Esempio n. 1
0
def make_predictions(
        args: PredictArgs,
        smiles: List[List[str]] = None) -> List[List[Optional[float]]]:
    """
    Loads data and a trained model and uses the model to make predictions on the data.

    If SMILES are provided, then makes predictions on smiles.
    Otherwise makes predictions on :code:`args.test_data`.

    :param args: A :class:`~chemprop.args.PredictArgs` object containing arguments for
                 loading data and a model and making predictions.
    :param smiles: List of list of SMILES to make predictions on.
    :return: A list of lists of target predictions.
    """
    print('Loading training args')
    train_args = load_args(args.checkpoint_paths[0])
    num_tasks, task_names = train_args.num_tasks, train_args.task_names

    # If features were used during training, they must be used when predicting
    if ((train_args.features_path is not None
         or train_args.features_generator is not None)
            and args.features_path is None
            and args.features_generator is None):
        raise ValueError(
            'Features were used during training so they must be specified again during prediction '
            'using the same type of features as before (with either --features_generator or '
            '--features_path and using --no_features_scaling if applicable).')

    # If atom-descriptors were used during training, they must be used when predicting and vice-versa
    if train_args.atom_descriptors != args.atom_descriptors:
        raise ValueError(
            'The use of atom descriptors is inconsistent between training and prediction. If atom descriptors '
            ' were used during training, they must be specified again during prediction using the same type of '
            ' descriptors as before. If they were not used during training, they cannot be specified during prediction.'
        )

    # Update predict args with training arguments to create a merged args object
    for key, value in vars(train_args).items():
        if not hasattr(args, key):
            setattr(args, key, value)
    args: Union[PredictArgs, TrainArgs]

    if args.atom_descriptors == 'feature':
        set_extra_atom_fdim(train_args.atom_features_size)

    print('Loading data')
    if smiles is not None:
        full_data = get_data_from_smiles(
            smiles=smiles,
            skip_invalid_smiles=False,
            features_generator=args.features_generator)
    else:
        full_data = get_data(path=args.test_path,
                             target_columns=[],
                             ignore_columns=[],
                             skip_invalid_smiles=False,
                             args=args,
                             store_row=not args.drop_extra_columns)

    print('Validating SMILES')
    full_to_valid_indices = {}
    valid_index = 0
    for full_index in range(len(full_data)):
        if all(mol is not None for mol in full_data[full_index].mol):
            full_to_valid_indices[full_index] = valid_index
            valid_index += 1

    test_data = MoleculeDataset(
        [full_data[i] for i in sorted(full_to_valid_indices.keys())])

    # Edge case if empty list of smiles is provided
    if len(test_data) == 0:
        return [None] * len(full_data)

    print(f'Test size = {len(test_data):,}')

    # Predict with each model individually and sum predictions
    if args.dataset_type == 'multiclass':
        sum_preds = np.zeros(
            (len(test_data), num_tasks, args.multiclass_num_classes))
    else:
        sum_preds = np.zeros((len(test_data), num_tasks))

    # Create data loader
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=args.num_workers)

    print(
        f'Predicting with an ensemble of {len(args.checkpoint_paths)} models')
    for checkpoint_path in tqdm(args.checkpoint_paths,
                                total=len(args.checkpoint_paths)):
        # Load model and scalers
        model = load_checkpoint(checkpoint_path, device=args.device)
        scaler, features_scaler = load_scalers(checkpoint_path)

        # Normalize features
        if args.features_scaling:
            test_data.reset_features_and_targets()
            test_data.normalize_features(features_scaler)

        # Make predictions
        model_preds = predict(model=model,
                              data_loader=test_data_loader,
                              scaler=scaler)
        sum_preds += np.array(model_preds)

    # Ensemble predictions
    avg_preds = sum_preds / len(args.checkpoint_paths)
    avg_preds = avg_preds.tolist()

    # Save predictions
    print(f'Saving predictions to {args.preds_path}')
    assert len(test_data) == len(avg_preds)
    makedirs(args.preds_path, isfile=True)

    # Get prediction column names
    if args.dataset_type == 'multiclass':
        task_names = [
            f'{name}_class_{i}' for name in task_names
            for i in range(args.multiclass_num_classes)
        ]
    else:
        task_names = task_names

    # Copy predictions over to full_data
    for full_index, datapoint in enumerate(full_data):
        valid_index = full_to_valid_indices.get(full_index, None)
        preds = avg_preds[valid_index] if valid_index is not None else [
            'Invalid SMILES'
        ] * len(task_names)

        # If extra columns have been dropped, add back in SMILES columns
        if args.drop_extra_columns:
            datapoint.row = OrderedDict()

            smiles_columns = args.smiles_columns

            if None in smiles_columns:
                smiles_columns = get_header(
                    args.test_path)[:len(smiles_columns)]

            for column, smiles in zip(smiles_columns, datapoint.smiles):
                datapoint.row[column] = smiles

        # Add predictions columns
        for pred_name, pred in zip(task_names, preds):
            datapoint.row[pred_name] = pred

    # Save
    with open(args.preds_path, 'w') as f:
        writer = csv.DictWriter(f, fieldnames=full_data[0].row.keys())
        writer.writeheader()

        for datapoint in full_data:
            writer.writerow(datapoint.row)

    return avg_preds
Esempio n. 2
0
def run_training(args: Namespace, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Set GPU
    if args.gpu is not None:
        torch.cuda.set_device(args.gpu)

    # Print args
    debug(pformat(vars(args)))

    # Get data
    debug('Loading data')
    args.task_names = get_task_names(args.data_path)
    desired_labels = get_desired_labels(args, args.task_names)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    args.real_num_tasks = args.num_tasks - args.features_size if args.predict_features else args.num_tasks
    debug(f'Number of tasks = {args.num_tasks}')

    if args.dataset_type == 'bert_pretraining':
        data.bert_init(args, logger)

    # Split data
    if args.dataset_type == 'regression_with_binning':  # Note: for now, binning based on whole dataset, not just training set
        data, bin_predictions, regression_data = data
        args.bin_predictions = bin_predictions
        debug(f'Splitting data with seed {args.seed}')
        train_data, _, _ = split_data(data=data,
                                      split_type=args.split_type,
                                      sizes=args.split_sizes,
                                      seed=args.seed,
                                      args=args,
                                      logger=logger)
        _, val_data, test_data = split_data(regression_data,
                                            split_type=args.split_type,
                                            sizes=args.split_sizes,
                                            seed=args.seed,
                                            args=args,
                                            logger=logger)
    else:
        debug(f'Splitting data with seed {args.seed}')
        if args.separate_test_set:
            test_data = get_data(path=args.separate_test_set,
                                 args=args,
                                 features_path=args.separate_test_set_features,
                                 logger=logger)
            if args.separate_val_set:
                val_data = get_data(
                    path=args.separate_val_set,
                    args=args,
                    features_path=args.separate_val_set_features,
                    logger=logger)
                train_data = data  # nothing to split; we already got our test and val sets
            else:
                train_data, val_data, _ = split_data(
                    data=data,
                    split_type=args.split_type,
                    sizes=(0.8, 0.2, 0.0),
                    seed=args.seed,
                    args=args,
                    logger=logger)
        else:
            train_data, val_data, test_data = split_data(
                data=data,
                split_type=args.split_type,
                sizes=args.split_sizes,
                seed=args.seed,
                args=args,
                logger=logger)

    # Optionally replace test data with train or val data
    if args.test_split == 'train':
        test_data = train_data
    elif args.test_split == 'val':
        test_data = val_data

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

        if args.class_balance:
            train_class_sizes = get_class_sizes(train_data)
            class_batch_counts = torch.Tensor(
                train_class_sizes) * args.batch_size
            args.class_weights = 1 / torch.Tensor(class_batch_counts)

    if args.save_smiles_splits:
        with open(args.data_path, 'r') as f:
            reader = csv.reader(f)
            header = next(reader)

            lines_by_smiles = {}
            indices_by_smiles = {}
            for i, line in enumerate(reader):
                smiles = line[0]
                lines_by_smiles[smiles] = line
                indices_by_smiles[smiles] = i

        all_split_indices = []
        for dataset, name in [(train_data, 'train'), (val_data, 'val'),
                              (test_data, 'test')]:
            with open(os.path.join(args.save_dir, name + '_smiles.csv'),
                      'w') as f:
                writer = csv.writer(f)
                writer.writerow(['smiles'])
                for smiles in dataset.smiles():
                    writer.writerow([smiles])
            with open(os.path.join(args.save_dir, name + '_full.csv'),
                      'w') as f:
                writer = csv.writer(f)
                writer.writerow(header)
                for smiles in dataset.smiles():
                    writer.writerow(lines_by_smiles[smiles])
            split_indices = []
            for smiles in dataset.smiles():
                split_indices.append(indices_by_smiles[smiles])
                split_indices = sorted(split_indices)
            all_split_indices.append(split_indices)
        with open(os.path.join(args.save_dir, 'split_indices.pckl'),
                  'wb') as f:
            pickle.dump(all_split_indices, f)
        return [1 for _ in range(args.num_tasks)
                ]  # short circuit out when just generating splits

    if args.features_scaling:
        features_scaler = train_data.normalize_features(
            replace_nan_token=None if args.predict_features else 0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(
        train_data
    ) if args.prespecified_chunk_dir is None else args.prespecified_chunks_max_examples_per_epoch

    if args.adversarial or args.moe:
        val_smiles, test_smiles = val_data.smiles(), test_data.smiles()

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Optionally truncate outlier values
    if args.truncate_outliers:
        print('Truncating outliers in train set')
        train_data = truncate_outliers(train_data)

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression' and args.target_scaling:
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    if args.moe:
        train_data = cluster_split(train_data,
                                   args.num_sources,
                                   args.cluster_max_ratio,
                                   seed=args.cluster_split_seed,
                                   logger=logger)

    # Chunk training data if too large to load in memory all at once
    if args.num_chunks > 1:
        os.makedirs(args.chunk_temp_dir, exist_ok=True)
        train_paths = []
        if args.moe:
            chunked_sources = [td.chunk(args.num_chunks) for td in train_data]
            chunks = []
            for i in range(args.num_chunks):
                chunks.append([source[i] for source in chunked_sources])
        else:
            chunks = train_data.chunk(args.num_chunks)
        for i in range(args.num_chunks):
            chunk_path = os.path.join(args.chunk_temp_dir, str(i) + '.txt')
            memo_path = os.path.join(args.chunk_temp_dir,
                                     'memo' + str(i) + '.txt')
            with open(chunk_path, 'wb') as f:
                pickle.dump(chunks[i], f)
            train_paths.append((chunk_path, memo_path))
        train_data = train_paths

    # Get loss and metric functions
    loss_func = get_loss_func(args)
    metric_func = get_metric_func(metric=args.metric, args=args)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.maml:  # TODO refactor
        test_targets = []
        for task_idx in range(len(data.data[0].targets)):
            _, task_test_data, _ = test_data.sample_maml_task(args, seed=0)
            test_targets += task_test_data.targets()

    if args.dataset_type == 'bert_pretraining':
        sum_test_preds = {
            'features':
            np.zeros((len(test_smiles), args.features_size))
            if args.features_size is not None else None,
            'vocab':
            np.zeros((len(test_targets['vocab']), args.vocab.output_size))
        }
    elif args.dataset_type == 'kernel':
        sum_test_preds = np.zeros((len(test_targets), args.num_tasks))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    if args.maml:
        sum_test_preds = None  # annoying to determine exact size; will initialize later

    if args.dataset_type == 'bert_pretraining':
        # Only predict targets that are masked out
        test_targets['vocab'] = [
            target if mask == 0 else None
            for target, mask in zip(test_targets['vocab'], test_data.mask())
        ]

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        os.makedirs(save_dir, exist_ok=True)
        writer = SummaryWriter(log_dir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}'
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    current_args=args,
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = build_model(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
            model = model.cuda()

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler,
                        features_scaler, args)

        if args.adjust_weight_decay:
            args.pnorm_target = compute_pnorm(model)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')

            if args.prespecified_chunk_dir is not None:
                # load some different random chunks each epoch
                train_data, val_data = load_prespecified_chunks(args, logger)
                debug('Loaded prespecified chunks for epoch')

            if args.dataset_type == 'unsupervised':  # won't work with moe
                full_data = MoleculeDataset(train_data.data + val_data.data)
                generate_unsupervised_cluster_labels(
                    build_model(args), full_data,
                    args)  # cluster with a new random init
                model.create_ffn(
                    args
                )  # reset the ffn since we're changing targets-- we're just pretraining the encoder.
                optimizer.param_groups.pop()  # remove ffn parameters
                optimizer.add_param_group({
                    'params': model.ffn.parameters(),
                    'lr': args.init_lr[1],
                    'weight_decay': args.weight_decay[1]
                })
                if args.cuda:
                    model.ffn.cuda()

            if args.gradual_unfreezing:
                if epoch % args.epochs_per_unfreeze == 0:
                    unfroze_layer = model.unfreeze_next(
                    )  # consider just stopping early after we have nothing left to unfreeze?
                    if unfroze_layer:
                        debug('Unfroze last frozen layer')

            n_iter = train(model=model,
                           data=train_data,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger,
                           writer=writer,
                           chunk_names=(args.num_chunks > 1),
                           val_smiles=val_smiles if args.adversarial else None,
                           test_smiles=test_smiles
                           if args.adversarial or args.moe else None)
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(model=model,
                                  data=val_data,
                                  metric_func=metric_func,
                                  args=args,
                                  scaler=scaler,
                                  logger=logger)

            if args.dataset_type == 'bert_pretraining':
                if val_scores['features'] is not None:
                    debug(
                        f'Validation features rmse = {val_scores["features"]:.6f}'
                    )
                    writer.add_scalar('validation_features_rmse',
                                      val_scores['features'], n_iter)
                val_scores = [val_scores['vocab']]

