Esempio n. 1
0
    def usa_plot_une(self, start_date, finish_date):
        country_group = 'usa-states'
        source = 'bloomberg'

        une = self.get_UNE(start_date,
                           finish_date,
                           country_group,
                           source='bloomberg')
        une = self.hist_econ_data_factory.grasp_coded_entry(une, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'USA-states'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'usa'
        gp.plotly_projection = 'albers usa'
        gp.plotly_world_readable = False
        gp.plotly_url = country_group + "-unemployment"

        gp.title = "USA Unemployment"
        gp.units = 'pc'

        pf.plot_generic_graph(une, type='choropleth', adapter='plotly', gp=gp)
    def g10_plot_gdp_cpi_une(self, start_date, finish_date, data_type = 'cpi'):
        country_group = 'g10'

        if data_type == 'cpi':
            df = self.get_CPI_YoY(start_date, finish_date, country_group)
        elif data_type == 'gdp':
            df = self.get_GDP_QoQ(start_date, finish_date, country_group)
        elif data_type == 'une':
            df = self.get_UNE(start_date, finish_date, country_group)

        df = self.hist_econ_data_factory.grasp_coded_entry(df, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'world'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'world'
        gp.plotly_projection = 'Mercator'

        gp.plotly_world_readable = False

        gp.plotly_url = country_group + "-" + data_type
        gp.title = "G10 " + data_type
        gp.units = '%'

        pf.plot_generic_graph(df, type = 'choropleth', adapter = 'plotly', gp = gp)
Esempio n. 3
0
    def g10_line_plot_gdp(self, start_date, finish_date):
        today_root = datetime.date.today().strftime("%Y%m%d") + " "
        country_group = 'g10-ez'
        gdp = self.get_GDP_QoQ(start_date, finish_date, country_group)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.title = "G10 GDP"
        gp.units = 'Rebased'
        gp.scale_factor = Constants.plotfactory_scale_factor
        gp.file_output = today_root + 'G10 UNE ' + str(
            gp.scale_factor) + '.png'
        gdp.columns = [x.split('-')[0] for x in gdp.columns]
        gp.linewidth_2 = 3
        gp.linewidth_2_series = ['United Kingdom']

        from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs
        tsc = TimeSeriesCalcs()
        gdp = gdp / 100
        gdp = tsc.create_mult_index_from_prices(gdp)
        pf.plot_generic_graph(gdp, type='line', adapter='pythalesians', gp=gp)
Esempio n. 4
0
    def g10_plot_gdp_cpi_une(self, start_date, finish_date, data_type='cpi'):
        country_group = 'g10'

        if data_type == 'cpi':
            df = self.get_CPI_YoY(start_date, finish_date, country_group)
        elif data_type == 'gdp':
            df = self.get_GDP_QoQ(start_date, finish_date, country_group)
        elif data_type == 'une':
            df = self.get_UNE(start_date, finish_date, country_group)

        df = self.hist_econ_data_factory.grasp_coded_entry(df, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'world'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'world'
        gp.plotly_projection = 'Mercator'

        gp.plotly_world_readable = False

        gp.plotly_url = country_group + "-" + data_type
        gp.title = "G10 " + data_type
        gp.units = '%'

        pf.plot_generic_graph(df, type='choropleth', adapter='plotly', gp=gp)
    def g10_line_plot_une(self, start_date, finish_date):
        today_root = datetime.date.today().strftime("%Y%m%d") + " "
        country_group = 'g10-ez'
        une = self.get_UNE(start_date, finish_date, country_group)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.title = "G10 Unemployment Rate (%)"
        gp.units = '%'
        gp.scale_factor = Constants.plotfactory_scale_factor
        gp.file_output = today_root + 'G10 UNE ' + str(gp.scale_factor) + '.png'
        une.columns = [x.split('-')[0] for x in une.columns]
        gp.linewidth_2 = 3
        gp.linewidth_2_series = ['United States']

        pf.plot_generic_graph(une, type = 'line', adapter = 'pythalesians', gp = gp)
Esempio n. 6
0
    def g10_line_plot_une(self, start_date, finish_date):
        today_root = datetime.date.today().strftime("%Y%m%d") + " "
        country_group = 'g10-ez'
        une = self.get_UNE(start_date, finish_date, country_group)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.title = "G10 Unemployment Rate (%)"
        gp.units = '%'
        gp.scale_factor = Constants.plotfactory_scale_factor
        gp.file_output = today_root + 'G10 UNE ' + str(
            gp.scale_factor) + '.png'
        une.columns = [x.split('-')[0] for x in une.columns]
        gp.linewidth_2 = 3
        gp.linewidth_2_series = ['United States']

