Esempio n. 1
0
def main():
    import logging

    parser = argparse.ArgumentParser()
    parser.add_argument('processes', type=int)
    parser.add_argument('--env',
                        type=str,
                        default='MsPacman-ramNoFrameskip-v4')
    parser.add_argument('--seed',
                        type=int,
                        default=0,
                        help='Random seed [0, 2 ** 32)')
    parser.add_argument('--outdir',
                        type=str,
                        default='results',
                        help='Directory path to save output files.'
                        ' If it does not exist, it will be created.')
    parser.add_argument('--t-max', type=int, default=50)
    parser.add_argument('--n-times-replay', type=int, default=4)
    parser.add_argument('--n-hidden-channels', type=int, default=100)
    parser.add_argument('--n-hidden-layers', type=int, default=2)
    parser.add_argument('--replay-capacity', type=int, default=5000)
    parser.add_argument('--replay-start-size', type=int, default=10**3)
    parser.add_argument('--disable-online-update', action='store_true')
    parser.add_argument('--beta', type=float, default=1e-2)
    parser.add_argument('--profile', action='store_true')
    parser.add_argument('--steps', type=int, default=5 * 10**6)
    parser.add_argument('--eval-interval', type=int, default=5 * 10**4)
    parser.add_argument('--eval-n-runs', type=int, default=10)
    parser.add_argument('--reward-scale-factor', type=float, default=1e-2)
    parser.add_argument('--rmsprop-epsilon', type=float, default=1e-2)
    parser.add_argument('--render', action='store_true', default=False)
    parser.add_argument('--lr', type=float, default=7e-4)
    parser.add_argument('--demo', action='store_true', default=False)
    parser.add_argument('--load', type=str, default='')
    parser.add_argument('--logger-level', type=int, default=logging.DEBUG)
    parser.add_argument('--monitor', action='store_true')
    parser.add_argument('--truncation-threshold', type=float, default=5)
    parser.add_argument('--trust-region-delta', type=float, default=0.1)
    args = parser.parse_args()

    logging.basicConfig(level=args.logger_level)

    # Set a random seed used in ChainerRL.
    # If you use more than one processes, the results will be no longer
    # deterministic even with the same random seed.
    misc.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**32

    #args.outdir = experiments.prepare_output_dir(args, args.outdir)

    def make_env(process_idx, test):
        env = gym.make(args.env)
        # Use different random seeds for train and test envs
        process_seed = int(process_seeds[process_idx])
        env_seed = 2**32 - 1 - process_seed if test else process_seed
        env.seed(env_seed)
        # Cast observations to float32 because our model uses float32
        env = chainerrl.wrappers.CastObservationToFloat32(env)
        if args.monitor and process_idx == 0:
            env = gym.wrappers.Monitor(env, args.outdir)
        if not test:
            # Scale rewards (and thus returns) to a reasonable range so that
            # training is easier
            env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)
        if args.render and process_idx == 0 and not test:
            env = chainerrl.wrappers.Render(env)
        env.next_agent_num = 1
        return env

    sample_env = gym.make(args.env)
    timestep_limit = sample_env.spec.tags.get(
        'wrapper_config.TimeLimit.max_episode_steps')
    obs_space = sample_env.observation_space
    action_space = sample_env.action_space

    if isinstance(action_space, spaces.Box):
        model = acer.ACERSDNSeparateModel(
            pi=policies.FCGaussianPolicy(
                obs_space.low.size,
                action_space.low.size,
                n_hidden_channels=args.n_hidden_channels,
                n_hidden_layers=args.n_hidden_layers,
                bound_mean=True,
                min_action=action_space.low,
                max_action=action_space.high),
            v=v_functions.FCVFunction(obs_space.low.size,
                                      n_hidden_channels=args.n_hidden_channels,
                                      n_hidden_layers=args.n_hidden_layers),
            adv=q_functions.FCSAQFunction(
                obs_space.low.size,
                action_space.low.size,
                n_hidden_channels=args.n_hidden_channels // 4,
                n_hidden_layers=args.n_hidden_layers),
        )
    else:
        model = acer.ACERSeparateModel(
            pi=links.Sequence(
                L.Linear(obs_space.low.size, args.n_hidden_channels), F.relu,
                L.Linear(args.n_hidden_channels,
                         action_space.n,
                         initialW=LeCunNormal(1e-3)), SoftmaxDistribution),
            q=links.Sequence(
                L.Linear(obs_space.low.size, args.n_hidden_channels), F.relu,
                L.Linear(args.n_hidden_channels,
                         action_space.n,
                         initialW=LeCunNormal(1e-3)), DiscreteActionValue),
        )