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            writer.add_scalar(f'validation_{args.metric}', avg_val_score,
                              n_iter)

            if args.show_individual_scores:
                # Individual validation scores
                for task_name, val_score in zip(args.task_names, val_scores):
                    if task_name in desired_labels:
                        debug(
                            f'Validation {task_name} {args.metric} = {val_score:.6f}'
                        )
                        writer.add_scalar(
                            f'validation_{task_name}_{args.metric}', val_score,
                            n_iter)

            # Save model checkpoint if improved validation score, or always save it if unsupervised
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score or \
                    args.dataset_type == 'unsupervised':
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model,
                                scaler, features_scaler, args)

        if args.dataset_type == 'unsupervised':
            return [0]  # rest of this is meaningless when unsupervised

        # Evaluate on test set using model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'),
                                cuda=args.cuda,
                                logger=logger)

        if args.split_test_by_overlap_dataset is not None:
            overlap_data = get_data(path=args.split_test_by_overlap_dataset,
                                    logger=logger)
            overlap_smiles = set(overlap_data.smiles())
            test_data_intersect, test_data_nonintersect = [], []
            for d in test_data.data:
                if d.smiles in overlap_smiles:
                    test_data_intersect.append(d)
                else:
                    test_data_nonintersect.append(d)
            test_data_intersect, test_data_nonintersect = MoleculeDataset(
                test_data_intersect), MoleculeDataset(test_data_nonintersect)
            for name, td in [('Intersect', test_data_intersect),
                             ('Nonintersect', test_data_nonintersect)]:
                test_preds = predict(model=model,
                                     data=td,
                                     args=args,
                                     scaler=scaler,
                                     logger=logger)
                test_scores = evaluate_predictions(
                    preds=test_preds,
                    targets=td.targets(),
                    metric_func=metric_func,
                    dataset_type=args.dataset_type,
                    args=args,
                    logger=logger)
                avg_test_score = np.nanmean(test_scores)
                info(
                    f'Model {model_idx} test {args.metric} for {name} = {avg_test_score:.6f}'
                )

        if len(
                test_data
        ) == 0:  # just get some garbage results without crashing; in this case we didn't care anyway
            test_preds, test_scores = sum_test_preds, [
                0 for _ in range(len(args.task_names))
            ]
        else:
            test_preds = predict(model=model,
                                 data=test_data,
                                 args=args,
                                 scaler=scaler,
                                 logger=logger)
            test_scores = evaluate_predictions(preds=test_preds,
                                               targets=test_targets,
                                               metric_func=metric_func,
                                               dataset_type=args.dataset_type,
                                               args=args,
                                               logger=logger)

        if args.maml:
            if sum_test_preds is None:
                sum_test_preds = np.zeros(np.array(test_preds).shape)

        if args.dataset_type == 'bert_pretraining':
            if test_preds['features'] is not None:
                sum_test_preds['features'] += np.array(test_preds['features'])
            sum_test_preds['vocab'] += np.array(test_preds['vocab'])
        else:
            sum_test_preds += np.array(test_preds)

        if args.dataset_type == 'bert_pretraining':
            if test_preds['features'] is not None:
                debug(
                    f'Model {model_idx} test features rmse = {test_scores["features"]:.6f}'
                )
                writer.add_scalar('test_features_rmse',
                                  test_scores['features'], 0)
            test_scores = [test_scores['vocab']]

        # Average test score
        avg_test_score = np.nanmean(test_scores)
        info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
        writer.add_scalar(f'test_{args.metric}', avg_test_score, 0)

        if args.show_individual_scores:
            # Individual test scores
            for task_name, test_score in zip(args.task_names, test_scores):
                if task_name in desired_labels:
                    info(
                        f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}'
                    )
                    writer.add_scalar(f'test_{task_name}_{args.metric}',
                                      test_score, n_iter)

    # Evaluate ensemble on test set
    if args.dataset_type == 'bert_pretraining':
        avg_test_preds = {
            'features':
            (sum_test_preds['features'] / args.ensemble_size).tolist()
            if sum_test_preds['features'] is not None else None,
            'vocab': (sum_test_preds['vocab'] / args.ensemble_size).tolist()
        }
    else:
        avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    if len(test_data
           ) == 0:  # just return some garbage when we didn't want test data
        ensemble_scores = test_scores
    else:
        ensemble_scores = evaluate_predictions(preds=avg_test_preds,
                                               targets=test_targets,
                                               metric_func=metric_func,
                                               dataset_type=args.dataset_type,
                                               args=args,
                                               logger=logger)

    # Average ensemble score
    if args.dataset_type == 'bert_pretraining':
        if ensemble_scores['features'] is not None:
            info(
                f'Ensemble test features rmse = {ensemble_scores["features"]:.6f}'
            )
            writer.add_scalar('ensemble_test_features_rmse',
                              ensemble_scores['features'], 0)
        ensemble_scores = [ensemble_scores['vocab']]

    avg_ensemble_test_score = np.nanmean(ensemble_scores)
    info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')
    writer.add_scalar(f'ensemble_test_{args.metric}', avg_ensemble_test_score,
                      0)

    # Individual ensemble scores
    if args.show_individual_scores:
        for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
            info(
                f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}'
            )

    return ensemble_scores
Esempio n. 3
0
def run_training(args: Namespace, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Set GPU
    if args.gpu is not None:
        torch.cuda.set_device(args.gpu)

    # Print args
    debug(pformat(vars(args)))

    # Get data
    debug('Loading data')
    args.task_names = get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(path=args.separate_test_path, args=args, features_path=args.separate_test_features_path, logger=logger)
    if args.separate_val_path:
        val_data = get_data(path=args.separate_val_path, args=args, features_path=args.separate_val_features_path, logger=logger)

    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data, split_type=args.split_type, sizes=(0.8, 0.0, 0.2), seed=args.seed, args=args, logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data, split_type=args.split_type, sizes=(0.8, 0.2, 0.0), seed=args.seed, args=args, logger=logger)
    elif args.split_type == 'loocv':
        train_data, val_data, test_data = split_loocv(data=data, args=args, logger=logger)
    else:
        train_data, val_data, test_data = split_data(data=data, split_type=args.split_type, sizes=args.split_sizes, seed=args.seed, args=args, logger=logger)

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(test_data)
        debug('Class sizes in test set')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(f'{args.task_names[i]} '
                  f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}')
            if not args.train_all and task_class_sizes == 0: # TODO: only works for just 1 property prediction task
                debug('Moved to next epoch due to homogenous targets in test set.')
                return [float('nan')]

    if args.save_smiles_splits:
        with open(args.data_path, 'r') as f:
            reader = csv.reader(f)
            header = next(reader)

            lines_by_smiles = {}
            indices_by_smiles = {}
            for i, line in enumerate(reader):
                smiles = (line[0], line[1])
                lines_by_smiles[smiles] = line
                indices_by_smiles[smiles] = i

        all_split_indices = []
        for dataset, name in [(train_data, 'train'), (val_data, 'val'), (test_data, 'test')]:
            with open(os.path.join(args.save_dir, name + '_smiles.csv'), 'w') as f:
                writer = csv.writer(f)
                writer.writerow(['smiles'])
                for smiles in dataset.smiles():
                    writer.writerow([smiles])
            with open(os.path.join(args.save_dir, name + '_full.csv'), 'w') as f:
                writer = csv.writer(f)
                writer.writerow(header)
                for smiles in dataset.smiles():
                    writer.writerow(lines_by_smiles[smiles])
            split_indices = []
            for smiles in dataset.smiles():
                split_indices.append(indices_by_smiles[smiles])
                split_indices = sorted(split_indices)
            all_split_indices.append(split_indices)
        with open(os.path.join(args.save_dir, 'split_indices.pckl'), 'wb') as f:
            pickle.dump(all_split_indices, f)

    if args.symmetric:
        train_data = flip_data(train_data)

    if args.features_scaling:
        drug_scaler, cmpd_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(drug_scaler, cmpd_scaler)
        test_data.normalize_features(drug_scaler, cmpd_scaler)
    else:
        drug_scaler, cmpd_scaler = None, None

    args.train_data_size = len(train_data)
    
    debug(f'Total size = {len(data):,} | '
          f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}')

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = get_loss_func(args)
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == 'multiclass':
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)
        # Load/build model
        if args.checkpoint_paths is not None:
            debug(f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}')
            model = load_checkpoint(args.checkpoint_paths[model_idx], current_args=args, logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = build_model(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
            model = model.cuda()

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, drug_scaler, cmpd_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(
                model=model,
                data=train_data,
                loss_func=loss_func,
                optimizer=optimizer,
                scheduler=scheduler,
                args=args,
                n_iter=n_iter,
                logger=logger,
                writer=writer
            )
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores, val_loss = evaluate(
                model=model,
                data=val_data,
                loss_func=loss_func,
                num_tasks=args.num_tasks,
                metric_func=metric_func,
                batch_size=args.batch_size,
                dataset_type=args.dataset_type,
                scaler=scaler,
                logger=logger
            )

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            writer.add_scalar(f'validation_{args.metric}', avg_val_score, n_iter)

            debug(f'Validation loss = {val_loss:.6f}')
            writer.add_scalar(f'validation_loss', val_loss, n_iter)

            if args.show_individual_scores:
                # Individual validation scores
                for task_name, val_score in zip(args.task_names, val_scores):
                    debug(f'Validation {task_name} {args.metric} = {val_score:.6f}')
                    writer.add_scalar(f'validation_{task_name}_{args.metric}', val_score, n_iter)

            # Save model checkpoint if improved validation score
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, drug_scaler, cmpd_scaler, args)

        # Evaluate on test set using model with best validation score
        info(f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}')
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'), cuda=args.cuda, logger=logger)

        test_preds = predict(
            model=model,
            data=test_data,
            batch_size=args.batch_size,
            scaler=scaler
        )
        if args.save_preds:
            val_preds = predict(model=model, data=val_data, batch_size=args.batch_size, scaler=scaler)
            train_preds = predict(model=model, data=train_data, batch_size=args.batch_size, scaler=scaler)
            save_predictions(save_dir, train_data, val_data, test_data, train_preds, val_preds, test_preds, scaler)

        test_scores = evaluate_predictions(
            preds=test_preds,
            targets=test_targets,
            num_tasks=args.num_tasks,
            metric_func=metric_func,
            dataset_type=args.dataset_type,
            logger=logger
        )

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        avg_test_score = np.nanmean(test_scores)
        info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
        writer.add_scalar(f'test_{args.metric}', avg_test_score, 0)

        if args.show_individual_scores:
            # Individual test scores
            for task_name, test_score in zip(args.task_names, test_scores):
                info(f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}')
                writer.add_scalar(f'test_{task_name}_{args.metric}', test_score, n_iter)

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(
        preds=avg_test_preds,
        targets=test_targets,
        num_tasks=args.num_tasks,
        metric_func=metric_func,
        dataset_type=args.dataset_type,
        logger=logger
    )

    # Average ensemble score
    avg_ensemble_test_score = np.nanmean(ensemble_scores)
    info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')
    writer.add_scalar(f'ensemble_test_{args.metric}', avg_ensemble_test_score, 0)

    # Individual ensemble scores
    if args.show_individual_scores:
        for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
            info(f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}')

    return ensemble_scores
Esempio n. 4
0
def run_training(args: TrainArgs, logger: Logger = None) -> List[float]:
    """
    Loads data, trains a Chemprop model, and returns test scores for the model checkpoint with the highest validation score.

    :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for
                 loading data and training the Chemprop model.
    :param logger: A logger to record output.
    :return: A list of model scores for each task.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Print command line
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')

    # Print args
    debug('Args')
    debug(args)

    # Save args
    args.save(os.path.join(args.save_dir, 'args.json'))

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Get data
    debug('Loading data')
    data = get_data(path=args.data_path, args=args, logger=logger)
    validate_dataset_type(data, dataset_type=args.dataset_type)
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(path=args.separate_test_path,
                             args=args,
                             features_path=args.separate_test_features_path,
                             logger=logger)
    if args.separate_val_path:
        val_data = get_data(path=args.separate_val_path,
                            args=args,
                            features_path=args.separate_val_features_path,
                            logger=logger)

    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data,
                                              split_type=args.split_type,
                                              sizes=(0.8, 0.0, 0.2),
                                              seed=args.seed,
                                              args=args,
                                              logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data,
                                             split_type=args.split_type,
                                             sizes=(0.8, 0.2, 0.0),
                                             seed=args.seed,
                                             args=args,
                                             logger=logger)
    else:
        train_data, val_data, test_data = split_data(
            data=data,
            split_type=args.split_type,
            sizes=args.split_sizes,
            seed=args.seed,
            args=args,
            logger=logger)

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

    if args.save_smiles_splits:
        save_smiles_splits(train_data=train_data,
                           val_data=val_data,
                           test_data=test_data,
                           data_path=args.data_path,
                           save_dir=args.save_dir,
                           smiles_column=args.smiles_column)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = get_loss_func(args)
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == 'multiclass':
        sum_test_preds = np.zeros(
            (len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers,
                                         cache=cache)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}'
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler,
                        features_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger,
                           writer=writer)
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(model=model,
                                  data_loader=val_data_loader,
                                  num_tasks=args.num_tasks,
                                  metric_func=metric_func,
                                  dataset_type=args.dataset_type,
                                  scaler=scaler,
                                  logger=logger)

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            writer.add_scalar(f'validation_{args.metric}', avg_val_score,
                              n_iter)

            if args.show_individual_scores:
                # Individual validation scores
                for task_name, val_score in zip(args.task_names, val_scores):
                    debug(
                        f'Validation {task_name} {args.metric} = {val_score:.6f}'
                    )
                    writer.add_scalar(f'validation_{task_name}_{args.metric}',
                                      val_score, n_iter)

            # Save model checkpoint if improved validation score
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model,
                                scaler, features_scaler, args)

