(self.color, self.option)
        else:
            dataset = self.dataset(self.color)

        if self.valid:
            assert_is_label_dataset(dataset, 20, color=self.color)
        else:
            with self.assertRaises(AssertionError):
                assert_is_label_dataset(dataset, 20, color=self.color)
Esempio n. 7
0
 def test_cub_label_dataset(self):
     assert_is_label_dataset(
         self.dataset, len(cub_label_names), n_example=10)
     idx = np.random.choice(np.arange(10))
     if self.return_bb:
         bb = self.dataset[idx][2]
         assert_is_bbox(bb[np.newaxis])
     if self.return_prob_map:
         img = self.dataset[idx][0]
         prob_map = self.dataset[idx][-1]
         self.assertEqual(prob_map.dtype, np.float32)
         self.assertEqual(prob_map.shape, img.shape[1:])
         self.assertTrue(np.min(prob_map) >= 0)
         self.assertTrue(np.max(prob_map) <= 1)
    def test_online_products_dataset(self):
        assert_is_label_dataset(
            self.dataset, 22634, n_example=10)

        for _ in range(10):
            i = np.random.randint(0, len(self.dataset))
            _, _, super_label = self.dataset[i]

            assert isinstance(super_label, np.int32), \
                'label must be a numpy.int32.'
            assert super_label.ndim == 0, 'The ndim of label must be 0'
            assert (super_label >= 0 and
                    super_label < len(online_products_super_label_names)), \
                'The value of label must be in [0, n_class - 1].'
 def test_cub_label_dataset(self):
     assert_is_label_dataset(self.dataset,
                             len(cub_label_names),
                             n_example=10)
     idx = np.random.choice(np.arange(10))
     if self.return_bb:
         bb = self.dataset[idx][2]
         assert_is_bbox(bb[np.newaxis])
     if self.return_prob_map:
         img = self.dataset[idx][0]
         prob_map = self.dataset[idx][-1]
         self.assertEqual(prob_map.dtype, np.float32)
         self.assertEqual(prob_map.shape, img.shape[1:])
         self.assertTrue(np.min(prob_map) >= 0)
         self.assertTrue(np.max(prob_map) <= 1)