    opt = rmsprop_async.RMSpropAsync(lr=7e-4, eps=4e-3, alpha=0.99)
    opt.setup(model)
    opt.add_hook(chainer.optimizer.GradientClipping(40))

    replay_buffer = EpisodicReplayBuffer(args.replay_capacity)
    agent = acer.ACER(model,
                      opt,
                      t_max=args.t_max,
                      gamma=0.99,
                      replay_buffer=replay_buffer,
                      n_times_replay=args.n_times_replay,
                      replay_start_size=args.replay_start_size,
                      disable_online_update=args.disable_online_update,
                      use_trust_region=True,
                      trust_region_delta=args.trust_region_delta,
                      truncation_threshold=args.truncation_threshold,
                      beta=args.beta)
    if args.load:
        agent.load(args.load)

    if args.demo:
        env = make_env(0, True)
        eval_stats = experiments.eval_performance(
            env=env,
            agent=agent,
            n_steps=None,
            n_episodes=args.eval_n_runs,
            max_episode_len=timestep_limit)
        print('n_runs: {} mean: {} median: {} stdev {}'.format(
            args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
            eval_stats['stdev']))
    else:

        def hook(env, agent, step):
            if step > env.next_agent_num * 5 * 10**5:
                agent.save('results/agent_' + str(env.next_agent_num))
                env.next_agent_num += 1

        experiments.train_agent_async(agent=agent,
                                      outdir=args.outdir,
                                      processes=args.processes,
                                      make_env=make_env,
                                      profile=args.profile,
                                      steps=args.steps,
                                      eval_n_runs=args.eval_n_runs,
                                      eval_interval=args.eval_interval,
                                      max_episode_len=timestep_limit,
                                      global_step_hooks=(hook, ))
Esempio n. 2
0
    def make_model(self, env):
        n_hidden_channels = 20

        obs_size = env.observation_space.low.size
        if self.recurrent:
            v = StatelessRecurrentSequential(
                L.NStepLSTM(1, obs_size, n_hidden_channels, 0),
                L.Linear(None,
                         1,
                         initialW=chainer.initializers.LeCunNormal(1e-1)),
            )
            if self.discrete:
                n_actions = env.action_space.n
                pi = StatelessRecurrentSequential(
                    L.NStepLSTM(1, obs_size, n_hidden_channels, 0),
                    policies.FCSoftmaxPolicy(
                        n_hidden_channels,
                        n_actions,
                        n_hidden_layers=0,
                        nonlinearity=F.tanh,
                        last_wscale=1e-1,
                    ))
            else:
                action_size = env.action_space.low.size
                pi = StatelessRecurrentSequential(
                    L.NStepLSTM(1, obs_size, n_hidden_channels, 0),
                    policies.FCGaussianPolicy(
                        n_hidden_channels,
                        action_size,
                        n_hidden_layers=0,
                        nonlinearity=F.tanh,
                        mean_wscale=1e-1,
                    ))
        else:
            v = chainer.Sequential(
                L.Linear(None, n_hidden_channels),
                F.tanh,
                L.Linear(None,
                         1,
                         initialW=chainer.initializers.LeCunNormal(1e-1)),
            )
            if self.discrete:
                n_actions = env.action_space.n
                pi = policies.FCSoftmaxPolicy(
                    obs_size,
                    n_actions,
                    n_hidden_layers=1,
                    n_hidden_channels=n_hidden_channels,
                    nonlinearity=F.tanh,
                    last_wscale=1e-1,
                )
            else:
                action_size = env.action_space.low.size
                pi = policies.FCGaussianPolicy(
                    obs_size,
                    action_size,
                    n_hidden_layers=1,
                    n_hidden_channels=n_hidden_channels,
                    nonlinearity=F.tanh,
                    mean_wscale=1e-1,
                )
        return pi, v
Esempio n. 3
0
    def _test_abc(self,
                  t_max,
                  use_lstm,
                  discrete=True,
                  episodic=True,
                  steps=100000,
                  require_success=True):

        nproc = 8

        def make_env(process_idx, test):
            size = 2
            return ABC(size=size,
                       discrete=discrete,
                       episodic=episodic or test,
                       partially_observable=self.use_lstm,
                       deterministic=test)

        sample_env = make_env(0, False)
        action_space = sample_env.action_space
        obs_space = sample_env.observation_space