        # Evaluate on test set using model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'),
                                device=args.device,
                                logger=logger)

        test_preds = predict(model=model,
                             data_loader=test_data_loader,
                             scaler=scaler)
        test_scores = evaluate_predictions(preds=test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metric_func=metric_func,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        avg_test_score = np.nanmean(test_scores)
        info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
        writer.add_scalar(f'test_{args.metric}', avg_test_score, 0)

        if args.show_individual_scores:
            # Individual test scores
            for task_name, test_score in zip(args.task_names, test_scores):
                info(
                    f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}'
                )
                writer.add_scalar(f'test_{task_name}_{args.metric}',
                                  test_score, n_iter)
        writer.close()

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(preds=avg_test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metric_func=metric_func,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

    # Average ensemble score
    avg_ensemble_test_score = np.nanmean(ensemble_scores)
    info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')

    # Individual ensemble scores
    if args.show_individual_scores:
        for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
            info(
                f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}'
            )

    return ensemble_scores
Esempio n. 5
0
def visualize_encoding_property_space(args: Namespace):
    # Load data
    data = get_data(path=args.data_path)

    # Sort according to similarity measure
    if args.similarity_measure == 'property':
        data.sort(key=lambda d: d.targets[args.task_index])
    elif args.similarity_measure == 'random':
        data.shuffle(args.seed)
    else:
        raise ValueError(
            f'similarity_measure "{args.similarity_measure}" not supported or not implemented yet.'
        )

    # Load model and scalers
    model = load_checkpoint(args.checkpoint_path)
    scaler, features_scaler = load_scalers(args.checkpoint_path)
    data.normalize_features(features_scaler)

    # Random seed
    if args.seed is not None:
        random.seed(args.seed)

    # Generate visualizations
    for i in trange(args.num_examples):
        # Get random three molecules with similar properties
        index = random.randint(1, len(data) - 2)
        molecules = MoleculeDataset(data[index - 1:index + 2])
        molecule_targets = [t[args.task_index] for t in molecules.targets()]

        # Encode three molecules
        molecule_encodings = model.encoder(molecules.smiles())

        # Define interpolation
        def predict_property(point: List[int]) -> float:
            # Return true value on endpoints of triangle
            argmax = np.argmax(point)
            if point[argmax] == 1:
                return molecule_targets[argmax]

            # Interpolate and predict task value
            encoding = sum(point[j] * molecule_encodings[j]
                           for j in range(len(molecule_encodings)))
            pred = model.ffn(encoding).data.cpu().numpy()
            pred = scaler.inverse_transform(pred)
            pred = pred.item()

            return pred

        # Create visualization
        scale = 20
        fontsize = 6

        figure, tax = ternary.figure(scale=scale)
        tax.heatmapf(predict_property, boundary=True, style="hexagonal")
        tax.set_title("Property Prediction")
        tax.right_axis_label(
            f'{molecules[0].smiles} ({molecules[0].targets[args.task_index]:.6f}) -->',
            fontsize=fontsize)
        tax.left_axis_label(
            f'{molecules[1].smiles} ({molecules[1].targets[args.task_index]:.6f}) -->',
            fontsize=fontsize)
        tax.bottom_axis_label(
            f'<-- {molecules[2].smiles} ({molecules[2].targets[args.task_index]:.6f})',
            fontsize=fontsize)

        tax.savefig(os.path.join(args.save_dir, f'{i}.png'))
Esempio n. 6
0
        for i, l in enumerate(f):
            pass
    return i + 1


def counter(f):
    acc = 0
    if os.path.isdir(f):
        for file in os.listdir(f):
            if file.endswith('.csv') or file.endswith(".txt"):
                l = file_len(os.path.join(f, file))
                acc += l - 1
        return acc
    if os.path.isfile(f):
        if f.endswith('.csv') or f.endswith(".txt"):
            l = file_len(f)
            acc += l
        return (acc - 1)


if __name__ == "__main__":
    model = load_checkpoint(
        "../multi_task_subfamily_dmpnn_25/fold_0/model_0/model.pt")
    df = pd.read_csv("../chembl27/chembl27-all.tsv", sep="\t",
                     header=None).dropna()
    for i in range(6):
        featurize_file(input_df=df[i * 220000:(i + 1) * 220000],
                       output_path="../data/chembl27-all-features_" + str(i) +
                       ".csv",
                       pretrained_model=model)
Esempio n. 7
0
def run_training(args: TrainArgs,
                 data: MoleculeDataset,
                 logger: Logger = None) -> Dict[str, List[float]]:
    """
    Loads data, trains a Chemprop model, and returns test scores for the model checkpoint with the highest validation score.

    :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for
                 loading data and training the Chemprop model.
    :param data: A :class:`~chemprop.data.MoleculeDataset` containing the data.
    :param logger: A logger to record output.
    :return: A dictionary mapping each metric in :code:`args.metrics` to a list of values for each task.

    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(path=args.separate_test_path,
                             args=args,
                             features_path=args.separate_test_features_path,
                             atom_descriptors_path=args.separate_test_atom_descriptors_path,
                             bond_features_path=args.separate_test_bond_features_path,
                             phase_features_path=args.separate_test_phase_features_path,
                             smiles_columns=args.smiles_columns,
                             logger=logger)
    if args.separate_val_path:
        val_data = get_data(path=args.separate_val_path,
                            args=args,
                            features_path=args.separate_val_features_path,
                            atom_descriptors_path=args.separate_val_atom_descriptors_path,
                            bond_features_path=args.separate_val_bond_features_path,
                            phase_features_path=args.separate_val_phase_features_path,
                            smiles_columns = args.smiles_columns,
                            logger=logger)

    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data,
                                              split_type=args.split_type,
                                              sizes=args.split_sizes,
                                              key_molecule_index=args.split_key_molecule,
                                              seed=args.seed,
                                              num_folds=args.num_folds,
                                              args=args,
                                              logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data,
                                             split_type=args.split_type,
                                             sizes=args.split_sizes,
                                             key_molecule_index=args.split_key_molecule,
                                             seed=args.seed,
                                             num_folds=args.num_folds,
                                             args=args,
                                             logger=logger)
    else:
        train_data, val_data, test_data = split_data(data=data,
                                                     split_type=args.split_type,
                                                     sizes=args.split_sizes,
                                                     key_molecule_index=args.split_key_molecule,
                                                     seed=args.seed,
                                                     num_folds=args.num_folds,
                                                     args=args,
                                                     logger=logger)

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(f'{args.task_names[i]} '
                  f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}')

    if args.save_smiles_splits:
        save_smiles_splits(
            data_path=args.data_path,
            save_dir=args.save_dir,
            task_names=args.task_names,
            features_path=args.features_path,
            train_data=train_data,
            val_data=val_data,
            test_data=test_data,
            smiles_columns=args.smiles_columns,
            logger=logger,
        )

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    if args.atom_descriptor_scaling and args.atom_descriptors is not None:
        atom_descriptor_scaler = train_data.normalize_features(replace_nan_token=0, scale_atom_descriptors=True)
        val_data.normalize_features(atom_descriptor_scaler, scale_atom_descriptors=True)
        test_data.normalize_features(atom_descriptor_scaler, scale_atom_descriptors=True)
    else:
        atom_descriptor_scaler = None

    if args.bond_feature_scaling and args.bond_features_size > 0:
        bond_feature_scaler = train_data.normalize_features(replace_nan_token=0, scale_bond_features=True)
        val_data.normalize_features(bond_feature_scaler, scale_bond_features=True)
        test_data.normalize_features(bond_feature_scaler, scale_bond_features=True)
    else:
        bond_feature_scaler = None

    args.train_data_size = len(train_data)

    debug(f'Total size = {len(data):,} | '
          f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}')

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        scaler = train_data.normalize_targets()
    elif args.dataset_type == 'spectra':
        debug('Normalizing spectra and excluding spectra regions based on phase')
        args.spectra_phase_mask = load_phase_mask(args.spectra_phase_mask_path)
        for dataset in [train_data, test_data, val_data]:
            data_targets = normalize_spectra(
                spectra=dataset.targets(),
                phase_features=dataset.phase_features(),
                phase_mask=args.spectra_phase_mask,
                excluded_sub_value=None,
                threshold=args.spectra_target_floor,
            )
            dataset.set_targets(data_targets)
        scaler = None
    else:
        scaler = None

    # Get loss function
    loss_func = get_loss_func(args)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == 'multiclass':
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        set_cache_graph(True)
        num_workers = 0
    else:
        set_cache_graph(False)
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(
        dataset=train_data,
        batch_size=args.batch_size,
        num_workers=num_workers,
        class_balance=args.class_balance,
        shuffle=True,
        seed=args.seed
    )
    val_data_loader = MoleculeDataLoader(
        dataset=val_data,
        batch_size=args.batch_size,
        num_workers=num_workers
    )
    test_data_loader = MoleculeDataLoader(
        dataset=test_data,
        batch_size=args.batch_size,
        num_workers=num_workers
    )

    if args.class_balance:
        debug(f'With class_balance, effective train size = {train_data_loader.iter_size:,}')

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}')
            model = load_checkpoint(args.checkpoint_paths[model_idx], logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)
            
        # Optionally, overwrite weights:
        if args.checkpoint_frzn is not None:
            debug(f'Loading and freezing parameters from {args.checkpoint_frzn}.')
            model = load_frzn_model(model=model,path=args.checkpoint_frzn, current_args=args, logger=logger)     
        
        debug(model)
        
        if args.checkpoint_frzn is not None:
            debug(f'Number of unfrozen parameters = {param_count(model):,}')
            debug(f'Total number of parameters = {param_count_all(model):,}')
        else:
            debug(f'Number of parameters = {param_count_all(model):,}')
        
        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, MODEL_FILE_NAME), model, scaler,
                        features_scaler, atom_descriptor_scaler, bond_feature_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')
            n_iter = train(
                model=model,
                data_loader=train_data_loader,
                loss_func=loss_func,
                optimizer=optimizer,
                scheduler=scheduler,
                args=args,
                n_iter=n_iter,
                logger=logger,
                writer=writer
            )
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(
                model=model,
                data_loader=val_data_loader,
                num_tasks=args.num_tasks,
                metrics=args.metrics,
                dataset_type=args.dataset_type,
                scaler=scaler,
                logger=logger
            )

            for metric, scores in val_scores.items():
                # Average validation score
                avg_val_score = np.nanmean(scores)
                debug(f'Validation {metric} = {avg_val_score:.6f}')
                writer.add_scalar(f'validation_{metric}', avg_val_score, n_iter)

                if args.show_individual_scores:
                    # Individual validation scores
                    for task_name, val_score in zip(args.task_names, scores):
                        debug(f'Validation {task_name} {metric} = {val_score:.6f}')
                        writer.add_scalar(f'validation_{task_name}_{metric}', val_score, n_iter)

            # Save model checkpoint if improved validation score
            avg_val_score = np.nanmean(val_scores[args.metric])
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, MODEL_FILE_NAME), model, scaler, features_scaler,
                                atom_descriptor_scaler, bond_feature_scaler, args)

        # Evaluate on test set using model with best validation score
        info(f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}')
        model = load_checkpoint(os.path.join(save_dir, MODEL_FILE_NAME), device=args.device, logger=logger)

        test_preds = predict(
            model=model,
            data_loader=test_data_loader,
            scaler=scaler
        )
        test_scores = evaluate_predictions(
            preds=test_preds,
            targets=test_targets,
            num_tasks=args.num_tasks,
            metrics=args.metrics,
            dataset_type=args.dataset_type,
            logger=logger
        )

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        for metric, scores in test_scores.items():
            avg_test_score = np.nanmean(scores)
            info(f'Model {model_idx} test {metric} = {avg_test_score:.6f}')
            writer.add_scalar(f'test_{metric}', avg_test_score, 0)

            if args.show_individual_scores and args.dataset_type != 'spectra':
                # Individual test scores
                for task_name, test_score in zip(args.task_names, scores):
                    info(f'Model {model_idx} test {task_name} {metric} = {test_score:.6f}')
                    writer.add_scalar(f'test_{task_name}_{metric}', test_score, n_iter)
        writer.close()

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(
        preds=avg_test_preds,
        targets=test_targets,
        num_tasks=args.num_tasks,
        metrics=args.metrics,
        dataset_type=args.dataset_type,
        logger=logger
    )

    for metric, scores in ensemble_scores.items():
        # Average ensemble score
        avg_ensemble_test_score = np.nanmean(scores)
        info(f'Ensemble test {metric} = {avg_ensemble_test_score:.6f}')

        # Individual ensemble scores
        if args.show_individual_scores:
            for task_name, ensemble_score in zip(args.task_names, scores):
                info(f'Ensemble test {task_name} {metric} = {ensemble_score:.6f}')

    # Save scores
    with open(os.path.join(args.save_dir, 'test_scores.json'), 'w') as f:
        json.dump(ensemble_scores, f, indent=4, sort_keys=True)

    # Optionally save test preds
    if args.save_preds:
        test_preds_dataframe = pd.DataFrame(data={'smiles': test_data.smiles()})

        for i, task_name in enumerate(args.task_names):
            test_preds_dataframe[task_name] = [pred[i] for pred in avg_test_preds]

        test_preds_dataframe.to_csv(os.path.join(args.save_dir, 'test_preds.csv'), index=False)

    return ensemble_scores
Esempio n. 8
0
def make_predictions(args: PredictArgs,
                     smiles: List[str] = None) -> List[Optional[List[float]]]:
    """
    Makes predictions. If smiles is provided, makes predictions on smiles. Otherwise makes predictions on args.test_data.

    :param args: Arguments.
    :param smiles: Smiles to make predictions on.
    :return: A list of lists of target predictions.
    """
    print('Loading training args')
    scaler, features_scaler = load_scalers(args.checkpoint_paths[0])
    train_args = load_args(args.checkpoint_paths[0])
    num_tasks, task_names = train_args.num_tasks, train_args.task_names

    # If features were used during training, they must be used when predicting
    if ((train_args.features_path is not None
         or train_args.features_generator is not None)
            and args.features_path is None
            and args.features_generator is None):
        raise ValueError(
            'Features were used during training so they must be specified again during prediction '
            'using the same type of features as before (with either --features_generator or '
            '--features_path and using --no_features_scaling if applicable).')

