Esempio n. 1
0
 def testDistanceZero(self):
     """Verify computation of distances between genomic signatures."""
     gs = GenomicSignatures(K = 2, threads = 1)
     
     sig1 = gs.seqSignature('AACC')
     sig2 = gs.seqSignature('AACC')
     
     dist = gs.distance(sig1, sig2)
     
     self.assertEqual(dist, 0)
Esempio n. 2
0
 def testDistanceMax(self):
     """Verify computation of distances between genomic signatures."""
     gs = GenomicSignatures(K = 2, threads = 1)
     
     sig1 = gs.seqSignature('AAAA')
     sig2 = gs.seqSignature('GGGG')
     
     dist = gs.distance(sig1, sig2)
     
     self.assertAlmostEqual(dist, 2.0)
    def testGenomicSignature(self):
        """Verify computation of genomic signature."""
        gs = GenomicSignatures(K=2, threads=1)

        sig = gs.seqSignature('AACC')
        kmerOrder = gs.canonicalKmerOrder()
        aaIndex = kmerOrder.index('AA')
        acIndex = kmerOrder.index('AC')
        ccIndex = kmerOrder.index('AC')
        atIndex = kmerOrder.index('AT')

        self.assertEqual(sig[aaIndex], 1.0 / 3.0)
        self.assertEqual(sig[acIndex], 1.0 / 3.0)
        self.assertEqual(sig[ccIndex], 1.0 / 3.0)
        self.assertEqual(sig[atIndex], 0)
Esempio n. 4
0
 def testGenomicSignature(self):
     """Verify computation of genomic signature."""
     gs = GenomicSignatures(K = 2, threads = 1)
     
     sig = gs.seqSignature('AACC')
     kmerOrder = gs.canonicalKmerOrder()
     aaIndex = kmerOrder.index('AA')
     acIndex = kmerOrder.index('AC')
     ccIndex = kmerOrder.index('AC')
     atIndex = kmerOrder.index('AT')
     
     self.assertEqual(sig[aaIndex], 1.0/3.0)
     self.assertEqual(sig[acIndex], 1.0/3.0)
     self.assertEqual(sig[ccIndex], 1.0/3.0)
     self.assertEqual(sig[atIndex], 0)
Esempio n. 5
0
    def __calculateResults(self, windowSizes, numWindows, genomeDir, queueIn, queueOut):
        while True:
            genomeId = queueIn.get(block=True, timeout=None)
            if genomeId == None:
                break

            start = time.time()

            seqs = readGenomicSeqsFromFasta(os.path.join(genomeDir, genomeId, genomeId + '.fna'))
            genomeScaffold = 'NNNN'.join(seqs.values())

            # calculate tetranucleotide signature of genome
            gsCalculator = GenomicSignatures(4)
            genomeSig = gsCalculator.seqSignature(genomeScaffold)

            fout = open('./deltaTD/' + genomeId + '.tsv', 'w')
            fout.write('# Tetra signature = ' + str(genomeSig) + '\n')
            fout.close()
            sys.exit()

            # calculate tetranucleotide distance distribution for different window sizes
            startW = time.time()
            for windowSize in windowSizes:
                endWindowPos = len(genomeScaffold) - windowSize
                if endWindowPos <= 0:
                    # This might occur for the largest window sizes and smallest genomes
                    break

                deltaTDs = []
                while len(deltaTDs) != numWindows:
                    # pick random window
                    startWindow = randint(0, endWindowPos)

                    windowSig = gsCalculator.seqSignature(genomeScaffold[startWindow:(startWindow+windowSize)])
                    dist = gsCalculator.distance(genomeSig, windowSig)
                    deltaTDs.append(dist)

                fout.write('Windows Size = ' + str(windowSize) + '\n')
                fout.write(','.join(map(str, deltaTDs)) + '\n')
            fout.close()
            endW = time.time()
            print(endW - startW)

            queueOut.put(genomeId)

            end = time.time()
            print(end - start)
    def __calculateResults(self, windowSizes, numWindows, genomeDir, queueIn, queueOut):
        while True:
            genomeId = queueIn.get(block=True, timeout=None)
            if genomeId == None:
                break

            start = time.time()

            seqs = readGenomicSeqsFromFasta(os.path.join(genomeDir, genomeId, genomeId + '.fna'))
            genomeScaffold = 'NNNN'.join(seqs.values())