        def phi(x):
            return x

        n_hidden_channels = 20
        n_hidden_layers = 2
        nonlinearity = F.relu
        if use_lstm:
            if discrete:
                model = a3c.A3CSharedModel(
                    shared=L.LSTM(obs_space.low.size, n_hidden_channels),
                    pi=policies.FCSoftmaxPolicy(
                        n_hidden_channels,
                        action_space.n,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity,
                        last_wscale=1e-2,
                    ),
                    v=v_function.FCVFunction(
                        n_hidden_channels,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity,
                        last_wscale=1e-2,
                    ),
                )
            else:
                model = a3c.A3CSharedModel(
                    shared=L.LSTM(obs_space.low.size, n_hidden_channels),
                    pi=policies.FCGaussianPolicy(
                        n_hidden_channels,
                        action_space.low.size,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity,
                        var_wscale=1e-2,
                        var_bias=1,
                        bound_mean=True,
                        min_action=action_space.low,
                        max_action=action_space.high,
                        min_var=1e-1,
                    ),
                    v=v_function.FCVFunction(
                        n_hidden_channels,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity,
                        last_wscale=1e-2,
                    ),
                )
        else:
            if discrete:
                model = a3c.A3CSeparateModel(
                    pi=policies.FCSoftmaxPolicy(
                        obs_space.low.size,
                        action_space.n,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity,
                        last_wscale=1e-2,
                    ),
                    v=v_function.FCVFunction(
                        obs_space.low.size,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity,
                        last_wscale=1e-2,
                    ),
                )
            else:
                model = a3c.A3CSeparateModel(
                    pi=policies.FCGaussianPolicy(
                        obs_space.low.size,
                        action_space.low.size,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity,
                        var_wscale=1e-2,
                        var_bias=1,
                        bound_mean=True,
                        min_action=action_space.low,
                        max_action=action_space.high,
                        min_var=1e-1,
                    ),
                    v=v_function.FCVFunction(
                        obs_space.low.size,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity,
                        last_wscale=1e-2,
                    ),
                )
        eps = 1e-8 if self.backprop_future_values else 1e-1
        opt = rmsprop_async.RMSpropAsync(lr=5e-4, eps=eps, alpha=0.99)
        opt.setup(model)
        gamma = 0.5
        tau = 1e-2
        replay_buffer = chainerrl.replay_buffer.EpisodicReplayBuffer(10**5)
        agent = pcl.PCL(model,
                        opt,
                        replay_buffer=replay_buffer,
                        t_max=t_max,
                        gamma=gamma,
                        tau=tau,
                        phi=phi,
                        n_times_replay=1,
                        batchsize=self.batchsize,
                        train_async=self.train_async,
                        backprop_future_values=self.backprop_future_values,
                        act_deterministically=True)

        if self.train_async:
            with warnings.catch_warnings(record=True) as warns:
                chainerrl.experiments.train_agent_async(outdir=self.outdir,
                                                        processes=nproc,
                                                        make_env=make_env,
                                                        agent=agent,
                                                        steps=steps,
                                                        max_episode_len=2,
                                                        eval_interval=200,
                                                        eval_n_steps=None,
                                                        eval_n_episodes=5,
                                                        successful_score=1)
                assert len(warns) == 0, warns[0]
            # The agent returned by train_agent_async is not guaranteed to be
            # successful because parameters could be modified by other
            # processes after success. Thus here the successful model is loaded
            # explicitly.
            if require_success:
                agent.load(os.path.join(self.outdir, 'successful'))
        else:
            agent.process_idx = 0
            chainerrl.experiments.train_agent_with_evaluation(
                agent=agent,
                env=make_env(0, False),
                eval_env=make_env(0, True),
                outdir=self.outdir,
                steps=steps,
                train_max_episode_len=2,
                eval_interval=200,
                eval_n_steps=None,
                eval_n_episodes=5,
                successful_score=1)

        agent.stop_episode()