    # Update predict args with training arguments to create a merged args object
    for key, value in vars(train_args).items():
        if not hasattr(args, key):
            setattr(args, key, value)
    args: Union[PredictArgs, TrainArgs]

    print('Loading data')
    if smiles is not None:
        full_data = get_data_from_smiles(
            smiles=smiles,
            skip_invalid_smiles=False,
            features_generator=args.features_generator)
    else:
        full_data = get_data(path=args.test_path,
                             args=args,
                             target_columns=[],
                             skip_invalid_smiles=False)

    print('Validating SMILES')
    full_to_valid_indices = {}
    valid_index = 0
    for full_index in range(len(full_data)):
        if full_data[full_index].mol is not None:
            full_to_valid_indices[full_index] = valid_index
            valid_index += 1

    test_data = MoleculeDataset(
        [full_data[i] for i in sorted(full_to_valid_indices.keys())])

    # Edge case if empty list of smiles is provided
    if len(test_data) == 0:
        return [None] * len(full_data)

    print(f'Test size = {len(test_data):,}')

    # Normalize features
    if args.features_scaling:
        test_data.normalize_features(features_scaler)

    # Initialize uncertainty estimator
    if args.uncertainty:
        uncertainty_estimator = uncertainty_estimator_builder(
            args.uncertainty)(args, test_data, scaler)

    # Predict with each model individually and sum predictions
    if not args.uncertainty:
        if args.dataset_type == 'multiclass':
            sum_preds = np.zeros(
                (len(test_data), num_tasks, args.multiclass_num_classes))
        else:
            sum_preds = np.zeros((len(test_data), num_tasks))

    # Create data loader
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=args.num_workers)

    print(
        f'Predicting with an ensemble of {len(args.checkpoint_paths)} models')
    for N, checkpoint_path in tqdm(enumerate(args.checkpoint_paths),
                                   total=len(args.checkpoint_paths)):
        # Load model
        model = load_checkpoint(checkpoint_path, device=args.device)
        model.training = False
        if not args.uncertainty:
            model_preds = predict(model=model,
                                  data_loader=test_data_loader,
                                  scaler=scaler)
            sum_preds += np.array(model_preds)
        else:
            uncertainty_estimator.process_model(model, N)

    # Ensemble predictions
    if not args.uncertainty:
        avg_preds = sum_preds / len(args.checkpoint_paths)
        avg_preds = avg_preds.tolist()
    else:
        avg_preds, avg_UQ = uncertainty_estimator.calculate_UQ()
        if type(avg_UQ) is tuple:
            aleatoric, epistemic = avg_UQ

    # Save predictions
    print(f'Saving predictions to {args.preds_path}')
    assert len(test_data) == len(avg_preds)
    makedirs(args.preds_path, isfile=True)

    # Get prediction column names
    if args.dataset_type == 'multiclass':
        task_names = [
            f'{name}_class_{i}' for name in task_names
            for i in range(args.multiclass_num_classes)
        ]
    else:
        task_names = task_names

    # Copy predictions over to full_data
    for full_index, datapoint in enumerate(full_data):
        valid_index = full_to_valid_indices.get(full_index, None)
        preds = avg_preds[valid_index] if valid_index is not None else [
            'Invalid SMILES'
        ] * len(task_names)

        if args.uncertainty:
            if not args.split_UQ:
                cur_UQ = avg_UQ[valid_index] if valid_index is not None else [
                    'Invalid SMILES'
                ] * len(task_names)
                datapoint.row['Uncertainty'] = cur_UQ
            elif args.split_UQ:
                cur_al = aleatoric[
                    valid_index] if valid_index is not None else [
                        'Invalid SMILES'
                    ] * len(task_names)
                cur_ep = epistemic[
                    valid_index] if valid_index is not None else [
                        'Invalid SMILES'
                    ] * len(task_names)
                datapoint.row['Aleatoric'] = cur_al
                datapoint.row['Epistemic'] = cur_ep

        if type(preds) is list:
            for pred_name, pred in zip(task_names, preds):
                datapoint.row[pred_name] = pred
        else:
            datapoint.row[task_names[0]] = preds

    # Save
    with open(args.preds_path, 'w') as f:
        writer = csv.DictWriter(f, fieldnames=full_data[0].row.keys())
        writer.writeheader()

        for datapoint in full_data:
            writer.writerow(datapoint.row)

    return avg_preds
Esempio n. 9
0
def run_training(args: TrainArgs, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """

    debug = info = print

    # Print command line and args
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')
    debug('Args')
    debug(args)

    # Save args
    args.save(os.path.join(args.save_dir, 'args.json'))

    # Get data
    debug('Loading data')
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    train_data, val_data, test_data = split_data(data=data,
                                                 split_type=args.split_type,
                                                 sizes=args.split_sizes,
                                                 seed=args.seed,
                                                 args=args,
                                                 logger=logger)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = neg_log_like
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers,
                                         cache=cache)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    ###########################################
    ########## Outer loop over ensemble members
    ###########################################

    for model_idx in range(args.ensemble_start_idx,
                           args.ensemble_start_idx + args.ensemble_size):

        # Set pytorch seed for random initial weights
        torch.manual_seed(args.pytorch_seeds[model_idx])

        ######## set up all logging ########
        # make save_dir
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)

        # make results_dir
        results_dir = os.path.join(args.results_dir, f'model_{model_idx}')
        makedirs(results_dir)

        # initialise wandb
        os.environ['WANDB_MODE'] = 'dryrun'
        wandb.init(name=args.wandb_name + '_' + str(model_idx),
                   project=args.wandb_proj,
                   reinit=True)
        print('WANDB directory is:')
        print(wandb.run.dir)
        ####################################

        # Load/build model
        if args.checkpoint_path is not None:
            debug(f'Loading model {model_idx} from {args.checkpoint_path}')
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model.pt',
                                    device=args.device,
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler,
                        features_scaler, args)

        # Optimizer
        optimizer = Adam([{
            'params': model.encoder.parameters()
        }, {
            'params': model.ffn.parameters()
        }, {
            'params': model.log_noise,
            'weight_decay': 0
        }],
                         lr=args.init_lr,
                         weight_decay=args.weight_decay)

        # Learning rate scheduler
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in range(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger)
            val_scores = evaluate(model=model,
                                  data_loader=val_data_loader,
                                  args=args,
                                  num_tasks=args.num_tasks,
                                  metric_func=metric_func,
                                  dataset_type=args.dataset_type,
                                  scaler=scaler,
                                  logger=logger)

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            wandb.log({"Validation MAE": avg_val_score})

            # Save model checkpoint if improved validation score
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model,
                                scaler, features_scaler, args)

            if epoch == args.noam_epochs - 1:
                optimizer = Adam([{
                    'params': model.encoder.parameters()
                }, {
                    'params': model.ffn.parameters()
                }, {
                    'params': model.log_noise,
                    'weight_decay': 0
                }],
                                 lr=args.final_lr,
                                 weight_decay=args.weight_decay)

                scheduler = scheduler_const([args.final_lr])

        # load model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'),
                                device=args.device,
                                logger=logger)

        # SWAG training loop, returns swag_model
        if args.swag:
            model = train_swag(model, train_data, val_data, num_workers, cache,
                               loss_func, metric_func, scaler, features_scaler,
                               args, save_dir)

        # SGLD loop, which saves nets
        if args.sgld:
            model = train_sgld(model, train_data, val_data, num_workers, cache,
                               loss_func, metric_func, scaler, features_scaler,
                               args, save_dir)

        # GP loop
        if args.gp:
            model, likelihood = train_gp(model, train_data, val_data,
                                         num_workers, cache, metric_func,
                                         scaler, features_scaler, args,
                                         save_dir)

        # BBP
        if args.bbp:
            model = train_bbp(model, train_data, val_data, num_workers, cache,
                              loss_func, metric_func, scaler, features_scaler,
                              args, save_dir)

        # DUN
        if args.dun:
            model = train_dun(model, train_data, val_data, num_workers, cache,
                              loss_func, metric_func, scaler, features_scaler,
                              args, save_dir)

        ##################################
        ########## Inner loop over samples
        ##################################

        for sample_idx in range(args.samples):

            # draw model from SWAG posterior
            if args.swag:
                model.sample(scale=1.0, cov=args.cov_mat, block=args.block)

            # draw model from collected SGLD models
            if args.sgld:
                model = load_checkpoint(os.path.join(save_dir,
                                                     f'model_{sample_idx}.pt'),
                                        device=args.device,
                                        logger=logger)

            # make predictions
            test_preds = predict(model=model,
                                 data_loader=test_data_loader,
                                 args=args,
                                 scaler=scaler,
                                 test_data=True,
                                 bbp_sample=True)

            #######################################################################
            #######################################################################
            #####        SAVING STUFF DOWN

            if args.gp:

                # get test_preds_std (scaled back to original data)
                test_preds_std = predict_std_gp(model=model,
                                                data_loader=test_data_loader,
                                                args=args,
                                                scaler=scaler,
                                                likelihood=likelihood)

                # 1 - MEANS
                np.savez(os.path.join(results_dir, f'preds_{sample_idx}'),
                         np.array(test_preds))

                # 2 - STD, combined aleatoric and epistemic (we save down the stds, always)
                np.savez(os.path.join(results_dir, f'predsSTDEV_{sample_idx}'),
                         np.array(test_preds_std))

            else:

                # save test_preds and aleatoric uncertainties
                if args.dun:
                    log_cat = model.log_cat.detach().cpu().numpy()
                    cat = np.exp(log_cat) / np.sum(np.exp(log_cat))
                    np.savez(os.path.join(results_dir, f'cat_{sample_idx}'),
                             cat)

                    # samples from categorical dist and saves a depth MC sample
                    depth_sample = np.random.multinomial(1,
                                                         cat).nonzero()[0][0]
                    test_preds_MCdepth = predict_MCdepth(
                        model=model,
                        data_loader=test_data_loader,
                        args=args,
                        scaler=scaler,
                        d=depth_sample)
                    np.savez(
                        os.path.join(results_dir,
                                     f'predsMCDEPTH_{sample_idx}'),
                        np.array(test_preds_MCdepth))

                if args.swag:
                    log_noise = model.base.log_noise
                else:
                    log_noise = model.log_noise
                noise = np.exp(log_noise.detach().cpu().numpy()) * np.array(
                    scaler.stds)
                np.savez(os.path.join(results_dir, f'preds_{sample_idx}'),
                         np.array(test_preds))
                np.savez(os.path.join(results_dir, f'noise_{sample_idx}'),
                         noise)

            #######################################################################
            #######################################################################

            # add predictions to sum_test_preds
            if len(test_preds) != 0:
                sum_test_preds += np.array(test_preds)

            # evaluate predictions using metric function
            test_scores = evaluate_predictions(preds=test_preds,
                                               targets=test_targets,
                                               num_tasks=args.num_tasks,
                                               metric_func=metric_func,
                                               dataset_type=args.dataset_type,
                                               logger=logger)

            # compute average test score
            avg_test_score = np.nanmean(test_scores)
            info(
                f'Model {model_idx}, sample {sample_idx} test {args.metric} = {avg_test_score:.6f}'
            )

    #################################
    ########## Bayesian Model Average
    #################################
    # note: this is an average over Bayesian samples AND components in an ensemble

    # compute number of prediction iterations
    pred_iterations = args.ensemble_size * args.samples

    # average predictions across iterations
    avg_test_preds = (sum_test_preds / pred_iterations).tolist()

    # evaluate
    BMA_scores = evaluate_predictions(preds=avg_test_preds,
                                      targets=test_targets,
                                      num_tasks=args.num_tasks,
                                      metric_func=metric_func,
                                      dataset_type=args.dataset_type,
                                      logger=logger)

    # average scores across tasks
    avg_BMA_test_score = np.nanmean(BMA_scores)
    info(f'BMA test {args.metric} = {avg_BMA_test_score:.6f}')

    return BMA_scores
def run_meta_training(args: TrainArgs, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Print command line
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')

    # Print args
    debug('Args')
    debug(args)

    # Save args
    args.save(os.path.join(args.save_dir, 'args.json'))

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Get data
    debug('Loading data')
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    # debug(f'Splitting data with seed {args.seed}')
    # if args.separate_test_path:
    #     test_data = get_data(path=args.separate_test_path, args=args, features_path=args.separate_test_features_path, logger=logger)
    # if args.separate_val_path:
    #     val_data = get_data(path=args.separate_val_path, args=args, features_path=args.separate_val_features_path, logger=logger)

    # if args.separate_val_path and args.separate_test_path:
    #     train_data = data
    # elif args.separate_val_path:
    #     train_data, _, test_data = split_data(data=data, split_type=args.split_type, sizes=(0.8, 0.0, 0.2), seed=args.seed, args=args, logger=logger)
    # elif args.separate_test_path:
    #     train_data, val_data, _ = split_data(data=data, split_type=args.split_type, sizes=(0.8, 0.2, 0.0), seed=args.seed, args=args, logger=logger)
    # else:
    #     train_data, val_data, test_data = split_data(data=data, split_type=args.split_type, sizes=args.split_sizes, seed=args.seed, args=args, logger=logger)

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(f'{args.task_names[i]} '
                  f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}')

    # if args.save_smiles_splits:
    #     save_smiles_splits(
    #         train_data=train_data,
    #         val_data=val_data,
    #         test_data=test_data,
    #         data_path=args.data_path,
    #         save_dir=args.save_dir
    #     )

    # If this happens, then need to move this logic into the task data loader
    # when it creates the datasets! 
    # if args.features_scaling:
    #     features_scaler = train_data.normalize_features(replace_nan_token=0)
    #     val_data.normalize_features(features_scaler)
    #     test_data.normalize_features(features_scaler)
    # else:
    #     features_scaler = None

    # args.train_data_size = len(train_data)
    
    # debug(f'Total size = {len(data):,} | '
    #       f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}')

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    # if args.dataset_type == 'regression':
    #     debug('Fitting scaler')
    #     train_smiles, train_targets = train_data.smiles(), train_data.targets()
    #     scaler = StandardScaler().fit(train_targets)
    #     scaled_targets = scaler.transform(train_targets).tolist()
    #     train_data.set_targets(scaled_targets)
    # else:
    #     scaler = None

    # Get loss and metric functions
    loss_func = get_loss_func(args)
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    # test_smiles, test_targets = test_data.smiles(), test_data.targets()
    # if args.dataset_type == 'multiclass':
    #     sum_test_preds = np.zeros((len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    # else:
    #     sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Set up MetaTaskDataLoaders, which takes care of task splits under the hood 
    # Set up task splits into T_tr, T_val, T_test

    assert args.chembl_assay_metadata_pickle_path is not None
    with open(args.chembl_assay_metadata_pickle_path +
            'chembl_128_assay_type_to_names.pickle', 'rb') as handle:
        chembl_128_assay_type_to_names = pickle.load(handle)
    with open(args.chembl_assay_metadata_pickle_path +
            'chembl_128_assay_name_to_type.pickle', 'rb') as handle:
        chembl_128_assay_name_to_type = pickle.load(handle)

    """ 
    Copy GSK implementation of task split 
    We have 5 Task types remaining
    ADME (A)
    Toxicity (T)
    Unassigned (U) 
    Binding (B)
    Functional (F)
    resulting in 902 tasks.

