Esempio n. 1
0
    def train(self, conversation):
        """
        Train the chat bot based on the provided list of
        statements that represents a single conversation.
        """
        previous_statement_text = None
        previous_statement_search_text = ''

        statements_to_create = []

        for conversation_count, text in enumerate(conversation):
            if self.show_training_progress:
                utils.print_progress_bar('List Trainer',
                                         conversation_count + 1,
                                         len(conversation))

            statement_search_text = self.chatbot.storage.tagger.get_text_index_string(
                text)

            statement = self.get_preprocessed_statement(
                Statement(text=text,
                          search_text=statement_search_text,
                          in_response_to=previous_statement_text,
                          search_in_response_to=previous_statement_search_text,
                          conversation='training'))

            previous_statement_text = statement.text
            previous_statement_search_text = statement_search_text

            statements_to_create.append(statement)

        self.chatbot.storage.create_many(statements_to_create)
Esempio n. 2
0
    def train(self, conversation):
        """
        Train the chat bot based on the provided list of
        statements that represents a single conversation.
        """
        previous_statement_text = None

        for conversation_count, text in enumerate(conversation):
            if self.show_training_progress:
                utils.print_progress_bar('List Trainer',
                                         conversation_count + 1,
                                         len(conversation))

            statement = self.get_preprocessed_statement(
                Statement(text=text,
                          in_response_to=previous_statement_text,
                          conversation='training'))

            previous_statement_text = statement.text

            self.chatbot.storage.create(
                text=statement.text,
                in_response_to=statement.in_response_to,
                conversation=statement.conversation,
                tags=statement.tags)
Esempio n. 3
0
    def train(self, conversation):
        """
        Train the chat bot based on the provided list of
        statements that represents a single conversation.
        """
        previous_statement_text = None
        previous_statement_search_text = ''

        statements_to_create = []

        for conversation_count, text in enumerate(conversation):
            if self.show_training_progress:
                utils.print_progress_bar(
                    'List Trainer',
                    conversation_count + 1, len(conversation)
                )

            statement_search_text = self.stemmer.get_bigram_pair_string(text)

            statement = self.get_preprocessed_statement(
                Statement(
                    text=text,
                    search_text=statement_search_text,
                    in_response_to=previous_statement_text,
                    search_in_response_to=previous_statement_search_text,
                    conversation='training'
                )
            )

            previous_statement_text = statement.text
            previous_statement_search_text = statement_search_text

            statements_to_create.append(statement)

        self.chatbot.storage.create_many(statements_to_create)
    def train(self, *corpus_paths):
        #corpus_paths is a list of paths of corpus or one corpus path.

        for corpus in corpus_paths:

            print(corpus)
            file = open(corpus)
            l_line = []
            l_line = file.readlines()
            N = len(l_line)
            for i in range(N):
                l_line[i] = l_line[i].strip()
            file.close()

            previous_statement_text = None

            for conversation_count, text in enumerate(l_line):
                print_progress_bar("Subtitle Trainer", conversation_count + 1,
                                   N)

                statement = self.get_or_create(text)

                if previous_statement_text:
                    statement.add_response(Response(previous_statement_text))

                previous_statement_text = statement.text
                self.storage.update(statement)
    def train(self, NN=0, N=None, *corpus_paths):
        #corpus_paths is a list of paths of corpus or one corpus path.
        #read each corpus from line NN to N. By default the whole file is read.

        print('N=', N)
        for corpus in corpus_paths:

            print(corpus)
            file = open(corpus)
            l_line = []
            if N:
                for i in range(NN, N):
                    line = file.readline().strip()
                    l_line.append(line)
            else:
                l_line = file.readlines()
                N = len(l_line)
                for i in range(N):
                    l_line[i] = l_line[i].strip()
            file.close()

            previous_statement_text = None

            for conversation_count, text in enumerate(l_line):
                print_progress_bar("Subtitle Trainer", conversation_count + 1,
                                   N - NN)

                statement = self.get_or_create(text)

                if previous_statement_text:
                    statement.add_response(Response(previous_statement_text))

                previous_statement_text = statement.text
                self.storage.update(statement)
Esempio n. 6
0
    def train(self, *corpus_paths):