            # calculate tetranucleotide signature of genome
            gsCalculator = GenomicSignatures(4)
            genomeSig = gsCalculator.seqSignature(genomeScaffold)

            fout = open('./deltaTD/' + genomeId + '.tsv', 'w')
            fout.write('# Tetra signature = ' + str(genomeSig) + '\n')
            fout.close()
            sys.exit()

            # calculate tetranucleotide distance distribution for different window sizes
            startW = time.time()
            for windowSize in windowSizes:
                endWindowPos = len(genomeScaffold) - windowSize
                if endWindowPos <= 0:
                    # This might occur for the largest window sizes and smallest genomes
                    break

                deltaTDs = []
                while len(deltaTDs) != numWindows:
                    # pick random window
                    startWindow = randint(0, endWindowPos)

                    windowSig = gsCalculator.seqSignature(genomeScaffold[startWindow:(startWindow+windowSize)])
                    dist = gsCalculator.distance(genomeSig, windowSig)
                    deltaTDs.append(dist)

                fout.write('Windows Size = ' + str(windowSize) + '\n')
                fout.write(','.join(map(str, deltaTDs)) + '\n')
            fout.close()
            endW = time.time()
            print endW - startW

            queueOut.put(genomeId)

            end = time.time()
            print end - start
Esempio n. 7
0
    def tetraSignatures(self, options):
        """Tetranucleotide signature command"""

        self.logger.info(
            '[CheckM - tetra] Calculating tetranucleotide signature of sequences.'
        )

        checkFileExists(options.seq_file)
        makeSurePathExists(os.path.dirname(options.output_file))

        tetraSig = GenomicSignatures(4, options.threads)
        tetraSig.calculate(options.seq_file, options.output_file)

        self.logger.info('Tetranucletoide signatures written to: ' +
                         options.output_file)

        self.timeKeeper.printTimeStamp()
Esempio n. 8
0
    def plotOnAxes(self, fastaFile, tetraSigs, distributionsToPlot, axesHist,
                   axesDeltaTD):
        # Read reference distributions from file
        dist = readDistribution('td_dist')

        # get tetranucleotide signature for bin
        seqs = readFasta(fastaFile)

        binTools = BinTools()
        binSig = binTools.binTetraSig(seqs, tetraSigs)

        # get tetranucleotide distances for windows
        genomicSig = GenomicSignatures(K=4, threads=1)

        data = []
        seqLens = []
        deltaTDs = []
        for seqId, seq in seqs.iteritems():
            start = 0
            end = self.options.td_window_size

            seqLen = len(seq)
            seqLens.append(seqLen)
            deltaTDs.append(genomicSig.distance(tetraSigs[seqId], binSig))

            while (end < seqLen):
                windowSig = genomicSig.seqSignature(seq[start:end])
                data.append(genomicSig.distance(windowSig, binSig))

                start = end
                end += self.options.td_window_size

        if len(data) == 0:
            axesHist.set_xlabel(
                '[Error] No seqs >= %d, the specified window size' %
                self.options.td_window_size)
            return

        deltaTDs = np.array(deltaTDs)

        # Histogram plot
        bins = [0.0]
        binWidth = self.options.td_bin_width
        binEnd = binWidth
        while binEnd <= 1.0:
            bins.append(binEnd)
            binEnd += binWidth

        axesHist.hist(data, bins=bins, normed=True, color=(0.5, 0.5, 0.5))
        axesHist.set_xlabel(r'$\Delta$ TD')
        axesHist.set_ylabel('% windows (' + str(self.options.td_window_size) +
                            ' bp)')

        # Prettify plot
        for a in axesHist.yaxis.majorTicks:
            a.tick1On = True
            a.tick2On = False

        for a in axesHist.xaxis.majorTicks:
            a.tick1On = True
            a.tick2On = False

        for line in axesHist.yaxis.get_ticklines():
            line.set_color(self.axesColour)

        for line in axesHist.xaxis.get_ticklines():
            line.set_color(self.axesColour)

        for loc, spine in axesHist.spines.iteritems():
            if loc in ['right', 'top']:
                spine.set_color('none')
            else:
                spine.set_color(self.axesColour)

        # get CD bin statistics
        meanTD, deltaTDs = binTools.tetraDiffDist(seqs, genomicSig, tetraSigs,
                                                  binSig)

        # Delta-TD vs Sequence length plot
        axesDeltaTD.scatter(deltaTDs,
                            seqLens,
                            c=abs(deltaTDs),
                            s=10,
                            lw=0.5,
                            cmap='gray_r')
        axesDeltaTD.set_xlabel(r'$\Delta$ TD (mean TD = %.2f)' % meanTD)
        axesDeltaTD.set_ylabel('Sequence length (kbp)')