    For T_val, randomly select 10 B and F tasks
    For T_test, select another 10 B and F tasks and allocate all A, T, and U
    tasks to the test split.
    For T_train, allocate the remaining B and F tasks. 

    """
    import pdb; pdb.set_trace()
    T_val_num_BF_tasks = args.meta_split_sizes_BF[0]
    T_test_num_BF_tasks = args.meta_split_sizes_BF[1]
    T_val_idx = T_val_num_BF_tasks
    T_test_idx = T_val_num_BF_tasks + T_test_num_BF_tasks

    chembl_id_to_idx = {chembl_id: idx for idx, chembl_id in enumerate(args.task_names)}

    # Shuffle B and F tasks
    randomized_B_tasks = np.copy(chembl_128_assay_type_to_names['B'])
    np.random.shuffle(randomized_B_tasks)
    randomized_B_task_indices = [chembl_id_to_idx[assay] for assay in
            randomized_B_tasks]

    randomized_F_tasks = np.copy(chembl_128_assay_type_to_names['F'])
    np.random.shuffle(randomized_F_tasks)
    randomized_F_task_indices = [chembl_id_to_idx[assay] for assay in
            randomized_F_tasks]

    # Grab B and F indices for T_val
    T_val_B_task_indices = randomized_B_task_indices[:T_val_idx]
    T_val_F_task_indices = randomized_F_task_indices[:T_val_idx]

    # Grab B and F indices for T_test
    T_test_B_task_indices = randomized_B_task_indices[T_val_idx:T_test_idx]
    T_test_F_task_indices = randomized_F_task_indices[T_val_idx:T_test_idx]
    # Grab all A, T and U indices for T_test
    T_test_A_task_indices = [chembl_id_to_idx[assay] for assay in chembl_128_assay_type_to_names['A']]
    T_test_T_task_indices = [chembl_id_to_idx[assay] for assay in chembl_128_assay_type_to_names['T']]
    T_test_U_task_indices = [chembl_id_to_idx[assay] for assay in chembl_128_assay_type_to_names['U']]

    # Slot remaining BF tasks into T_tr
    T_tr_B_task_indices = randomized_B_task_indices[T_test_idx:]
    T_tr_F_task_indices = randomized_F_task_indices[T_test_idx:]

    T_tr = [0] * len(args.task_names)
    T_val = [0] * len(args.task_names)
    T_test = [0] * len(args.task_names)

    # Now make task bit vectors
    for idx_list in (T_tr_B_task_indices, T_tr_F_task_indices):
        for idx in idx_list:
            T_tr[idx] = 1

    for idx_list in (T_val_B_task_indices, T_val_F_task_indices):
        for idx in idx_list:
            T_val[idx] = 1

    for idx_list in (T_test_B_task_indices, T_test_F_task_indices, T_test_A_task_indices, T_test_T_task_indices, T_test_U_task_indices):
        for idx in idx_list:
            T_test[idx] = 1


    """
    Random task split for testing
    task_indices = list(range(len(args.task_names)))
    np.random.shuffle(task_indices)
    train_task_split, val_task_split, test_task_split = 0.9, 0, 0.1
    train_task_cutoff = int(len(task_indices) * train_task_split)
    train_task_idxs, test_task_idxs = [0] * len(task_indices), [0] * len(task_indices)
    for idx in task_indices[:train_task_cutoff]:
        train_task_idxs[idx] = 1
    for idx in task_indices[train_task_cutoff:]:
        test_task_idxs[idx] = 1
    """

    train_meta_task_data_loader = MetaTaskDataLoader(
            dataset=data,
            tasks=T_tr,
            sizes=args.meta_train_split_sizes,
            args=args,
            logger=logger)

    val_meta_task_data_loader = MetaTaskDataLoader(
            dataset=data,
            tasks=T_val,
            sizes=args.meta_test_split_sizes,
            args=args,
            logger=logger)

    test_meta_task_data_loader = MetaTaskDataLoader(
            dataset=data,
            tasks=T_test,
            sizes=args.meta_test_split_sizes,
            args=args,
            logger=logger)

    import pdb; pdb.set_trace()
    for meta_train_batch in train_meta_task_data_loader.tasks():
        for train_task in meta_train_batch:
            print('In inner loop')
            continue

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}')
            model = load_checkpoint(args.checkpoint_paths[model_idx], logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(
                model=model,
                data_loader=train_data_loader,
                loss_func=loss_func,
                optimizer=optimizer,
                scheduler=scheduler,
                args=args,
                n_iter=n_iter,
                logger=logger,
                writer=writer
            )
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(
                model=model,
                data_loader=val_data_loader,
                num_tasks=args.num_tasks,
                metric_func=metric_func,
                dataset_type=args.dataset_type,
                scaler=scaler,
                logger=logger
            )

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            writer.add_scalar(f'validation_{args.metric}', avg_val_score, n_iter)

            if args.show_individual_scores:
                # Individual validation scores
                for task_name, val_score in zip(args.task_names, val_scores):
                    debug(f'Validation {task_name} {args.metric} = {val_score:.6f}')
                    writer.add_scalar(f'validation_{task_name}_{args.metric}', val_score, n_iter)

            # Save model checkpoint if improved validation score
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args)        

        # Evaluate on test set using model with best validation score
        info(f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}')
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'), device=args.device, logger=logger)
        
        test_preds = predict(
            model=model,
            data_loader=test_data_loader,
            scaler=scaler
        )
        test_scores = evaluate_predictions(
            preds=test_preds,
            targets=test_targets,
            num_tasks=args.num_tasks,
            metric_func=metric_func,
            dataset_type=args.dataset_type,
            logger=logger
        )

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        avg_test_score = np.nanmean(test_scores)
        info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
        writer.add_scalar(f'test_{args.metric}', avg_test_score, 0)

        if args.show_individual_scores:
            # Individual test scores
            for task_name, test_score in zip(args.task_names, test_scores):
                info(f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}')
                writer.add_scalar(f'test_{task_name}_{args.metric}', test_score, n_iter)
        writer.close()

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(
        preds=avg_test_preds,
        targets=test_targets,
        num_tasks=args.num_tasks,
        metric_func=metric_func,
        dataset_type=args.dataset_type,
        logger=logger
    )

    # Average ensemble score
    avg_ensemble_test_score = np.nanmean(ensemble_scores)
    info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')

    # Individual ensemble scores
    if args.show_individual_scores:
        for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
            info(f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}')

    return ensemble_scores
def pdts(args: TrainArgs, model_idx):
    """
    preliminary experiment with PDTS (approximate BO)
    we use a data set size of 50k and run until we have trained with 15k data points
    our batch size is 50
    we initialise with 1000 data points
    """

    ######## set up all logging ########
    logger = None

    # make save_dir
    save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
    makedirs(save_dir)

    # make results_dir
    results_dir = args.results_dir
    makedirs(results_dir)

    # initialise wandb
    #os.environ['WANDB_MODE'] = 'dryrun'
    wandb.init(name=args.wandb_name + '_' + str(model_idx),
               project=args.wandb_proj,
               reinit=True)
    #print('WANDB directory is:')
    #print(wandb.run.dir)
    ####################################

    ########## get data
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()

    ########## SMILES of top 1%
    top1p = np.array(MoleculeDataset(data).targets())
    top1p_idx = np.argsort(-top1p[:, 0])[:int(args.max_data_size * 0.01)]
    SMILES = np.array(MoleculeDataset(data).smiles())[top1p_idx]

    ########## initial data splits
    args.seed = args.data_seeds[model_idx]
    data.shuffle(seed=args.seed)
    sizes = args.split_sizes
    train_size = int(sizes[0] * len(data))
    train_orig = data[:train_size]
    test_orig = data[train_size:]
    train_data, test_data = copy.deepcopy(
        MoleculeDataset(train_orig)), copy.deepcopy(MoleculeDataset(test_orig))
    args.train_data_size = len(train_data)

    ########## standardising
    # features (train and test)
    features_scaler = train_data.normalize_features(replace_nan_token=0)
    test_data.normalize_features(features_scaler)
    # targets (train)
    train_targets = train_data.targets()
    test_targets = test_data.targets()
    scaler = StandardScaler().fit(train_targets)
    scaled_targets = scaler.transform(train_targets).tolist()
    train_data.set_targets(scaled_targets)

    ########## loss, metric functions
    loss_func = neg_log_like
    metric_func = get_metric_func(metric=args.metric)

    ########## data loaders
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    ########## instantiating model, optimiser, scheduler (MAP)
    # set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seeds[model_idx])
    # build model
    print(f'Building model {model_idx}')
    model = MoleculeModel(args)
    print(model)
    print(f'Number of parameters = {param_count(model):,}')
    if args.cuda:
        print('Moving model to cuda')
    model = model.to(args.device)
    # optimizer
    optimizer = Adam([{
        'params': model.encoder.parameters()
    }, {
        'params': model.ffn.parameters()
    }, {
        'params': model.log_noise,
        'weight_decay': 0
    }],
                     lr=args.lr,
                     weight_decay=args.weight_decay)
    # learning rate scheduler
    scheduler = scheduler_const([args.lr])

    ####################################################################
    ####################################################################
    # FIRST THOMPSON ITERATION

    ### scores array
    ptds_scores = np.ones(args.pdts_batches + 1)
    batch_no = 0

    ### fill for batch 0
    SMILES_train = np.array(train_data.smiles())
    SMILES_stack = np.hstack((SMILES, SMILES_train))
    overlap = len(SMILES_stack) - len(np.unique(SMILES_stack))
    prop = overlap / len(SMILES)
    ptds_scores[batch_no] = prop
    wandb.log({
        "Proportion of top 1%": prop,
        "batch_no": batch_no
    },
              commit=False)

    ### train MAP posterior
    gp_switch = False
    likelihood = None
    bbp_switch = None
    n_iter = 0
    for epoch in range(args.epochs_init_map):
        n_iter = train(model=model,
                       data_loader=train_data_loader,
                       loss_func=loss_func,
                       optimizer=optimizer,
                       scheduler=scheduler,
                       args=args,
                       n_iter=n_iter,
                       bbp_switch=bbp_switch)
        # save to save_dir
        #if epoch == args.epochs_init_map - 1:
        #save_checkpoint(os.path.join(save_dir, f'model_{batch_no}.pt'), model, scaler, features_scaler, args)
    # if X load from checkpoint path
    if args.bbp or args.gp or args.swag or args.sgld:
        model = load_checkpoint(args.checkpoint_path +
                                f'/model_{model_idx}/model_{batch_no}.pt',
                                device=args.device,
                                logger=None)

    ########## BBP
    if args.bbp:
        model_bbp = MoleculeModelBBP(
            args)  # instantiate with bayesian linear layers
        for (_, param_bbp), (_, param_pre) in zip(model_bbp.named_parameters(),
                                                  model.named_parameters()):
            param_bbp.data = copy.deepcopy(
                param_pre.data.T)  # copy over parameters
        # instantiate rhos
        for layer in model_bbp.children():
            if isinstance(layer, BayesLinear):
                layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
        for layer in model_bbp.encoder.encoder.children():
            if isinstance(layer, BayesLinear):
                layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
        model = model_bbp  # name back
        # move to cuda
        if args.cuda:
            print('Moving bbp model to cuda')
            model = model.to(args.device)
        # optimiser and scheduler
        optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
        scheduler = scheduler_const([args.lr])

        bbp_switch = 2
        n_iter = 0
        for epoch in range(args.epochs_init):
            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           bbp_switch=bbp_switch)

    ########## GP
    if args.gp:
        # feature_extractor
        model.featurizer = True
        feature_extractor = model
        # inducing points
        inducing_points = initial_inducing_points(train_data_loader,
                                                  feature_extractor, args)
        # GP layer
        gp_layer = GPLayer(inducing_points, args.num_tasks)
        # full DKL model
        model = copy.deepcopy(DKLMoleculeModel(feature_extractor, gp_layer))
        # likelihood (rank 0 restricts to diagonal matrix)
        likelihood = gpytorch.likelihoods.MultitaskGaussianLikelihood(
            num_tasks=12, rank=0)
        # model and likelihood to CUDA
        if args.cuda:
            model.cuda()
            likelihood.cuda()
        # loss object
        loss_func = gpytorch.mlls.VariationalELBO(
            likelihood, model.gp_layer, num_data=args.train_data_size)
        # optimiser and scheduler
        params_list = [
            {
                'params': model.feature_extractor.parameters(),
                'weight_decay': args.weight_decay_gp
            },
            {
                'params': model.gp_layer.hyperparameters()
            },
            {
                'params': model.gp_layer.variational_parameters()
            },
            {
                'params': likelihood.parameters()
            },
        ]
        optimizer = torch.optim.Adam(params_list, lr=args.lr)
        scheduler = scheduler_const([args.lr])

        gp_switch = True
        n_iter = 0
        for epoch in range(args.epochs_init):
            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           gp_switch=gp_switch,
                           likelihood=likelihood)