        # Test
        env = make_env(0, True)
        n_test_runs = 5

        for _ in range(n_test_runs):
            total_r = 0
            obs = env.reset()
            done = False
            reward = 0.0

            while not done:
                action = agent.act(obs)
                print('state:', obs, 'action:', action)
                obs, reward, done, _ = env.step(action)
                total_r += reward
            if require_success:
                self.assertAlmostEqual(total_r, 1)
            agent.stop_episode()
Esempio n. 4
0
    def _test_abc(self,
                  use_lstm,
                  discrete=True,
                  steps=1000000,
                  require_success=True,
                  gpu=-1):
        def make_env(process_idx, test):
            size = 2
            return ABC(size=size,
                       discrete=discrete,
                       episodic=True,
                       partially_observable=self.use_lstm,
                       deterministic=test)

        sample_env = make_env(0, False)
        action_space = sample_env.action_space
        obs_space = sample_env.observation_space

        def phi(x):
            return x

        n_hidden_channels = 20
        n_hidden_layers = 1
        nonlinearity = F.leaky_relu
        if use_lstm:
            if discrete:
                model = chainerrl.links.Sequence(
                    L.LSTM(obs_space.low.size,
                           n_hidden_channels,
                           forget_bias_init=1),
                    policies.FCSoftmaxPolicy(
                        n_hidden_channels,
                        action_space.n,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity),
                )
            else:
                model = chainerrl.links.Sequence(
                    L.LSTM(obs_space.low.size,
                           n_hidden_channels,
                           forget_bias_init=1),
                    policies.FCGaussianPolicy(
                        n_hidden_channels,
                        action_space.low.size,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        bound_mean=True,
                        min_action=action_space.low,
                        max_action=action_space.high,
                        nonlinearity=nonlinearity,
                    ))
        else:
            if discrete:
                model = policies.FCSoftmaxPolicy(
                    obs_space.low.size,
                    action_space.n,
                    n_hidden_channels=n_hidden_channels,
                    n_hidden_layers=n_hidden_layers,
                    nonlinearity=nonlinearity)
            else:
                model = policies.FCGaussianPolicy(
                    obs_space.low.size,
                    action_space.low.size,
                    n_hidden_channels=n_hidden_channels,
                    n_hidden_layers=n_hidden_layers,
                    bound_mean=True,
                    min_action=action_space.low,
                    max_action=action_space.high,
                    nonlinearity=nonlinearity,
                )

        if gpu >= 0:
            chainer.cuda.get_device_from_id(gpu).use()
            model.to_gpu()

        opt = optimizers.Adam()
        opt.setup(model)
        beta = 1e-2
        agent = chainerrl.agents.REINFORCE(
            model,
            opt,
            beta=beta,
            phi=phi,
            batchsize=self.batchsize,
            backward_separately=self.backward_separately,
            act_deterministically=True,
        )

        chainerrl.experiments.train_agent_with_evaluation(
            agent=agent,
            env=make_env(0, False),
            eval_env=make_env(0, True),
            outdir=self.outdir,
            steps=steps,
            train_max_episode_len=2,
            eval_interval=500,
            eval_n_steps=None,
            eval_n_episodes=5,
            successful_score=1)

        # Test
        env = make_env(0, True)
        n_test_runs = 5

        for _ in range(n_test_runs):
            total_r = 0
            obs = env.reset()
            done = False
            reward = 0.0

            while not done:
                action = agent.act(obs)
                print('state:', obs, 'action:', action)
                obs, reward, done, _ = env.step(action)
                total_r += reward
            if require_success:
                self.assertAlmostEqual(total_r, 1)
            agent.stop_episode()
Esempio n. 5
0
    def _test_abc(self,
                  t_max,
                  use_lstm,
                  discrete=True,
                  episodic=True,
                  steps=1000000,
                  require_success=True):

        nproc = 8

        def make_env(process_idx, test):
            size = 2
            return ABC(size=size,
                       discrete=discrete,
                       episodic=episodic or test,
                       partially_observable=self.use_lstm,
                       deterministic=test)

        sample_env = make_env(0, False)
        action_space = sample_env.action_space
        obs_space = sample_env.observation_space