        _, yMaxSeqs = axesDeltaTD.get_ylim()
        xMinSeqs, xMaxSeqs = axesDeltaTD.get_xlim()

        # plot reference distributions
        for distToPlot in distributionsToPlot:
            boundKey = findNearest(dist[dist.keys()[0]].keys(), distToPlot)

            x = []
            y = []
            for windowSize in dist:
                x.append(dist[windowSize][boundKey])
                y.append(windowSize)

            # sort by y-values
            sortIndexY = np.argsort(y)
            x = np.array(x)[sortIndexY]
            y = np.array(y)[sortIndexY]

            # make sure x-values are strictly decreasing as y increases
            # as this is conservative and visually satisfying
            for i in xrange(0, len(x) - 1):
                for j in xrange(i + 1, len(x)):
                    if x[j] > x[i]:
                        if j == len(x) - 1:
                            x[j] = x[i]
                        else:
                            x[j] = (x[j - 1] + x[j + 1]
                                    ) / 2  # interpolate values from neighbours

                        if x[j] > x[i]:
                            x[j] = x[i]

            axesDeltaTD.plot(x, y, 'r--', lw=0.5, zorder=0)

        # ensure y-axis include zero and covers all sequences
        axesDeltaTD.set_ylim([0, yMaxSeqs])

        # ensure x-axis is set appropriately for sequences
        axesDeltaTD.set_xlim([xMinSeqs, xMaxSeqs])

        # draw vertical line at x=0
        axesDeltaTD.vlines(0,
                           0,
                           yMaxSeqs,
                           linestyle='dashed',
                           color=self.axesColour,
                           zorder=0)

        # Change sequence lengths from bp to kbp
        yticks = axesDeltaTD.get_yticks()
        kbpLabels = []
        for seqLen in yticks:
            label = '%.1f' % (float(seqLen) / 1000)
            label = label.replace('.0', '')  # remove trailing zero
            kbpLabels.append(label)
        axesDeltaTD.set_yticklabels(kbpLabels)

        # Prettify plot
        for a in axesDeltaTD.yaxis.majorTicks:
            a.tick1On = True
            a.tick2On = False

        for a in axesDeltaTD.xaxis.majorTicks:
            a.tick1On = True
            a.tick2On = False

        for line in axesDeltaTD.yaxis.get_ticklines():
            line.set_color(self.axesColour)

        for line in axesDeltaTD.xaxis.get_ticklines():
            line.set_color(self.axesColour)

        for loc, spine in axesDeltaTD.spines.iteritems():
            if loc in ['right', 'top']:
                spine.set_color('none')
            else:
                spine.set_color(self.axesColour)
Esempio n. 9
0
    def plotOnAxes(self, fastaFile, tetraSigs, distributionsToPlot, axesHist, axesDeltaTD):
        # Read reference distributions from file
        dist = readDistribution("td_dist")

        # get tetranucleotide signature for bin
        seqs = readFasta(fastaFile)

        binTools = BinTools()
        binSig = binTools.binTetraSig(seqs, tetraSigs)

        # get tetranucleotide distances for windows
        genomicSig = GenomicSignatures(K=4, threads=1)

        data = []
        seqLens = []
        deltaTDs = []
        for seqId, seq in seqs.iteritems():
            start = 0
            end = self.options.td_window_size

            seqLen = len(seq)
            seqLens.append(seqLen)
            deltaTDs.append(genomicSig.distance(tetraSigs[seqId], binSig))

            while end < seqLen:
                windowSig = genomicSig.seqSignature(seq[start:end])
                data.append(genomicSig.distance(windowSig, binSig))

                start = end
                end += self.options.td_window_size

        if len(data) == 0:
            axesHist.set_xlabel("[Error] No seqs >= %d, the specified window size" % self.options.td_window_size)
            return

        deltaTDs = np.array(deltaTDs)

        # Histogram plot
        bins = [0.0]
        binWidth = self.options.td_bin_width
        binEnd = binWidth
        while binEnd <= 1.0:
            bins.append(binEnd)
            binEnd += binWidth

        axesHist.hist(data, bins=bins, normed=True, color=(0.5, 0.5, 0.5))
        axesHist.set_xlabel(r"$\Delta$ TD")
        axesHist.set_ylabel("% windows (" + str(self.options.td_window_size) + " bp)")