    ########## SWAG
    if args.swag:
        model_core = copy.deepcopy(model)
        model = train_swag_pdts(model_core, train_data_loader, loss_func,
                                scaler, features_scaler, args, save_dir,
                                batch_no)

    ########## SGLD
    if args.sgld:
        model = train_sgld_pdts(model, train_data_loader, loss_func, scaler,
                                features_scaler, args, save_dir, batch_no)

    ### find top_idx
    top_idx = []  # need for thom
    sum_test_preds = np.zeros(
        (len(test_orig), args.num_tasks))  # need for greedy
    for sample in range(args.samples):

        # draw model from SWAG posterior
        if args.swag:
            model.sample(scale=1.0, cov=args.cov_mat, block=args.block)

        # retrieve sgld sample
        if args.sgld:
            model = load_checkpoint(
                args.save_dir +
                f'/model_{model_idx}/model_{batch_no}/model_{sample}.pt',
                device=args.device,
                logger=logger)

        test_preds = predict(model=model,
                             data_loader=test_data_loader,
                             args=args,
                             scaler=scaler,
                             test_data=True,
                             gp_sample=args.thompson,
                             bbp_sample=True)
        test_preds = np.array(test_preds)
        # thompson bit
        rank = 0

        # base length
        if args.sgld:
            base_length = 5 * sample + 4
        else:
            base_length = sample

        while args.thompson and (len(top_idx) <= base_length):
            top_unique_molecule = np.argsort(-test_preds[:, 0])[rank]
            rank += 1
            if top_unique_molecule not in top_idx:
                top_idx.append(top_unique_molecule)
        # add to sum_test_preds
        sum_test_preds += test_preds
        # print
        print('done sample ' + str(sample))
    # final top_idx
    if args.thompson:
        top_idx = np.array(top_idx)
    else:
        sum_test_preds /= args.samples
        top_idx = np.argsort(-sum_test_preds[:, 0])[:50]

    ### transfer from test to train
    top_idx = -np.sort(-top_idx)
    for idx in top_idx:
        train_orig.append(test_orig.pop(idx))
    train_data, test_data = copy.deepcopy(
        MoleculeDataset(train_orig)), copy.deepcopy(MoleculeDataset(test_orig))
    args.train_data_size = len(train_data)
    if args.gp:
        loss_func = gpytorch.mlls.VariationalELBO(
            likelihood, model.gp_layer, num_data=args.train_data_size)
    print(args.train_data_size)

    ### standardise features (train and test; using original features_scaler)
    train_data.normalize_features(features_scaler)
    test_data.normalize_features(features_scaler)

    ### standardise targets (train only; using original scaler)
    train_targets = train_data.targets()
    scaled_targets_tr = scaler.transform(train_targets).tolist()
    train_data.set_targets(scaled_targets_tr)

    ### create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    ####################################################################
    ####################################################################

    ##################################
    ########## thompson sampling loop
    ##################################

    for batch_no in range(1, args.pdts_batches + 1):

        ### fill in ptds_scores
        SMILES_train = np.array(train_data.smiles())
        SMILES_stack = np.hstack((SMILES, SMILES_train))
        overlap = len(SMILES_stack) - len(np.unique(SMILES_stack))
        prop = overlap / len(SMILES)
        ptds_scores[batch_no] = prop
        wandb.log({
            "Proportion of top 1%": prop,
            "batch_no": batch_no
        },
                  commit=False)

        ### train posterior
        n_iter = 0
        for epoch in range(args.epochs):
            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           gp_switch=gp_switch,
                           likelihood=likelihood,
                           bbp_switch=bbp_switch)
            # save to save_dir
            #if epoch == args.epochs - 1:
            #save_checkpoint(os.path.join(save_dir, f'model_{batch_no}.pt'), model, scaler, features_scaler, args)
        # if swag, load checkpoint
        if args.swag:
            model_core = load_checkpoint(
                args.checkpoint_path +
                f'/model_{model_idx}/model_{batch_no}.pt',
                device=args.device,
                logger=None)

        ########## SWAG
        if args.swag:
            model = train_swag_pdts(model_core, train_data_loader, loss_func,
                                    scaler, features_scaler, args, save_dir,
                                    batch_no)

        ########## SGLD
        if args.sgld:
            model = train_sgld_pdts(model, train_data_loader, loss_func,
                                    scaler, features_scaler, args, save_dir,
                                    batch_no)

        ### find top_idx
        top_idx = []  # need for thom
        sum_test_preds = np.zeros(
            (len(test_orig), args.num_tasks))  # need for greedy
        for sample in range(args.samples):

            # draw model from SWAG posterior
            if args.swag:
                model.sample(scale=1.0, cov=args.cov_mat, block=args.block)

            # retrieve sgld sample
            if args.sgld:
                model = load_checkpoint(
                    args.save_dir +
                    f'/model_{model_idx}/model_{batch_no}/model_{sample}.pt',
                    device=args.device,
                    logger=logger)

            test_preds = predict(model=model,
                                 data_loader=test_data_loader,
                                 args=args,
                                 scaler=scaler,
                                 test_data=True,
                                 gp_sample=args.thompson,
                                 bbp_sample=True)
            test_preds = np.array(test_preds)
            # thompson bit
            rank = 0

            # base length
            if args.sgld:
                base_length = 5 * sample + 4
            else:
                base_length = sample

            while args.thompson and (len(top_idx) <= base_length):
                top_unique_molecule = np.argsort(-test_preds[:, 0])[rank]
                rank += 1
                if top_unique_molecule not in top_idx:
                    top_idx.append(top_unique_molecule)
            # add to sum_test_preds
            sum_test_preds += test_preds
            # print
            print('done sample ' + str(sample))
        # final top_idx
        if args.thompson:
            top_idx = np.array(top_idx)
        else:
            sum_test_preds /= args.samples
            top_idx = np.argsort(-sum_test_preds[:, 0])[:50]

        ### transfer from test to train
        top_idx = -np.sort(-top_idx)
        for idx in top_idx:
            train_orig.append(test_orig.pop(idx))
        train_data, test_data = copy.deepcopy(
            MoleculeDataset(train_orig)), copy.deepcopy(
                MoleculeDataset(test_orig))
        args.train_data_size = len(train_data)
        if args.gp:
            loss_func = gpytorch.mlls.VariationalELBO(
                likelihood, model.gp_layer, num_data=args.train_data_size)
        print(args.train_data_size)

        ### standardise features (train and test; using original features_scaler)
        train_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)

        ### standardise targets (train only; using original scaler)
        train_targets = train_data.targets()
        scaled_targets_tr = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets_tr)

        ### create data loaders
        train_data_loader = MoleculeDataLoader(
            dataset=train_data,
            batch_size=args.batch_size,
            num_workers=num_workers,
            cache=cache,
            class_balance=args.class_balance,
            shuffle=True,
            seed=args.seed)
        test_data_loader = MoleculeDataLoader(dataset=test_data,
                                              batch_size=args.batch_size,
                                              num_workers=num_workers,
                                              cache=cache)

    # save scores
    np.savez(os.path.join(results_dir, f'ptds_{model_idx}'), ptds_scores)
Esempio n. 12
0
def molecule_fingerprint(
        args: FingerprintArgs,
        smiles: List[List[str]] = None) -> List[List[Optional[float]]]:
    """
    Loads data and a trained model and uses the model to encode fingerprint vectors for the data.

    :param args: A :class:`~chemprop.args.PredictArgs` object containing arguments for
                 loading data and a model and making predictions.
    :param smiles: List of list of SMILES to make predictions on.
    :return: A list of fingerprint vectors (list of floats)
    """

    print('Loading training args')
    train_args = load_args(args.checkpoint_paths[0])

    # Update args with training arguments
    if args.fingerprint_type == 'MPN':  # only need to supply input features if using FFN latent representation and if model calls for them.
        validate_feature_sources = False
    else:
        validate_feature_sources = True
    update_prediction_args(predict_args=args,
                           train_args=train_args,
                           validate_feature_sources=validate_feature_sources)
    args: Union[FingerprintArgs, TrainArgs]

    #set explicit H option and reaction option
    reset_featurization_parameters()
    set_explicit_h(train_args.explicit_h)
    set_adding_hs(args.adding_h)
    set_reaction(train_args.reaction, train_args.reaction_mode)

    print('Loading data')
    if smiles is not None:
        full_data = get_data_from_smiles(
            smiles=smiles,
            skip_invalid_smiles=False,
            features_generator=args.features_generator)
    else:
        full_data = get_data(path=args.test_path,
                             smiles_columns=args.smiles_columns,
                             target_columns=[],
                             ignore_columns=[],
                             skip_invalid_smiles=False,
                             args=args,
                             store_row=True)

    print('Validating SMILES')
    full_to_valid_indices = {}
    valid_index = 0
    for full_index in range(len(full_data)):
        if all(mol is not None for mol in full_data[full_index].mol):
            full_to_valid_indices[full_index] = valid_index
            valid_index += 1

    test_data = MoleculeDataset(
        [full_data[i] for i in sorted(full_to_valid_indices.keys())])

    # Edge case if empty list of smiles is provided
    if len(test_data) == 0:
        return [None] * len(full_data)

    print(f'Test size = {len(test_data):,}')

    # Create data loader
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=args.num_workers)

    # Set fingerprint size
    if args.fingerprint_type == 'MPN':
        total_fp_size = args.hidden_size * args.number_of_molecules
        if args.features_only:
            raise ValueError(
                'With features_only models, there is no latent MPN representation. Use last_FFN fingerprint type instead.'
            )
    elif args.fingerprint_type == 'last_FFN':
        if args.ffn_num_layers != 1:
            total_fp_size = args.ffn_hidden_size
        else:
            raise ValueError(
                'With a ffn_num_layers of 1, there is no latent FFN representation. Use MPN fingerprint type instead.'
            )
    else:
        raise ValueError(
            f'Fingerprint type {args.fingerprint_type} not supported')
    all_fingerprints = np.zeros(
        (len(test_data), total_fp_size, len(args.checkpoint_paths)))

    # Load model
    print(
        f'Encoding smiles into a fingerprint vector from {len(args.checkpoint_paths)} models.'
    )

    for index, checkpoint_path in enumerate(
            tqdm(args.checkpoint_paths, total=len(args.checkpoint_paths))):
        model = load_checkpoint(checkpoint_path, device=args.device)
        scaler, features_scaler, atom_descriptor_scaler, bond_feature_scaler = load_scalers(
            args.checkpoint_paths[index])

        # Normalize features
        if args.features_scaling or train_args.atom_descriptor_scaling or train_args.bond_feature_scaling:
            test_data.reset_features_and_targets()
            if args.features_scaling:
                test_data.normalize_features(features_scaler)
            if train_args.atom_descriptor_scaling and args.atom_descriptors is not None:
                test_data.normalize_features(atom_descriptor_scaler,
                                             scale_atom_descriptors=True)
            if train_args.bond_feature_scaling and args.bond_features_size > 0:
                test_data.normalize_features(bond_feature_scaler,
                                             scale_bond_features=True)

        # Make fingerprints
        model_fp = model_fingerprint(model=model,
                                     data_loader=test_data_loader,
                                     fingerprint_type=args.fingerprint_type)
        if args.fingerprint_type == 'MPN' and (
                args.features_path is not None or args.features_generator
        ):  # truncate any features from MPN fingerprint
            model_fp = np.array(model_fp)[:, :total_fp_size]
        all_fingerprints[:, :, index] = model_fp

    # Save predictions
    print(f'Saving predictions to {args.preds_path}')
    assert len(test_data) == len(all_fingerprints)
    makedirs(args.preds_path, isfile=True)

    # Set column names
    fingerprint_columns = []
    if len(args.checkpoint_paths) == 1:
        for j in range(total_fp_size):
            fingerprint_columns.append(f'fp_{j}')
    else:
        for j in range(total_fp_size):
            for i in range(len(args.checkpoint_paths)):
                fingerprint_columns.append(f'fp_{j}_model_{i}')

    # Copy predictions over to full_data
    for full_index, datapoint in enumerate(full_data):
        valid_index = full_to_valid_indices.get(full_index, None)
        preds = all_fingerprints[valid_index].reshape(
            (len(args.checkpoint_paths) * total_fp_size
             )) if valid_index is not None else ['Invalid SMILES'] * len(
                 args.checkpoint_paths) * total_fp_size

        for i in range(len(fingerprint_columns)):
            datapoint.row[fingerprint_columns[i]] = preds[i]

    # Write predictions
    with open(args.preds_path, 'w') as f:
        writer = csv.DictWriter(f,
                                fieldnames=args.smiles_columns +
                                fingerprint_columns,
                                extrasaction='ignore')
        writer.writeheader()
        for datapoint in full_data:
            writer.writerow(datapoint.row)

    return all_fingerprints
def train_gp(
        model,
        train_data,
        val_data,
        num_workers,
        cache,
        metric_func,
        scaler,
        features_scaler,
        args,
        save_dir):
    
    
    # create data loaders for gp (allows different batch size)
    train_data_loader = MoleculeDataLoader(
        dataset=train_data,
        batch_size=args.batch_size_gp,
        num_workers=num_workers,
        cache=cache,
        class_balance=args.class_balance,
        shuffle=True,
        seed=args.seed
    )
    val_data_loader = MoleculeDataLoader(
        dataset=val_data,
        batch_size=args.batch_size_gp,
        num_workers=num_workers,
        cache=cache
    )
    