        def phi(x):
            return x

        n_hidden_channels = 20
        if use_lstm:
            if discrete:
                model = a3c.A3CSharedModel(
                    shared=L.LSTM(obs_space.low.size, n_hidden_channels),
                    pi=policies.FCSoftmaxPolicy(
                        n_hidden_channels,
                        action_space.n,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=2,
                        min_prob=1e-1),
                    v=v_function.FCVFunction(
                        n_hidden_channels,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=2),
                )
            else:
                model = a3c.A3CSharedModel(
                    shared=L.LSTM(obs_space.low.size, n_hidden_channels),
                    pi=policies.FCGaussianPolicy(
                        n_hidden_channels,
                        action_space.low.size,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=2,
                        bound_mean=True,
                        min_action=action_space.low,
                        max_action=action_space.high,
                        min_var=0.1),
                    v=v_function.FCVFunction(
                        n_hidden_channels,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=2),
                )
        else:
            if discrete:
                model = a3c.A3CSeparateModel(
                    pi=policies.FCSoftmaxPolicy(
                        obs_space.low.size,
                        action_space.n,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=2,
                        min_prob=1e-1),
                    v=v_function.FCVFunction(
                        obs_space.low.size,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=2),
                )
            else:
                model = a3c.A3CSeparateModel(
                    pi=policies.FCGaussianPolicy(
                        obs_space.low.size,
                        action_space.low.size,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=2,
                        bound_mean=True,
                        min_action=action_space.low,
                        max_action=action_space.high,
                        min_var=0.1),
                    v=v_function.FCVFunction(
                        obs_space.low.size,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=2),
                )
        eps = 1e-1 if discrete else 1e-2
        opt = rmsprop_async.RMSpropAsync(lr=5e-4, eps=eps, alpha=0.99)
        opt.setup(model)
        gamma = 0.9
        beta = 1e-2
        agent = a3c.A3C(model,
                        opt,
                        t_max=t_max,
                        gamma=gamma,
                        beta=beta,
                        phi=phi,
                        act_deterministically=True)

        max_episode_len = None if episodic else 2

        with warnings.catch_warnings(record=True) as warns:
            train_agent_async(outdir=self.outdir,
                              processes=nproc,
                              make_env=make_env,
                              agent=agent,
                              steps=steps,
                              max_episode_len=max_episode_len,
                              eval_interval=500,
                              eval_n_runs=5,
                              successful_score=1)
            assert len(warns) == 0, warns[0]

        # The agent returned by train_agent_async is not guaranteed to be
        # successful because parameters could be modified by other processes
        # after success. Thus here the successful model is loaded explicitly.
        if require_success:
            agent.load(os.path.join(self.outdir, 'successful'))
        agent.stop_episode()

        # Test
        env = make_env(0, True)
        n_test_runs = 5

        for _ in range(n_test_runs):
            total_r = 0
            obs = env.reset()
            done = False
            reward = 0.0

            while not done:
                action = agent.act(obs)
                print('state:', obs, 'action:', action)
                obs, reward, done, _ = env.step(action)
                total_r += reward
            if require_success:
                self.assertAlmostEqual(total_r, 1)
            agent.stop_episode()
Esempio n. 6
0
    def _test_abc(self,
                  t_max,
                  use_lstm,
                  discrete=True,
                  episodic=True,
                  steps=1000000,
                  require_success=True):

        nproc = 8

        def make_env(process_idx, test):
            size = 2
            return ABC(size=size,
                       discrete=discrete,
                       episodic=episodic or test,
                       partially_observable=self.use_lstm,
                       deterministic=test)

        sample_env = make_env(0, False)
        action_space = sample_env.action_space
        obs_space = sample_env.observation_space

        def phi(x):
            return x

        n_hidden_channels = 20
        n_hidden_layers = 1
        nonlinearity = F.leaky_relu
        replay_buffer = EpisodicReplayBuffer(10**4)
        if use_lstm:
            if discrete:
                model = acer.ACERSharedModel(
                    shared=L.LSTM(obs_space.low.size, n_hidden_channels),
                    pi=policies.FCSoftmaxPolicy(
                        n_hidden_channels,
                        action_space.n,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity,
                        min_prob=1e-1),
                    q=q_function.FCStateQFunctionWithDiscreteAction(
                        n_hidden_channels,
                        action_space.n,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity),
                )
            else:
                model = acer.ACERSDNSharedModel(
                    shared=L.LSTM(obs_space.low.size, n_hidden_channels),
                    pi=policies.FCGaussianPolicy(
                        n_hidden_channels,
                        action_space.low.size,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        bound_mean=True,
                        min_action=action_space.low,
                        max_action=action_space.high,
                        nonlinearity=nonlinearity,
                        min_var=1e-1),
                    v=v_function.FCVFunction(
                        n_hidden_channels,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity),
                    adv=q_function.FCSAQFunction(
                        n_hidden_channels,
                        action_space.low.size,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity),
                )
        else:
            if discrete:
                model = acer.ACERSeparateModel(
                    pi=policies.FCSoftmaxPolicy(
                        obs_space.low.size,
                        action_space.n,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity,
                        min_prob=1e-1),
                    q=q_function.FCStateQFunctionWithDiscreteAction(
                        obs_space.low.size,
                        action_space.n,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity),
                )
            else:
                model = acer.ACERSDNSeparateModel(
                    pi=policies.FCGaussianPolicy(
                        obs_space.low.size,
                        action_space.low.size,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        bound_mean=True,
                        min_action=action_space.low,
                        max_action=action_space.high,
                        nonlinearity=nonlinearity,
                        min_var=1e-1),
                    v=v_function.FCVFunction(
                        obs_space.low.size,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity),
                    adv=q_function.FCSAQFunction(
                        obs_space.low.size,
                        action_space.low.size,
                        n_hidden_channels=n_hidden_channels,
                        n_hidden_layers=n_hidden_layers,
                        nonlinearity=nonlinearity),
                )
        eps = 1e-8
        opt = rmsprop_async.RMSpropAsync(lr=1e-3, eps=eps, alpha=0.99)
        opt.setup(model)
        gamma = 0.5
        beta = 1e-5
        if self.n_times_replay == 0 and self.disable_online_update:
            # At least one of them must be enabled
            self.disable_online_update = False
        agent = acer.ACER(model,
                          opt,
                          replay_buffer=replay_buffer,
                          t_max=t_max,
                          gamma=gamma,
                          beta=beta,
                          phi=phi,
                          n_times_replay=self.n_times_replay,
                          act_deterministically=True,
                          disable_online_update=self.disable_online_update,
                          replay_start_size=100,
                          use_trust_region=self.use_trust_region)