        # Prettify plot
        for a in axesHist.yaxis.majorTicks:
            a.tick1On = True
            a.tick2On = False

        for a in axesHist.xaxis.majorTicks:
            a.tick1On = True
            a.tick2On = False

        for line in axesHist.yaxis.get_ticklines():
            line.set_color(self.axesColour)

        for line in axesHist.xaxis.get_ticklines():
            line.set_color(self.axesColour)

        for loc, spine in axesHist.spines.iteritems():
            if loc in ["right", "top"]:
                spine.set_color("none")
            else:
                spine.set_color(self.axesColour)

        # get CD bin statistics
        meanTD, deltaTDs = binTools.tetraDiffDist(seqs, genomicSig, tetraSigs, binSig)

        # Delta-TD vs Sequence length plot
        axesDeltaTD.scatter(deltaTDs, seqLens, c=abs(deltaTDs), s=10, lw=0.5, cmap="gray_r")
        axesDeltaTD.set_xlabel(r"$\Delta$ TD (mean TD = %.2f)" % meanTD)
        axesDeltaTD.set_ylabel("Sequence length (kbp)")

        _, yMaxSeqs = axesDeltaTD.get_ylim()
        xMinSeqs, xMaxSeqs = axesDeltaTD.get_xlim()

        # plot reference distributions
        for distToPlot in distributionsToPlot:
            boundKey = findNearest(dist[dist.keys()[0]].keys(), distToPlot)

            x = []
            y = []
            for windowSize in dist:
                x.append(dist[windowSize][boundKey])
                y.append(windowSize)

            # sort by y-values
            sortIndexY = np.argsort(y)
            x = np.array(x)[sortIndexY]
            y = np.array(y)[sortIndexY]

            # make sure x-values are strictly decreasing as y increases
            # as this is conservative and visually satisfying
            for i in xrange(0, len(x) - 1):
                for j in xrange(i + 1, len(x)):
                    if x[j] > x[i]:
                        if j == len(x) - 1:
                            x[j] = x[i]
                        else:
                            x[j] = (x[j - 1] + x[j + 1]) / 2  # interpolate values from neighbours

                        if x[j] > x[i]:
                            x[j] = x[i]

            axesDeltaTD.plot(x, y, "r--", lw=0.5, zorder=0)

        # ensure y-axis include zero and covers all sequences
        axesDeltaTD.set_ylim([0, yMaxSeqs])

        # ensure x-axis is set appropriately for sequences
        axesDeltaTD.set_xlim([xMinSeqs, xMaxSeqs])

        # draw vertical line at x=0
        axesDeltaTD.vlines(0, 0, yMaxSeqs, linestyle="dashed", color=self.axesColour, zorder=0)

        # Change sequence lengths from bp to kbp
        yticks = axesDeltaTD.get_yticks()
        kbpLabels = []
        for seqLen in yticks:
            label = "%.1f" % (float(seqLen) / 1000)
            label = label.replace(".0", "")  # remove trailing zero
            kbpLabels.append(label)
        axesDeltaTD.set_yticklabels(kbpLabels)

        # Prettify plot
        for a in axesDeltaTD.yaxis.majorTicks:
            a.tick1On = True
            a.tick2On = False

        for a in axesDeltaTD.xaxis.majorTicks:
            a.tick1On = True
            a.tick2On = False

        for line in axesDeltaTD.yaxis.get_ticklines():
            line.set_color(self.axesColour)

        for line in axesDeltaTD.xaxis.get_ticklines():
            line.set_color(self.axesColour)

        for loc, spine in axesDeltaTD.spines.iteritems():
            if loc in ["right", "top"]:
                spine.set_color("none")
            else:
                spine.set_color(self.axesColour)
Esempio n. 10
0
    def identifyOutliers(self, outDir, binFiles, tetraProfileFile,
                         distribution, reportType, outputFile):
        """Identify sequences that are outliers."""

        self.logger.info('Reading reference distributions.')
        gcBounds = readDistribution('gc_dist')
        cdBounds = readDistribution('cd_dist')
        tdBounds = readDistribution('td_dist')

        fout = open(outputFile, 'w')
        fout.write(
            'Bin Id\tSequence Id\tSequence length\tOutlying distributions')
        fout.write(
            '\tSequence GC\tMean bin GC\tLower GC bound (%s%%)\tUpper GC bound (%s%%)'
            % (distribution, distribution))
        fout.write('\tSequence CD\tMean bin CD\tLower CD bound (%s%%)' %
                   distribution)
        fout.write('\tSequence TD\tMean bin TD\tUpper TD bound (%s%%)\n' %
                   distribution)

