Esempio n. 1
0
def chat_fun_urdu(n_query, model, chat_settings, chatlog_filepath):
    chk, response = wt.query_check(n_query)
    terminate_chat = False
    #Get the input and check if it is a question or a command, and execute if it is a command
    #question = input("You: ")
    question = n_query
    is_command, terminate_chat, reload_model = chat_command_handler.handle_command(
        question, model, chat_settings)
    if is_command:
        pass
    elif chk:
        return response
    else:
        question = ChatSettings.To_query(n_query)
        #If it is not a command (it is a question), pass it on to the chatbot model to get the answer
        question_with_history, answer = model.chat(question, chat_settings)

        #Print the answer or answer beams and log to chat log
        if chat_settings.show_question_context:
            print("Question with history (context): {0}".format(
                question_with_history))

        if chat_settings.show_all_beams:
            for i in range(len(answer)):
                print("ChatBot (Beam {0}): {1}".format(i, answer[i]))
        else:
            n_answer = ChatSettings.To_answer(answer)
            print("ChatBot: {0}".format(n_answer))
        print()
        return n_answer
        if chat_settings.inference_hparams.log_chat:
            chat_command_handler.append_to_chatlog(chatlog_filepath, question,
                                                   answer)
Esempio n. 2
0
def chat_fun(n_query):
    terminate_chat = False
    reload_model = False
    chk, response = wt.query_check(n_query)

    while not terminate_chat:
        #Create the model
        print()
        print("Initializing model..."
              if not reload_model else "Re-initializing model...")
        print()
        with ChatbotModel(mode="infer",
                          model_hparams=chat_settings.model_hparams,
                          input_vocabulary=input_vocabulary,
                          output_vocabulary=output_vocabulary,
                          model_dir=model_dir) as model:

            #Load the weights
            print()
            print("Loading model weights...")
            print()
            model.load(checkpoint)

            #Show the commands
            if not reload_model:
                #Uncomment the following line if you want to print commands.
                #chat_command_handler.print_commands()
                print('Model Reload!')

            while True:
                #Get the input and check if it is a question or a command, and execute if it is a command
                #question = input("You: ")
                question = n_query
                is_command, terminate_chat, reload_model = chat_command_handler.handle_command(
                    question, model, chat_settings)
                if terminate_chat or reload_model:
                    break
                elif is_command:
                    continue
                elif chk:
                    return response
                else:
                    question = ChatSettings.To_query(n_query)
                    #If it is not a command (it is a question), pass it on to the chatbot model to get the answer
                    question_with_history, answer = model.chat(
                        question, chat_settings)

                    #Print the answer or answer beams and log to chat log
                    if chat_settings.show_question_context:
                        print("Question with history (context): {0}".format(
                            question_with_history))

                    if chat_settings.show_all_beams:
                        for i in range(len(answer)):
                            print("ChatBot (Beam {0}): {1}".format(
                                i, answer[i]))
                    else:
                        n_answer = ChatSettings.To_answer(answer)
                        print("ChatBot: {0}".format(n_answer))

                    print()

                    return n_answer
                    if chat_settings.inference_hparams.log_chat:
                        chat_command_handler.append_to_chatlog(
                            chatlog_filepath, question, answer)