        pf.plot_generic_graph(une, type='line', adapter='pythalesians', gp=gp)
    def usa_plot_une(self, start_date, finish_date):
        country_group = 'usa-states'; source = 'bloomberg'

        une = self.get_UNE(start_date, finish_date, country_group, source = 'bloomberg')
        une = self.hist_econ_data_factory.grasp_coded_entry(une, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'USA-states'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'usa'
        gp.plotly_projection = 'albers usa'
        gp.plotly_world_readable = False
        gp.plotly_url = country_group + "-unemployment"

        gp.title = "USA Unemployment"
        gp.units = 'pc'

        pf.plot_generic_graph(une, type = 'choropleth', adapter = 'plotly', gp = gp)
    def europe_plot_une(self, start_date, finish_date):
        country_group = 'all-europe'

        une = self.get_UNE(start_date, finish_date, country_group)
        une = self.hist_econ_data_factory.grasp_coded_entry(une, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'europe'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'europe'
        gp.plotly_projection = 'Mercator'

        gp.plotly_world_readable = False

        gp.plotly_url = country_group + "-unemployment"; gp.title = "Europe Unemployment"
        gp.units = '%'

        pf.plot_generic_graph(une, type = 'choropleth', adapter = 'plotly', gp = gp)
Esempio n. 9
0
    def world_plot_cpi(self, start_date, finish_date):
        country_group = 'world-liquid'

        cpi = self.get_CPI_YoY(start_date, finish_date, country_group)
        cpi = self.hist_econ_data_factory.grasp_coded_entry(cpi, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'world'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'world'
        gp.plotly_projection = 'Mercator'

        gp.plotly_world_readable = False

        gp.plotly_url = str(country_group) + "-cpi"
        gp.title = "World Liquid CPI YoY"
        gp.units = '%'

        pf.plot_generic_graph(cpi, type='choropleth', adapter='plotly', gp=gp)
Esempio n. 10
0
    def europe_plot_une(self, start_date, finish_date):
        country_group = 'all-europe'

        une = self.get_UNE(start_date, finish_date, country_group)
        une = self.hist_econ_data_factory.grasp_coded_entry(une, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'europe'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'europe'
        gp.plotly_projection = 'Mercator'

        gp.plotly_world_readable = False

        gp.plotly_url = country_group + "-unemployment"
        gp.title = "Europe Unemployment"
        gp.units = '%'

        pf.plot_generic_graph(une, type='choropleth', adapter='plotly', gp=gp)
    def g10_line_plot_gdp(self, start_date, finish_date):
        today_root = datetime.date.today().strftime("%Y%m%d") + " "
        country_group = 'g10-ez'
        gdp = self.get_GDP_QoQ(start_date, finish_date, country_group)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.title = "G10 GDP"
        gp.units = 'Rebased'
        gp.scale_factor = Constants.plotfactory_scale_factor
        gp.file_output = today_root + 'G10 UNE ' + str(gp.scale_factor) + '.png'
        gdp.columns = [x.split('-')[0] for x in gdp.columns]
        gp.linewidth_2 = 3
        gp.linewidth_2_series = ['United Kingdom']

        from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs
        tsc = TimeSeriesCalcs()
        gdp = gdp / 100
        gdp = tsc.create_mult_index_from_prices(gdp)
        pf.plot_generic_graph(gdp, type = 'line', adapter = 'pythalesians', gp = gp)
    def world_plot_cpi(self, start_date, finish_date):
        country_group = 'world-liquid'

        cpi = self.get_CPI_YoY(start_date, finish_date, country_group)
        cpi = self.hist_econ_data_factory.grasp_coded_entry(cpi, -1)

        from chartesians.graphs import PlotFactory
        from chartesians.graphs.graphproperties import GraphProperties

        gp = GraphProperties()
        pf = PlotFactory()

        gp.plotly_location_mode = 'world'
        gp.plotly_choropleth_field = 'Val'
        gp.plotly_scope = 'world'
        gp.plotly_projection = 'Mercator'

        gp.plotly_world_readable = False

        gp.plotly_url = str(country_group) + "-cpi"
        gp.title = "World Liquid CPI YoY"
        gp.units = '%'

        pf.plot_generic_graph(cpi, type = 'choropleth', adapter = 'plotly', gp = gp)
    end = datetime.datetime.utcnow()
    start_date = end.replace(hour=0, minute=0, second=0, microsecond=0) # Returns a copy