        processedBins = 0
        for binFile in binFiles:
            binId = binIdFromFilename(binFile)

            processedBins += 1
            self.logger.info('Finding outliers in %s (%d of %d).' %
                             (binId, processedBins, len(binFiles)))

            seqs = readFasta(binFile)

            meanGC, deltaGCs, seqGC = self.gcDist(seqs)

            genomicSig = GenomicSignatures(K=4, threads=1)
            tetraSigs = genomicSig.read(tetraProfileFile)
            binSig = self.binTetraSig(seqs, tetraSigs)
            meanTD, deltaTDs = self.tetraDiffDist(seqs, genomicSig, tetraSigs,
                                                  binSig)

            gffFile = os.path.join(outDir, 'bins', binId,
                                   DefaultValues.PRODIGAL_GFF)
            if not os.path.exists(gffFile):
                self.logger.error(
                    'Missing gene feature file (%s). This plot if not compatible with the --genes option.\n'
                    % DefaultValues.PRODIGAL_GFF)
                sys.exit(1)

            prodigalParser = ProdigalGeneFeatureParser(gffFile)
            meanCD, deltaCDs, CDs = self.codingDensityDist(
                seqs, prodigalParser)

            # find keys into GC and CD distributions
            closestGC = findNearest(np.array(list(gcBounds.keys())), meanGC)
            sampleSeqLen = list(gcBounds[closestGC].keys())[0]
            d = gcBounds[closestGC][sampleSeqLen]
            gcLowerBoundKey = findNearest(list(d.keys()),
                                          (100 - distribution) / 2.0)
            gcUpperBoundKey = findNearest(list(d.keys()),
                                          (100 + distribution) / 2.0)

            closestCD = findNearest(np.array(list(cdBounds.keys())), meanCD)
            sampleSeqLen = list(cdBounds[closestCD].keys())[0]
            d = cdBounds[closestCD][sampleSeqLen]
            cdLowerBoundKey = findNearest(list(d.keys()),
                                          (100 - distribution) / 2.0)

            tdBoundKey = findNearest(
                list(tdBounds[list(tdBounds.keys())[0]].keys()), distribution)

            index = 0
            for seqId, seq in seqs.items():
                seqLen = len(seq)

                # find GC, CD, and TD bounds
                closestSeqLen = findNearest(list(gcBounds[closestGC].keys()),
                                            seqLen)
                gcLowerBound = gcBounds[closestGC][closestSeqLen][
                    gcLowerBoundKey]
                gcUpperBound = gcBounds[closestGC][closestSeqLen][
                    gcUpperBoundKey]

                closestSeqLen = findNearest(list(cdBounds[closestCD].keys()),
                                            seqLen)
                cdLowerBound = cdBounds[closestCD][closestSeqLen][
                    cdLowerBoundKey]

                closestSeqLen = findNearest(list(tdBounds.keys()), seqLen)
                tdBound = tdBounds[closestSeqLen][tdBoundKey]

                outlyingDists = []
                if deltaGCs[index] < gcLowerBound or deltaGCs[
                        index] > gcUpperBound:
                    outlyingDists.append('GC')

                if deltaCDs[index] < cdLowerBound:
                    outlyingDists.append('CD')

                if deltaTDs[index] > tdBound:
                    outlyingDists.append('TD')

                if (reportType == 'any' and len(outlyingDists) >= 1) or (
                        reportType == 'all' and len(outlyingDists) == 3):
                    fout.write(binId + '\t' + seqId + '\t%d' % len(seq) +
                               '\t' + ','.join(outlyingDists))
                    fout.write('\t%.1f\t%.1f\t%.1f\t%.1f' %
                               (seqGC[index] * 100, meanGC * 100,
                                (meanGC + gcLowerBound) * 100,
                                (meanGC + gcUpperBound) * 100))
                    fout.write('\t%.1f\t%.1f\t%.1f' %
                               (CDs[index] * 100, meanCD * 100,
                                (meanCD + cdLowerBound) * 100))
                    fout.write('\t%.3f\t%.3f\t%.3f' %
                               (deltaTDs[index], meanTD, tdBound) + '\n')

                index += 1

        fout.close()
Esempio n. 11
0
    def identifyOutliers(self, outDir, binFiles, tetraProfileFile, distribution, reportType, outputFile):
        """Identify sequences that are outliers."""