        # Allow a list of corpora to be passed instead of arguments
        if len(corpus_paths) == 1:
            if isinstance(corpus_paths[0], list):
                corpus_paths = corpus_paths[0]

        # Train the chat bot with each statement and response pair
        for corpus_path in corpus_paths:

            corpora = self.corpus.load_corpus(corpus_path)

            corpus_files = self.corpus.list_corpus_files(corpus_path)
            for corpus_count, corpus in enumerate(corpora):
                for conversation_count, conversation in enumerate(corpus):

                    if self.show_training_progress:
                        utils.print_progress_bar(
                            str(os.path.basename(corpus_files[corpus_count])) +
                            ' Training', conversation_count + 1, len(corpus))

                    previous_statement_text = None

                    for text in conversation:
                        statement = self.get_or_create(text)
                        statement.add_tags(corpus.categories)

                        if previous_statement_text:
                            statement.add_response(
                                Response(previous_statement_text))

                        previous_statement_text = statement.text
                        self.chatbot.storage.update(statement)
Esempio n. 7
0
    def train(self, *corpus_paths):
        from chatterbot.corpus import load_corpus, list_corpus_files

        data_file_paths = []

        # Get the paths to each file the bot will be trained with
        for corpus_path in corpus_paths:
            data_file_paths.extend(list_corpus_files(corpus_path))

        for corpus, categories, file_path in load_corpus(*data_file_paths):

            statements_to_create = []

            # Train the chat bot with each statement and response pair
            for conversation_count, conversation in enumerate(corpus):

                if self.show_training_progress:
                    utils.print_progress_bar(
                        'Training ' + str(os.path.basename(file_path)),
                        conversation_count + 1, len(corpus))

                previous_statement_text = None
                previous_statement_search_text = ''

                for text in conversation:

                    statement_search_text = self.stemmer.stem(text)

                    _statement = Statement(
                        text=text,
                        search_text=statement_search_text,
                        in_response_to=previous_statement_text,
                        search_in_response_to=previous_statement_search_text,
                        conversation='training')

                    _statement.add_tags(*categories)

                    statement = self.get_preprocessed_statement(_statement)

                    previous_statement_text = statement.text
                    previous_statement_search_text = statement_search_text

                    statements_to_create.append({
                        'text': statement.text,
                        'in_response_to': statement.in_response_to,
                        'conversation': statement.conversation,
                        'tags': statement.tags
                    })

            self.chatbot.storage.create_many(statements_to_create)
Esempio n. 8
0
    def train(self, *corpus_paths):
        from chatterbot.corpus import load_corpus, list_corpus_files

        data_file_paths = []

        # Get the paths to each file the bot will be trained with
        for corpus_path in corpus_paths:
            data_file_paths.extend(list_corpus_files(corpus_path))

        for corpus, categories, file_path in load_corpus(*data_file_paths):

            statements_to_create = []

            # Train the chat bot with each statement and response pair
            for conversation_count, conversation in enumerate(corpus):

                if self.show_training_progress:
                    utils.print_progress_bar(
                        'Training ' + str(os.path.basename(file_path)),
                        conversation_count + 1,
                        len(corpus)
                    )

                previous_statement_text = None
                previous_statement_search_text = ''

                for text in conversation:

                    statement_search_text = self.stemmer.get_bigram_pair_string(text)

                    statement = Statement(
                        text=text,
                        search_text=statement_search_text,
                        in_response_to=previous_statement_text,
                        search_in_response_to=previous_statement_search_text,
                        conversation='training'
                    )

                    statement.add_tags(*categories)

                    statement = self.get_preprocessed_statement(statement)