    time_series_request = TimeSeriesRequest(
                start_date = start_date,         # start date
                finish_date = datetime.datetime.utcnow(),                       # finish date
                freq = 'intraday',                                              # intraday data
                data_source = 'bloomberg',                      # use Bloomberg as data source
                tickers = ['EURUSD'] ,                          # ticker (Thalesians)
                fields = ['close'],                             # which fields to download
                vendor_tickers = ['EURUSD BGN Curncy'],         # ticker (Bloomberg)
                vendor_fields = ['close'],                      # which Bloomberg fields to download
                cache_algo = 'internet_load_return')            # how to return data

    ltsf = LightTimeSeriesFactory()

    df = ltsf.harvest_time_series(time_series_request)
    df.columns = [x.replace('.close', '') for x in df.columns.values]

    gp = GraphProperties()

    gp.title = 'EURUSD stuff!'
    gp.file_output = 'EURUSD.png'
    gp.source = 'Thalesians/BBG (created with PyThalesians Python library)'

    pf = PlotFactory()
    pf.plot_line_graph(df, adapter = 'pythalesians', gp = gp)

    pytwitter.update_status("check out my plot of EUR/USD!", picture = gp.file_output)
    # data_type = 'House Price Index'; title = 'House Price Index (YoY change %)';  yoy_ret = True; freq = 12;

    source = 'fred'

    df = hist.get_economic_data_history(start_date, finish_date, country_group, data_type, source=source)
    df = df.fillna(method='pad')

    if yoy_ret is True: df = 100 * (df / df.shift(freq) - 1)

    df = hist.grasp_coded_entry(df, -1)

    from chartesians.graphs import PlotFactory
    from chartesians.graphs.graphproperties import GraphProperties

    gp = GraphProperties()
    pf = PlotFactory()

    gp.plotly_location_mode = 'USA-states'
    gp.plotly_choropleth_field = 'Val'
    gp.plotly_scope = 'usa'
    gp.plotly_projection = 'albers usa'
    gp.plotly_url = country_group + data_type.replace(' ', '-')
    gp.plotly_world_readable = False
    gp.title = title
    gp.units = 'Value'

    # do a map plot by US state
    pf.plot_generic_graph(df, type = 'choropleth', adapter = 'cufflinks', gp = gp)

#### uses CommonEconDataFactory to get more common forms of economic data and plot
####
    df = hist.get_economic_data_history(start_date,
                                        finish_date,
                                        country_group,
                                        data_type,
                                        source=source)
    df = df.fillna(method='pad')

    if yoy_ret is True: df = 100 * (df / df.shift(freq) - 1)

    df = hist.grasp_coded_entry(df, -1)

    from chartesians.graphs import PlotFactory
    from chartesians.graphs.graphproperties import GraphProperties

    gp = GraphProperties()
    pf = PlotFactory()

    gp.plotly_location_mode = 'USA-states'
    gp.plotly_choropleth_field = 'Val'
    gp.plotly_scope = 'usa'
    gp.plotly_projection = 'albers usa'
    gp.plotly_url = country_group + data_type.replace(' ', '-')
    gp.plotly_world_readable = False
    gp.title = title
    gp.units = 'Value'

    # do a map plot by US state
    pf.plot_generic_graph(df, type='choropleth', adapter='cufflinks', gp=gp)

#### uses CommonEconDataFactory to get more common forms of economic data and plot
####
    tech_ind.create_tech_ind(spot_df, indicator, tech_params)
    signal_df = tech_ind.get_signal()

    # use the same data for generating signals
    cash_backtest.calculate_trading_PnL(br, asset_df, signal_df)
    port = cash_backtest.get_cumportfolio()
    port.columns = [
        indicator + ' = ' + str(tech_params.sma_period) + ' ' +
        str(cash_backtest.get_portfolio_pnl_desc()[0])
    ]
    signals = cash_backtest.get_porfolio_signal()

    # print the last positions (we could also save as CSV etc.)
    print(signals.tail(1))

    pf = PlotFactory()
    gp = GraphProperties()
    gp.title = "Thalesians FX trend strategy"
    gp.source = 'Thalesians/BBG (calc with PyThalesians Python library)'
    gp.scale_factor = 1
    gp.file_output = 'output_data/fx-trend-example.png'

    pf.plot_line_graph(port, adapter='pythalesians', gp=gp)

###### backtest simple trend following strategy for FX spot basket
if True:
    # for backtest and loading data
    from pythalesians.market.requests.backtestrequest import BacktestRequest
    from pythalesians.backtest.cash.cashbacktest import CashBacktest
    from pythalesians.market.requests.timeseriesrequest import TimeSeriesRequest
    from pythalesians.market.loaders.lighttimeseriesfactory import LightTimeSeriesFactory