        max_episode_len = None if episodic else 2

        with warnings.catch_warnings(record=True) as warns:
            train_agent_async(outdir=self.outdir,
                              processes=nproc,
                              make_env=make_env,
                              agent=agent,
                              steps=steps,
                              max_episode_len=max_episode_len,
                              eval_interval=500,
                              eval_n_runs=5,
                              successful_score=1)
            assert len(warns) == 0, warns[0]

        # The agent returned by train_agent_async is not guaranteed to be
        # successful because parameters could be modified by other processes
        # after success. Thus here the successful model is loaded explicitly.
        if require_success:
            agent.load(os.path.join(self.outdir, 'successful'))
        agent.stop_episode()

        # Test
        env = make_env(0, True)
        n_test_runs = 5

        for _ in range(n_test_runs):
            total_r = 0
            obs = env.reset()
            done = False
            reward = 0.0

            while not done:
                action = agent.act(obs)
                print('state:', obs, 'action:', action)
                obs, reward, done, _ = env.step(action)
                total_r += reward
            if require_success:
                self.assertAlmostEqual(total_r, 1)
            agent.stop_episode()
Esempio n. 7
0
def main():
    import logging

    parser = argparse.ArgumentParser()
    parser.add_argument('processes', type=int)
    parser.add_argument('--env', type=str, default='CartPole-v0')
    parser.add_argument('--seed', type=int, default=None)
    parser.add_argument('--outdir', type=str, default=None)
    parser.add_argument('--t-max', type=int, default=50)
    parser.add_argument('--n-times-replay', type=int, default=4)
    parser.add_argument('--n-hidden-channels', type=int, default=100)
    parser.add_argument('--n-hidden-layers', type=int, default=2)
    parser.add_argument('--replay-capacity', type=int, default=5000)
    parser.add_argument('--replay-start-size', type=int, default=10**3)
    parser.add_argument('--disable-online-update', action='store_true')
    parser.add_argument('--beta', type=float, default=1e-2)
    parser.add_argument('--profile', action='store_true')
    parser.add_argument('--steps', type=int, default=8 * 10**7)
    parser.add_argument('--eval-interval', type=int, default=10**5)
    parser.add_argument('--eval-n-runs', type=int, default=10)
    parser.add_argument('--reward-scale-factor', type=float, default=1e-2)
    parser.add_argument('--rmsprop-epsilon', type=float, default=1e-2)
    parser.add_argument('--render', action='store_true', default=False)
    parser.add_argument('--lr', type=float, default=7e-4)
    parser.add_argument('--demo', action='store_true', default=False)
    parser.add_argument('--load', type=str, default='')
    parser.add_argument('--logger-level', type=int, default=logging.DEBUG)
    parser.add_argument('--monitor', action='store_true')
    parser.add_argument('--truncation-threshold', type=float, default=5)
    parser.add_argument('--trust-region-delta', type=float, default=0.1)
    args = parser.parse_args()

    logging.basicConfig(level=args.logger_level)

    if args.seed is not None:
        misc.set_random_seed(args.seed)