                    previous_statement_text = statement.text
                    previous_statement_search_text = statement_search_text

                    statements_to_create.append(statement)

            self.chatbot.storage.create_many(statements_to_create)
Esempio n. 9
0
    def train(self, data, mimic_name):
        """
        Train the chat bot based on the provided list of
        statements that represents a single conversation.
        """

        if not 'participants' in data:
            return
        m = self._merge_messages(data)
        print('Total messages: ' + str(len(m)))

        def clean(txt):
            return txt.lower().replace('\'', '')

        statements = []
        for i in range(1, len(m)):
            if self.show_training_progress:
                utils.print_progress_bar('Fb Trainer', i + 1, len(m))

            if m[i]['sender_name'] == mimic_name:
                text = clean(m[i]['content'])[:75]
                prev_text = clean(m[i - 1]['content'])[-75:]
                if len(text) == 0 or len(prev_text) == 0:
                    continue

                search_text = self.chatbot.storage.tagger.get_bigram_pair_string(
                    text)
                prev_search_text = self.chatbot.storage.tagger.get_bigram_pair_string(
                    prev_text)
                #print(prev_text + ' ==> ' + text)

                statement = Statement(text=text,
                                      search_text=search_text,
                                      in_response_to=prev_text,
                                      search_in_response_to=prev_search_text,
                                      conversation='training')
                #print("statement from %s with response from %s" % (m[i-1]['sender_name'], m[i]['sender_name']))
                statements.append(statement)
        if len(statements):
            self.chatbot.storage.create_many(statements)
Esempio n. 10
0
    def train(self):

        conversation = "hello"

        previous_statement_text = None

        results = self.data.get_all_generic_ingredient()
        print(results)

        for conversation_count, text in enumerate(conversation):
            if self.show_training_progress:
                utils.print_progress_bar('Recipe Trainer',
                                         conversation_count + 1,
                                         len(conversation))

            statement = self.get_or_create(text)

            if previous_statement_text:
                statement.add_response(Response(previous_statement_text))

            previous_statement_text = statement.text
            self.chatbot.storage.update(statement)
Esempio n. 11
0
    def train(self, *corpus_paths):

        # Allow a list of corpora to be passed instead of arguments
        if len(corpus_paths) == 1:
            if isinstance(corpus_paths[0], list):
                corpus_paths = corpus_paths[0]

        # Train the chat bot with each statement and response pair
        for corpus_path in corpus_paths:

            corpora = self.corpus.load_corpus(corpus_path)

            corpus_files = self.corpus.list_corpus_files(corpus_path)
            for corpus_count, corpus in enumerate(corpora):
                for conversation_count, conversation in enumerate(corpus):
                    print_progress_bar(
                        str(os.path.basename(corpus_files[corpus_count])) +
                        " Training", conversation_count + 1, len(corpus))

                    previous_statement_line = []
                    statement_line = []

                    for line in conversation:
                        for text in line:
                            statement = self.get_or_create(text)
                            statement.add_tags(corpus.categories)

                            statement_line.append(statement.text)

                            if previous_statement_line != []:
                                for previous_statement_text in previous_statement_line:
                                    statement.add_response(
                                        Response(previous_statement_text))
                            self.storage.update(statement)

                        previous_statement_line = statement_line
                        statement_line = []
Esempio n. 12
0
    def train(self, *corpus_paths):
        from chatterbot.corpus import load_corpus, list_corpus_files

        data_file_paths = []

        # Get the paths to each file the bot will be trained with
        for corpus_path in corpus_paths:
            data_file_paths.extend(list_corpus_files(corpus_path))

        for corpus, categories, file_path in load_corpus(*data_file_paths):

            statements_to_create = []