    # feature_extractor
    model.featurizer = True
    feature_extractor = model
    
    # inducing points
    inducing_points = initial_inducing_points(
        train_data_loader,
        feature_extractor,
        args
        )
    
    # GP layer
    gp_layer = GPLayer(inducing_points, args.num_tasks)
    
    # full DKL model
    model = copy.deepcopy(DKLMoleculeModel(feature_extractor, gp_layer))
    
    # likelihood
    # rank 0 restricts to diagonal matrix
    likelihood = gpytorch.likelihoods.MultitaskGaussianLikelihood(num_tasks=12, rank=0)

    # model and likelihood to CUDA
    if args.cuda:
        model.cuda()
        likelihood.cuda()

    # loss object
    mll = gpytorch.mlls.VariationalELBO(likelihood, model.gp_layer, num_data=args.train_data_size)
    
    # optimizer
    params_list = [
        {'params': model.feature_extractor.parameters(), 'weight_decay': args.weight_decay_gp},
        {'params': model.gp_layer.hyperparameters()},
        {'params': model.gp_layer.variational_parameters()},
        {'params': likelihood.parameters()},
    ]    
    optimizer = torch.optim.Adam(params_list, lr = args.init_lr_gp)    
    
    # scheduler
    num_params = len(params_list)
    scheduler = NoamLR(
        optimizer=optimizer,
        warmup_epochs=[args.warmup_epochs_gp]*num_params,
        total_epochs=[args.noam_epochs_gp]*num_params,
        steps_per_epoch=args.train_data_size // args.batch_size_gp,
        init_lr=[args.init_lr_gp]*num_params,
        max_lr=[args.max_lr_gp]*num_params,
        final_lr=[args.final_lr_gp]*num_params)
        
    
    print("----------GP training----------")
    
    # training loop
    best_score = float('inf') if args.minimize_score else -float('inf')
    best_epoch, n_iter = 0, 0
    for epoch in range(args.epochs_gp):
        print(f'GP epoch {epoch}')
        
        if epoch == args.noam_epochs_gp:
            scheduler = scheduler_const([args.final_lr_gp])
    
        n_iter = train(
                model=model,
                data_loader=train_data_loader,
                loss_func=mll,
                optimizer=optimizer,
                scheduler=scheduler,
                args=args,
                n_iter=n_iter,
                gp_switch=True,
                likelihood = likelihood
            )
    
        val_scores = evaluate(
            model=model,
            data_loader=val_data_loader,
            args=args,
            num_tasks=args.num_tasks,
            metric_func=metric_func,
            dataset_type=args.dataset_type,
            scaler=scaler
        )

        # Average validation score
        avg_val_score = np.nanmean(val_scores)
        print(f'Validation {args.metric} = {avg_val_score:.6f}')
        wandb.log({"Validation MAE": avg_val_score})

        # Save model AND LIKELIHOOD checkpoint if improved validation score
        if args.minimize_score and avg_val_score < best_score or \
                not args.minimize_score and avg_val_score > best_score:
            best_score, best_epoch = avg_val_score, epoch
            save_checkpoint(os.path.join(save_dir, 'DKN_model.pt'), model, scaler, features_scaler, args)
            best_likelihood = copy.deepcopy(likelihood)
            
            
    # load model with best validation score
    # NOTE: TEMPLATE MUST BE NEWLY INSTANTIATED MODEL
    print(f'Loading model with best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}')
    model = load_checkpoint(os.path.join(save_dir, 'DKN_model.pt'), device=args.device, logger=None,
                            template = DKLMoleculeModel(MoleculeModel(args, featurizer=True), gp_layer))

    
    return model, best_likelihood
Esempio n. 14
0
def run_training(args: Namespace, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Set GPU
    if args.gpu is not None:
        torch.cuda.set_device(args.gpu)

    # Print args
    debug(pformat(vars(args)))


    # Get data
    debug('Loading data')
    args.task_names = get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(path=args.separate_test_path, args=args, features_path=args.separate_test_features_path, logger=logger)
    if args.separate_val_path:
        val_data = get_data(path=args.separate_val_path, args=args, features_path=args.separate_val_features_path, logger=logger)

    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data, split_type=args.split_type, sizes=(0.8, 0.2, 0.0), seed=args.seed, args=args, logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data, split_type=args.split_type, sizes=(0.8, 0.2, 0.0), seed=args.seed, args=args, logger=logger)
    else:
        train_data, val_data, test_data = split_data(data=data, split_type=args.split_type, sizes=args.split_sizes, seed=args.seed, args=args, logger=logger)

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(f'{args.task_names[i]} '
                  f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}')

    if args.save_smiles_splits:
        with open(args.data_path, 'r') as f:
            reader = csv.reader(f)
            header = next(reader)

            lines_by_smiles = {}
            indices_by_smiles = {}
            for i, line in enumerate(reader):
                smiles = line[0]
                lines_by_smiles[smiles] = line
                indices_by_smiles[smiles] = i

        all_split_indices = []
        for dataset, name in [(train_data, 'train'), (val_data, 'val'), (test_data, 'test')]:
            with open(os.path.join(args.save_dir, name + '_smiles.csv'), 'w') as f:
                writer = csv.writer(f)
                writer.writerow(['smiles'])
                for smiles in dataset.smiles():
                    writer.writerow([smiles])
            with open(os.path.join(args.save_dir, name + '_full.csv'), 'w') as f:
                writer = csv.writer(f)
                writer.writerow(header)
                for smiles in dataset.smiles():
                    writer.writerow(lines_by_smiles[smiles])
            split_indices = []
            for smiles in dataset.smiles():
                split_indices.append(indices_by_smiles[smiles])
                split_indices = sorted(split_indices)
            all_split_indices.append(split_indices)
        with open(os.path.join(args.save_dir, 'split_indices.pckl'), 'wb') as f:
            pickle.dump(all_split_indices, f)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)
    
    debug(f'Total size = {len(data):,} | '
          f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}')

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = get_loss_func(args)
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == 'multiclass':
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    #Setup val set evaluation
    val_smiles, val_targets = val_data.smiles(), val_data.targets()
    if args.dataset_type == 'multiclass':
        sum_val_preds = np.zeros((len(val_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_val_preds = np.zeros((len(val_smiles), args.num_tasks))

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}')
            model = load_checkpoint(args.checkpoint_paths[model_idx], current_args=args, logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = build_model(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
            model = model.cuda()

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(
                model=model,
                data=train_data,
                loss_func=loss_func,
                optimizer=optimizer,
                scheduler=scheduler,
                args=args,
                n_iter=n_iter,
                logger=logger,
                writer=writer
            )
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()

            val_scores = evaluate(
                model=model,
                data=val_data,
                num_tasks=args.num_tasks,
                metric_func=metric_func,
                batch_size=args.batch_size,
                dataset_type=args.dataset_type,
                scaler=scaler,
                logger=logger
            )



            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            writer.add_scalar(f'validation_{args.metric}', avg_val_score, n_iter)

            if args.show_individual_scores:
                # Individual validation scores
                for task_name, val_score in zip(args.task_names, val_scores):
                    debug(f'Validation {task_name} {args.metric} = {val_score:.6f}')
                    writer.add_scalar(f'validation_{task_name}_{args.metric}', val_score, n_iter)

            # Save model checkpoint if improved validation score
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args)        

        # Evaluate on test set using model with best validation score
        info(f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}')
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'), cuda=args.cuda, logger=logger)

        #todo: Perhaps change code here in order to analyze the model on the trained data

        val_preds = predict(
            model=model,
            data=val_data,
            batch_size=args.batch_size,
            scaler=scaler
        )


        test_preds = predict(
            model=model,
            data=test_data,
            batch_size=args.batch_size,
            scaler=scaler
        )
        test_scores = evaluate_predictions(
            preds=test_preds,
            targets=test_targets,
            num_tasks=args.num_tasks,
            metric_func=metric_func,
            dataset_type=args.dataset_type,
            logger=logger
        )

        if len(val_preds) != 0:
            sum_val_preds += np.array(val_preds)

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        avg_test_score = np.nanmean(test_scores)
        info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
        writer.add_scalar(f'test_{args.metric}', avg_test_score, 0)

        if args.show_individual_scores:
            # Individual test scores
            for task_name, test_score in zip(args.task_names, test_scores):
                info(f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}')
                writer.add_scalar(f'test_{task_name}_{args.metric}', test_score, n_iter)

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()
    avg_val_preds = (sum_val_preds/ args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(
        preds=avg_test_preds,
        targets=test_targets,
        num_tasks=args.num_tasks,
        metric_func=metric_func,
        dataset_type=args.dataset_type,
        logger=logger
    )


    print("Test Prediction Shape:- ", np.array(avg_test_preds).shape)

    avg_test_preds = np.array(avg_test_preds).reshape(1,-1)
    test_targets = np.array(test_targets).reshape(1,-1)
    avg_val_preds = np.array(avg_val_preds).reshape(1,-1)
    val_targets = np.array(test_targets).reshape(1, -1)

    smaller_count = np.sum(avg_test_preds < test_targets)
    smaller_frac = smaller_count / (avg_test_preds.shape[1])
    print("Smaller_Fraction: ", smaller_frac)

    # plt.plot(np.concatenate((avg_test_preds,avg_val_preds) ,axis=1),np.concatenate((test_targets,val_targets), axis=1), 'rx')
    plt.plot(avg_test_preds,test_targets,'ro')
    # x = np.linspace(0, 11000, 110000)
    x = np.linspace(-7, 3, 100)
    y = x
    plt.plot(x,y,'-g')
    plt.xlabel("Test Predictions")
    plt.ylabel("Test Targets")
    plt.title("Prediction Distribution")
    plt.savefig("Prediction_Distriution_ro.png")
    # plt.show()
    plt.clf()
    plt.plot(avg_test_preds, test_targets, 'yo')
    # x = np.linspace(0, 11000, 110000)
    x = np.linspace(-7, 3, 100)
    y = x
    plt.plot(x, y, '-g')
    plt.xlabel("Test Predictions")
    plt.ylabel("Test Targets")
    plt.title("Prediction Distribution")
    plt.savefig("Prediction_Distriution_yo.png")
    # plt.show()
    plt.clf()
    plt.plot(avg_test_preds, test_targets, 'rx')
    # x = np.linspace(0, 11000, 110000)
    x = np.linspace(-7, 3, 100)
    y = x
    plt.plot(x, y, '-g')
    plt.xlabel("Test Predictions")
    plt.ylabel("Test Targets")
    plt.title("Prediction Distribution")
    plt.savefig("Prediction_Distriution_rx.png")
    # plt.show()
    plt.clf()
    plt.plot(avg_test_preds, test_targets, 'yx')
    # x = np.linspace(0, 11000, 110000)
    x = np.linspace(-7, 3, 100)
    y = x
    plt.plot(x, y, '-g')
    plt.xlabel("Test Predictions")
    plt.ylabel("Test Targets")
    plt.title("Prediction Distribution")
    plt.savefig("Prediction_Distriution_yx.png")
    # plt.show()
    plt.clf()
    x = np.linspace(-7, 3, 100)
    y = x-x
    plt.plot(x, y, '-g')
    plt.plot(test_targets, avg_test_preds-test_targets,'rx')
    plt.xlabel("Test Targets")
    plt.ylabel("Test Errors")
    plt.title("Prediction Errors")
    plt.savefig("Prediction_Errors.png")
    # plt.show()
    plt.clf()



    # Average ensemble score
    avg_ensemble_test_score = np.nanmean(ensemble_scores)
    info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')
    writer.add_scalar(f'ensemble_test_{args.metric}', avg_ensemble_test_score, 0)

    # Individual ensemble scores
    if args.show_individual_scores:
        for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
            info(f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}')

    return ensemble_scores
Esempio n. 15
0
def make_predictions(
        args: PredictArgs,
        smiles: List[List[str]] = None) -> List[List[Optional[float]]]:
    """
    Loads data and a trained model and uses the model to make predictions on the data.

    If SMILES are provided, then makes predictions on smiles.
    Otherwise makes predictions on :code:`args.test_data`.