    args.outdir = experiments.prepare_output_dir(args, args.outdir)

    def make_env(process_idx, test):
        env = gym.make(args.env)
        if args.monitor and process_idx == 0:
            env = gym.wrappers.Monitor(env, args.outdir)
        # Scale rewards observed by agents
        if not test:
            misc.env_modifiers.make_reward_filtered(
                env, lambda x: x * args.reward_scale_factor)
        if args.render and process_idx == 0 and not test:
            misc.env_modifiers.make_rendered(env)
        return env

    sample_env = gym.make(args.env)
    timestep_limit = sample_env.spec.tags.get(
        'wrapper_config.TimeLimit.max_episode_steps')
    obs_space = sample_env.observation_space
    action_space = sample_env.action_space

    if isinstance(action_space, spaces.Box):
        model = acer.ACERSDNSeparateModel(
            pi=policies.FCGaussianPolicy(
                obs_space.low.size,
                action_space.low.size,
                n_hidden_channels=args.n_hidden_channels,
                n_hidden_layers=args.n_hidden_layers,
                bound_mean=True,
                min_action=action_space.low,
                max_action=action_space.high),
            v=v_functions.FCVFunction(obs_space.low.size,
                                      n_hidden_channels=args.n_hidden_channels,
                                      n_hidden_layers=args.n_hidden_layers),
            adv=q_functions.FCSAQFunction(
                obs_space.low.size,
                action_space.low.size,
                n_hidden_channels=args.n_hidden_channels // 4,
                n_hidden_layers=args.n_hidden_layers),
        )
    else:
        model = acer.ACERSeparateModel(
            pi=links.Sequence(
                L.Linear(obs_space.low.size, args.n_hidden_channels), F.relu,
                L.Linear(args.n_hidden_channels,
                         action_space.n,
                         initialW=LeCunNormal(1e-3)), SoftmaxDistribution),
            q=links.Sequence(
                L.Linear(obs_space.low.size, args.n_hidden_channels), F.relu,
                L.Linear(args.n_hidden_channels,
                         action_space.n,
                         initialW=LeCunNormal(1e-3)), DiscreteActionValue),
        )

    opt = rmsprop_async.RMSpropAsync(lr=args.lr,
                                     eps=args.rmsprop_epsilon,
                                     alpha=0.99)
    opt.setup(model)
    opt.add_hook(chainer.optimizer.GradientClipping(40))

    replay_buffer = EpisodicReplayBuffer(args.replay_capacity)
    agent = acer.ACER(model,
                      opt,
                      t_max=args.t_max,
                      gamma=0.99,
                      replay_buffer=replay_buffer,
                      n_times_replay=args.n_times_replay,
                      replay_start_size=args.replay_start_size,
                      disable_online_update=args.disable_online_update,
                      use_trust_region=True,
                      trust_region_delta=args.trust_region_delta,
                      truncation_threshold=args.truncation_threshold,
                      beta=args.beta,
                      phi=phi)
    if args.load:
        agent.load(args.load)

    if args.demo:
        env = make_env(0, True)
        eval_stats = experiments.eval_performance(
            env=env,
            agent=agent,
            n_runs=args.eval_n_runs,
            max_episode_len=timestep_limit)
        print('n_runs: {} mean: {} median: {} stdev {}'.format(
            args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
            eval_stats['stdev']))
    else:
        experiments.train_agent_async(agent=agent,
                                      outdir=args.outdir,
                                      processes=args.processes,
                                      make_env=make_env,
                                      profile=args.profile,
                                      steps=args.steps,
                                      eval_n_runs=args.eval_n_runs,
                                      eval_interval=args.eval_interval,
                                      max_episode_len=timestep_limit)
def main(args):
    import logging
    logging.basicConfig(level=logging.INFO, filename='log')

    if (type(args) is list):
        args = make_args(args)

    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)

    # Set a random seed used in ChainerRL.
    # If you use more than one processes, the results will be no longer
    # deterministic even with the same random seed.
    misc.set_random_seed(args.seed)