        self.logger.info('  Reading reference distributions.')
        gcBounds = readDistribution('gc_dist')
        cdBounds = readDistribution('cd_dist')
        tdBounds = readDistribution('td_dist')

        fout = open(outputFile, 'w')
        fout.write('Bin Id\tSequence Id\tSequence length\tOutlying distributions')
        fout.write('\tSequence GC\tMean bin GC\tLower GC bound (%s%%)\tUpper GC bound (%s%%)' % (distribution, distribution))
        fout.write('\tSequence CD\tMean bin CD\tLower CD bound (%s%%)' % distribution)
        fout.write('\tSequence TD\tMean bin TD\tUpper TD bound (%s%%)\n' % distribution)

        self.logger.info('')
        processedBins = 0
        for binFile in binFiles:
            binId = binIdFromFilename(binFile)

            processedBins += 1
            self.logger.info('  Finding outliers in %s (%d of %d).' % (binId, processedBins, len(binFiles)))

            seqs = readFasta(binFile)

            meanGC, deltaGCs, seqGC = self.gcDist(seqs)

            genomicSig = GenomicSignatures(K=4, threads=1)
            tetraSigs = genomicSig.read(tetraProfileFile)
            binSig = self.binTetraSig(seqs, tetraSigs)
            meanTD, deltaTDs = self.tetraDiffDist(seqs, genomicSig, tetraSigs, binSig)

            gffFile = os.path.join(outDir, 'bins', binId, DefaultValues.PRODIGAL_GFF)
            if not os.path.exists(gffFile):
                self.logger.error('  [Error] Missing gene feature file (%s). This plot if not compatible with the --genes option.\n' % DefaultValues.PRODIGAL_GFF)
                sys.exit(1)

            prodigalParser = ProdigalGeneFeatureParser(gffFile)
            meanCD, deltaCDs, CDs = self.codingDensityDist(seqs, prodigalParser)

            # find keys into GC and CD distributions
            closestGC = findNearest(np.array(gcBounds.keys()), meanGC)
            sampleSeqLen = gcBounds[closestGC].keys()[0]
            d = gcBounds[closestGC][sampleSeqLen]
            gcLowerBoundKey = findNearest(d.keys(), (100 - distribution) / 2.0)
            gcUpperBoundKey = findNearest(d.keys(), (100 + distribution) / 2.0)

            closestCD = findNearest(np.array(cdBounds.keys()), meanCD)
            sampleSeqLen = cdBounds[closestCD].keys()[0]
            d = cdBounds[closestCD][sampleSeqLen]
            cdLowerBoundKey = findNearest(d.keys(), (100 - distribution) / 2.0)

            tdBoundKey = findNearest(tdBounds[tdBounds.keys()[0]].keys(), distribution)

            index = 0
            for seqId, seq in seqs.iteritems():
                seqLen = len(seq)

                # find GC, CD, and TD bounds
                closestSeqLen = findNearest(gcBounds[closestGC].keys(), seqLen)
                gcLowerBound = gcBounds[closestGC][closestSeqLen][gcLowerBoundKey]
                gcUpperBound = gcBounds[closestGC][closestSeqLen][gcUpperBoundKey]

                closestSeqLen = findNearest(cdBounds[closestCD].keys(), seqLen)
                cdLowerBound = cdBounds[closestCD][closestSeqLen][cdLowerBoundKey]

                closestSeqLen = findNearest(tdBounds.keys(), seqLen)
                tdBound = tdBounds[closestSeqLen][tdBoundKey]

                outlyingDists = []
                if deltaGCs[index] < gcLowerBound or deltaGCs[index] > gcUpperBound:
                    outlyingDists.append('GC')

                if deltaCDs[index] < cdLowerBound:
                    outlyingDists.append('CD')

                if deltaTDs[index] > tdBound:
                    outlyingDists.append('TD')

                if (reportType == 'any' and len(outlyingDists) >= 1) or (reportType == 'all' and len(outlyingDists) == 3):
                    fout.write(binId + '\t' + seqId + '\t%d' % len(seq) + '\t' + ','.join(outlyingDists))
                    fout.write('\t%.1f\t%.1f\t%.1f\t%.1f' % (seqGC[index] * 100, meanGC * 100, (meanGC + gcLowerBound) * 100, (meanGC + gcUpperBound) * 100))
                    fout.write('\t%.1f\t%.1f\t%.1f' % (CDs[index] * 100, meanCD * 100, (meanCD + cdLowerBound) * 100))
                    fout.write('\t%.3f\t%.3f\t%.3f' % (deltaTDs[index], meanTD, tdBound) + '\n')

                index += 1

        fout.close()