            # Train the chat bot with each statement and response pair
            for conversation_count, conversations in enumerate(corpus):

                if self.show_training_progress:
                    utils.print_progress_bar(
                        'Training ' + str(os.path.basename(file_path)),
                        conversation_count + 1, len(corpus))

                previous_statements_texts = [None]
                previous_statements_search_texts = ['']

                for conversation in conversations:

                    if isinstance(conversation, str):
                        conversation = [conversation]

                    statements_texts = []
                    statements_search_texts = []

                    for previous_statement_text, previous_statement_search_text in zip(
                            previous_statements_texts,
                            previous_statements_search_texts):

                        for text in conversation:
                            statement_search_text = self.chatbot.storage.tagger.get_bigram_pair_string(
                                text)

                            statement = Statement(
                                text=text,
                                search_text=statement_search_text,
                                in_response_to=previous_statement_text,
                                search_in_response_to=
                                previous_statement_search_text,
                                conversation='training')

                            statement.add_tags(*categories)

                            statement = self.get_preprocessed_statement(
                                statement)

                            statements_texts.append(statement.text)
                            statements_search_texts.append(
                                statement_search_text)

                            statements_to_create.append(statement)

                    previous_statements_texts = statements_texts
                    previous_statements_search_texts = statements_search_texts

            if statements_to_create:
                self.chatbot.storage.create_many(statements_to_create)
Esempio n. 13
0
    def train(self, *corpus_paths):
        from chatterbot.corpus import load_corpus, list_corpus_files

        data_file_paths = []

        # Get the paths to each file the bot will be trained with
        for corpus_path in corpus_paths:
            data_file_paths.extend(list_corpus_files(corpus_path))

        for corpus, categories, file_path in load_corpus(*data_file_paths):

            statements_to_create = []

            # Train the chat bot with each statement and response pair
            for conversation_count, conversation in enumerate(corpus):

                if self.show_training_progress:
                    utils.print_progress_bar(
                        'Training ' + str(os.path.basename(file_path)),
                        conversation_count + 1, len(corpus))

                previous_statement_text = None
                previous_statement_search_text = ''

                for text in conversation:
                    suggestion_tags = []
                    if text.strip('.?!/;:\'\"') in constants.AFFIRMATIVES:
                        text = 'AFF'
                    elif text.strip('.?!/;:\'\"') in constants.NEGATIVES:
                        text = 'NEG'
                    elif text[0] is '^':
                        (suggestion, text) = text.split(maxsplit=1)
                        suggestion = suggestion[1:]
                        if not suggestion.find('/'):
                            suggestion_tags.append(suggestion)
                        else:
                            for suggestion in suggestion.split('/'):
                                suggestion_tags.append(suggestion)

                    statement_search_text = self.chatbot.storage.tagger.get_bigram_pair_string(
                        text)

                    statement = Statement(
                        text=text,
                        search_text=statement_search_text,
                        in_response_to=previous_statement_text,
                        search_in_response_to=previous_statement_search_text,
                        conversation='training')

                    # YesNoLogicAdapter deals with responses to AFF/NEG via statement tags.
                    # No need for statements in_response_to = AFF/NEG   In fact, it was causing
                    # erroneous responses
                    if statement.in_response_to in ['AFF', 'NEG']:
                        statement.in_response_to = None
                        statement.search_in_response_to = None

                    statement.add_tags(*categories)

                    if suggestion_tags:
                        for suggestion in suggestion_tags:
                            statement.add_tags('SUGGESTION:' + suggestion)

                    if previous_statement_text:
                        if previous_statement_text == 'AFF':
                            statements_to_create[-2].add_tags('AFF:' +
                                                              statement.text)
                        elif previous_statement_text == 'NEG':
                            statements_to_create[-2].add_tags('NEG:' +
                                                              statement.text)

                    statement = self.get_preprocessed_statement(statement)
                    previous_statement_text = statement.text
                    previous_statement_search_text = statement_search_text

                    statements_to_create.append(statement)

            # Using update() because create_many() makes duplicate statements. AFF/NEG tag data was lost on some.
            for stmnts in statements_to_create:
                self.chatbot.storage.update(stmnts)