    # Set different random seeds for different subprocesses.
    # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
    # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
    process_seeds = np.arange(args.processes) + args.seed * args.processes
    assert process_seeds.max() < 2**32

    def make_env(process_idx, test):
        env = gym.make(args.env)
        # Use different random seeds for train and test envs
        process_seed = int(process_seeds[process_idx])
        env_seed = 2**32 - 1 - process_seed if test else process_seed
        env.seed(env_seed)
        # Cast observations to float32 because our model uses float32
        env = chainerrl.wrappers.CastObservationToFloat32(env)
        if args.monitor and process_idx == 0:
            env = chainerrl.wrappers.Monitor(env, args.outdir)
        if not test:
            # Scale rewards (and thus returns) to a reasonable range so that
            # training is easier
            env = chainerrl.wrappers.ScaleReward(env, args.reward_scale_factor)
        if args.render and process_idx == 0 and not test:
            env = chainerrl.wrappers.Render(env)
        return env

    sample_env = gym.make(args.env)
    timestep_limit = sample_env.spec.tags.get(
        'wrapper_config.TimeLimit.max_episode_steps')
    obs_space = sample_env.observation_space
    action_space = sample_env.action_space

    if isinstance(action_space, spaces.Box):
        model = acer.ACERSDNSeparateModel(
            pi=policies.FCGaussianPolicy(
                obs_space.low.size,
                action_space.low.size,
                n_hidden_channels=args.n_hidden_channels,
                n_hidden_layers=args.n_hidden_layers,
                bound_mean=True,
                min_action=action_space.low,
                max_action=action_space.high),
            v=v_functions.FCVFunction(obs_space.low.size,
                                      n_hidden_channels=args.n_hidden_channels,
                                      n_hidden_layers=args.n_hidden_layers),
            adv=q_functions.FCSAQFunction(
                obs_space.low.size,
                action_space.low.size,
                n_hidden_channels=args.n_hidden_channels // 4,
                n_hidden_layers=args.n_hidden_layers),
        )
    else:
        model = acer.ACERSeparateModel(
            pi=links.Sequence(
                L.Linear(obs_space.low.size, args.n_hidden_channels), F.relu,
                L.Linear(args.n_hidden_channels,
                         action_space.n,
                         initialW=LeCunNormal(1e-3)), SoftmaxDistribution),
            q=links.Sequence(
                L.Linear(obs_space.low.size, args.n_hidden_channels), F.relu,
                L.Linear(args.n_hidden_channels,
                         action_space.n,
                         initialW=LeCunNormal(1e-3)), DiscreteActionValue),
        )

    opt = rmsprop_async.RMSpropAsync(lr=args.lr,
                                     eps=args.rmsprop_epsilon,
                                     alpha=0.99)
    opt.setup(model)
    opt.add_hook(chainer.optimizer.GradientClipping(40))

    replay_buffer = EpisodicReplayBuffer(args.replay_capacity)
    agent = acer.ACER(model,
                      opt,
                      t_max=args.t_max,
                      gamma=0.99,
                      replay_buffer=replay_buffer,
                      n_times_replay=args.n_times_replay,
                      replay_start_size=args.replay_start_size,
                      disable_online_update=args.disable_online_update,
                      use_trust_region=True,
                      trust_region_delta=args.trust_region_delta,
                      truncation_threshold=args.truncation_threshold,
                      beta=args.beta)

    if args.load_agent:
        agent.load(args.load_agent)

    if (args.mode == 'train'):
        experiments.train_agent_async(agent=agent,
                                      outdir=args.outdir,
                                      processes=args.processes,
                                      make_env=make_env,
                                      profile=args.profile,
                                      steps=args.steps,
                                      step_offset=args.step_offset,
                                      checkpoint_freq=args.checkpoint_freq,
                                      log_type=args.log_type,
                                      eval_n_steps=None,
                                      eval_n_episodes=args.eval_n_runs,
                                      eval_interval=args.eval_interval,
                                      max_episode_len=timestep_limit)

    elif (args.mode == 'check'):
        from matplotlib import animation
        import matplotlib.pyplot as plt
        env = make_env(0, True)

        frames = []
        for i in range(3):
            obs = env.reset()
            done = False
            R = 0
            t = 0
            while not done and t < 200:
                frames.append(env.render(mode='rgb_array'))
                action = agent.act(obs)
                obs, r, done, _ = env.step(action)
                R += r
                t += 1
            print('test episode:', i, 'R:', R)
            agent.stop_episode()
        env.close()

        from IPython.display import HTML
        plt.figure(figsize=(frames[0].shape[1] / 72.0,
                            frames[0].shape[0] / 72.0),
                   dpi=72)
        patch = plt.imshow(frames[0])
        plt.axis('off')

        def animate(i):
            patch.set_data(frames[i])

        anim = animation.FuncAnimation(plt.gcf(),
                                       animate,
                                       frames=len(frames),
                                       interval=50)
        anim.save(args.save_mp4)
        return anim