    :param args: A :class:`~chemprop.args.PredictArgs` object containing arguments for
                 loading data and a model and making predictions.
    :param smiles: List of list of SMILES to make predictions on.
    :return: A list of lists of target predictions.
    """
    print('Loading training args')
    train_args = load_args(args.checkpoint_paths[0])
    num_tasks, task_names = train_args.num_tasks, train_args.task_names

    update_prediction_args(predict_args=args, train_args=train_args)
    args: Union[PredictArgs, TrainArgs]

    if args.atom_descriptors == 'feature':
        set_extra_atom_fdim(train_args.atom_features_size)

    if args.bond_features_path is not None:
        set_extra_bond_fdim(train_args.bond_features_size)

    #set explicit H option and reaction option
    set_explicit_h(train_args.explicit_h)
    set_reaction(train_args.reaction, train_args.reaction_mode)

    print('Loading data')
    if smiles is not None:
        full_data = get_data_from_smiles(
            smiles=smiles,
            skip_invalid_smiles=False,
            features_generator=args.features_generator)
    else:
        full_data = get_data(path=args.test_path,
                             smiles_columns=args.smiles_columns,
                             target_columns=[],
                             ignore_columns=[],
                             skip_invalid_smiles=False,
                             args=args,
                             store_row=not args.drop_extra_columns)

    print('Validating SMILES')
    full_to_valid_indices = {}
    valid_index = 0
    for full_index in range(len(full_data)):
        if all(mol is not None for mol in full_data[full_index].mol):
            full_to_valid_indices[full_index] = valid_index
            valid_index += 1

    test_data = MoleculeDataset(
        [full_data[i] for i in sorted(full_to_valid_indices.keys())])

    # Edge case if empty list of smiles is provided
    if len(test_data) == 0:
        return [None] * len(full_data)

    print(f'Test size = {len(test_data):,}')

    # Predict with each model individually and sum predictions
    if args.dataset_type == 'multiclass':
        sum_preds = np.zeros(
            (len(test_data), num_tasks, args.multiclass_num_classes))
    else:
        sum_preds = np.zeros((len(test_data), num_tasks))

    # Create data loader
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=args.num_workers)

    # Partial results for variance robust calculation.
    if args.ensemble_variance:
        all_preds = np.zeros(
            (len(test_data), num_tasks, len(args.checkpoint_paths)))

    print(
        f'Predicting with an ensemble of {len(args.checkpoint_paths)} models')
    for index, checkpoint_path in enumerate(
            tqdm(args.checkpoint_paths, total=len(args.checkpoint_paths))):
        # Load model and scalers
        model = load_checkpoint(checkpoint_path, device=args.device)
        scaler, features_scaler, atom_descriptor_scaler, bond_feature_scaler = load_scalers(
            checkpoint_path)

        # Normalize features
        if args.features_scaling or train_args.atom_descriptor_scaling or train_args.bond_feature_scaling:
            test_data.reset_features_and_targets()
            if args.features_scaling:
                test_data.normalize_features(features_scaler)
            if train_args.atom_descriptor_scaling and args.atom_descriptors is not None:
                test_data.normalize_features(atom_descriptor_scaler,
                                             scale_atom_descriptors=True)
            if train_args.bond_feature_scaling and args.bond_features_size > 0:
                test_data.normalize_features(bond_feature_scaler,
                                             scale_bond_features=True)

        # Make predictions
        model_preds = predict(model=model,
                              data_loader=test_data_loader,
                              scaler=scaler)
        sum_preds += np.array(model_preds)
        if args.ensemble_variance:
            all_preds[:, :, index] = model_preds

    # Ensemble predictions
    avg_preds = sum_preds / len(args.checkpoint_paths)
    avg_preds = avg_preds.tolist()

    if args.ensemble_variance:
        all_epi_uncs = np.var(all_preds, axis=2)
        all_epi_uncs = all_epi_uncs.tolist()

    # Save predictions
    print(f'Saving predictions to {args.preds_path}')
    assert len(test_data) == len(avg_preds)
    if args.ensemble_variance:
        assert len(test_data) == len(all_epi_uncs)
    makedirs(args.preds_path, isfile=True)

    # Get prediction column names
    if args.dataset_type == 'multiclass':
        task_names = [
            f'{name}_class_{i}' for name in task_names
            for i in range(args.multiclass_num_classes)
        ]
    else:
        task_names = task_names

    # Copy predictions over to full_data
    for full_index, datapoint in enumerate(full_data):
        valid_index = full_to_valid_indices.get(full_index, None)
        preds = avg_preds[valid_index] if valid_index is not None else [
            'Invalid SMILES'
        ] * len(task_names)
        if args.ensemble_variance:
            epi_uncs = all_epi_uncs[
                valid_index] if valid_index is not None else [
                    'Invalid SMILES'
                ] * len(task_names)

        # If extra columns have been dropped, add back in SMILES columns
        if args.drop_extra_columns:
            datapoint.row = OrderedDict()

            smiles_columns = args.smiles_columns

            for column, smiles in zip(smiles_columns, datapoint.smiles):
                datapoint.row[column] = smiles

        # Add predictions columns
        if args.ensemble_variance:
            for pred_name, pred, epi_unc in zip(task_names, preds, epi_uncs):
                datapoint.row[pred_name] = pred
                datapoint.row[pred_name + '_epi_unc'] = epi_unc
        else:
            for pred_name, pred in zip(task_names, preds):
                datapoint.row[pred_name] = pred

    # Save
    with open(args.preds_path, 'w') as f:
        writer = csv.DictWriter(f, fieldnames=full_data[0].row.keys())
        writer.writeheader()

        for datapoint in full_data:
            writer.writerow(datapoint.row)

    return avg_preds
def make_predictions(args: Namespace, smiles: List[str] = None) -> List[Optional[List[float]]]:
    """
    Makes predictions. If smiles is provided, makes predictions on smiles. Otherwise makes predictions on args.test_data.

    :param args: Arguments.
    :param smiles: Smiles to make predictions on.
    :return: A list of lists of target predictions.
    """
    if args.gpu is not None:
        torch.cuda.set_device(args.gpu)

    print('Loading training args')
    scaler, features_scaler = load_scalers(args.checkpoint_paths[0])
    train_args = load_args(args.checkpoint_paths[0])

    # Update args with training arguments
    for key, value in vars(train_args).items():
        if not hasattr(args, key):
            setattr(args, key, value)

    print('Loading data')
    if smiles is not None:
        test_data = get_data_from_smiles(smiles=smiles, skip_invalid_smiles=False)
    else:
        if args.write_true_val:
            test_data, true_vals = get_data(path=args.test_path, args=args, use_compound_names=args.use_compound_names, skip_invalid_smiles=False)
        else:
            test_data = get_data(path=args.test_path, args=args, use_compound_names=args.use_compound_names, skip_invalid_smiles=False)

    print('Validating SMILES')
    valid_indices = [i for i in range(len(test_data)) if test_data[i].mol is not None]
    full_data = test_data
    test_data = MoleculeDataset([test_data[i] for i in valid_indices])

    # Edge case if empty list of smiles is provided
    if len(test_data) == 0:
        return [None] * len(full_data)

    if args.use_compound_names:
        compound_names = test_data.compound_names()
    print(f'Test size = {len(test_data):,}')

    # Normalize features
    if train_args.features_scaling:
        test_data.normalize_features(features_scaler)

    # Predict with each model individually and sum predictions
    if args.dataset_type == 'multiclass':
        sum_preds = np.zeros((len(test_data), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_preds = np.zeros((len(test_data), args.num_tasks))
    print(f'Predicting with an ensemble of {len(args.checkpoint_paths)} models')
    for checkpoint_path in tqdm(args.checkpoint_paths, total=len(args.checkpoint_paths)):
        # Load model
        model = load_checkpoint(checkpoint_path, cuda=args.cuda)
        model_preds, check_fp = predict(   
                                model=model,
                                data=test_data,
                                batch_size=args.batch_size,
                                scaler=scaler
                                )    # wei, model_preds, check_fp for check each fp
        sum_preds += np.array(model_preds)

    # Ensemble predictions
    avg_preds = sum_preds / len(args.checkpoint_paths)
    avg_preds = avg_preds.tolist()

    # Save predictions
    assert len(test_data) == len(avg_preds)
    print(f'Saving predictions to {args.preds_path}')

    # Put Nones for invalid smiles
    full_preds = [None] * len(full_data)
    for i, si in enumerate(valid_indices):
        full_preds[si] = avg_preds[i]
    avg_preds = full_preds
    test_smiles = full_data.smiles()

    # Write predictions
    with open(args.preds_path, 'w') as f:
        writer = csv.writer(f)

        header = []

        if args.use_compound_names:
            header.append('compound_names')

        header.append('smiles')

        if args.dataset_type == 'multiclass':
            for name in args.task_names:
                for i in range(args.multiclass_num_classes):
                    header.append(name + '_class' + str(i))
        else:
            if args.write_true_val:
                header.append('true_'+args.task_names[0])
            header.append('preds_'+args.task_names[0])
            header.append('atomic_d0')  # wei, check depth
            header.append('atomic_d1')  # wei, check depth
            header.append('atomic_d2')  # wei, check depth
            header.append('atomic_final')  # wei, check depth
            header.append('mol')  # wei, check depth
        writer.writerow(header)

        for i in range(len(avg_preds)):
            row = []

            if args.use_compound_names:
                row.append(compound_names[i])

            row.append(test_smiles[i])
            if args.write_true_val:
                row.append(true_vals[i])

            if avg_preds[i] is not None:
                if args.dataset_type == 'multiclass':
                    for task_probs in avg_preds[i]:
                        row.extend(task_probs)
                else:
                    #print(i)
                    #print('len(avg_preds):', len(avg_preds))
                    row.extend(avg_preds[i])
                    row.append(check_fp[0][i])  # atomic d0
                    row.append(check_fp[1][i])  # atomic d1
                    row.append(check_fp[2][i])  # atomic d2
                    row.append(check_fp[3][i])  # atomic final
                    row.append(check_fp[4][i])  # mol

            else:
                if args.dataset_type == 'multiclass':
                    row.extend([''] * args.num_tasks * args.multiclass_num_classes)
                else:
                    row.extend([''] * args.num_tasks)

            writer.writerow(row)
        
        
    return avg_preds
Esempio n. 17
0
def new_noise(args: TrainArgs, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """

    debug = info = print

    # Get data
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    train_data, val_data, test_data = split_data(data=data,
                                                 split_type=args.split_type,
                                                 sizes=args.split_sizes,
                                                 seed=args.seed,
                                                 args=args,
                                                 logger=logger)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = neg_log_like
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers,
                                         cache=cache)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    ###########################################
    ########## Outer loop over ensemble members
    ###########################################

    for model_idx in range(args.ensemble_start_idx,
                           args.ensemble_start_idx + args.ensemble_size):

        # load the model
        if (args.method == 'map') or (args.method == 'swag') or (args.method
                                                                 == 'sgld'):
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model.pt',
                                    device=args.device,
                                    logger=logger)

        if args.method == 'gp':
            args.num_inducing_points = 1200
            fake_model = MoleculeModel(args)
            fake_model.featurizer = True
            feature_extractor = fake_model
            inducing_points = initial_inducing_points(train_data_loader,
                                                      feature_extractor, args)
            gp_layer = GPLayer(inducing_points, args.num_tasks)
            model = load_checkpoint(
                args.checkpoint_path + f'/model_{model_idx}/DKN_model.pt',
                device=args.device,
                logger=None,
                template=DKLMoleculeModel(MoleculeModel(args, featurizer=True),
                                          gp_layer))

        if args.method == 'dropR' or args.method == 'dropA':
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model.pt',
                                    device=args.device,
                                    logger=logger)

        if args.method == 'bbp':
            template = MoleculeModelBBP(args)
            for layer in template.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
            for layer in template.encoder.encoder.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model_bbp.pt',
                                    device=args.device,
                                    logger=None,
                                    template=template)

        if args.method == 'dun':
            args.prior_sig_dun = 0.05
            args.depth_min = 1
            args.depth_max = 5
            args.rho_min_dun = -5.5
            args.rho_max_dun = -5
            args.log_cat_init = 0
            template = MoleculeModelDUN(args)
            for layer in template.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_dun, args.rho_max_dun)
            for layer in template.encoder.encoder.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_dun, args.rho_max_dun)
            template.create_log_cat(args)
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model_dun.pt',
                                    device=args.device,
                                    logger=None,
                                    template=template)

        # make results_dir
        results_dir = os.path.join(args.results_dir, f'model_{model_idx}')
        makedirs(results_dir)

        # train_preds, train_targets
        train_preds = predict(model=model,
                              data_loader=train_data_loader,
                              args=args,
                              scaler=scaler,
                              test_data=False,
                              bbp_sample=False)
        train_preds = np.array(train_preds)
        train_targets = np.array(train_targets)

        # compute tstats
        tstats = np.ones((12, 3))
        for task in range(12):
            resid = train_preds[:, task] - train_targets[:, task]
            tstats[task] = np.array(stats.t.fit(resid, floc=0.0))

        ##################################
        ########## Inner loop over samples
        ##################################

        for sample_idx in range(args.samples):

            # save down
            np.savez(os.path.join(results_dir, f'tstats_{sample_idx}'), tstats)

            print('done one')
Esempio n. 18
0
def run_training(args: TrainArgs,
                 data: MoleculeDataset,
                 logger: Logger = None) -> Dict[str, List[float]]:
    """
    Loads data, trains a Chemprop model, and returns test scores for the model checkpoint with the highest validation score.

    :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for
                 loading data and training the Chemprop model.
    :param data: A :class:`~chemprop.data.MoleculeDataset` containing the data.
    :param logger: A logger to record output.
    :return: A dictionary mapping each metric in :code:`args.metrics` to a list of values for each task.

    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Split data
    debug(f"Splitting data with seed {args.seed}")
    # if args.separate_test_path:
    #    test_data = get_data(
    #        path=args.separate_test_path,
    #        args=args,
    #        features_path=args.separate_test_features_path,
    #        atom_descriptors_path=args.separate_test_atom_descriptors_path,
    #        bond_features_path=args.separate_test_bond_features_path,
    #        smiles_columns=args.smiles_columns,
    #        logger=logger,
    #    )
    # if args.separate_val_path:
    #    val_data = get_data(
    #        path=args.separate_val_path,
    #        args=args,
    #        features_path=args.separate_val_features_path,
    #        atom_descriptors_path=args.separate_val_atom_descriptors_path,
    #        bond_features_path=args.separate_val_bond_features_path,
    #        smiles_columns=args.smiles_columns,
    #        logger=logger,
    #    )

    # if args.separate_val_path and args.separate_test_path:
    #    train_data = data
    # elif args.separate_val_path:
    #    train_data, _, test_data = split_data(
    #        data=data,
    #        split_type=args.split_type,
    #        sizes=(0.8, 0.0, 0.2),
    #        seed=args.seed,
    #        num_folds=args.num_folds,
    #        args=args,
    #        logger=logger,
    #    )
    # elif args.separate_test_path:
    #    train_data, val_data, _ = split_data(
    #        data=data,
    #        split_type=args.split_type,
    #        sizes=(0.8, 0.2, 0.0),
    #        seed=args.seed,
    #        num_folds=args.num_folds,
    #        args=args,
    #        logger=logger,
    #    )
    # else:  # Default
    train_data, val_data, test_data = split_data(
        data=data,
        split_type=args.split_type,
        sizes=args.split_sizes,
        seed=args.seed,
        num_folds=args.num_folds,
        args=args,
        logger=logger,
    )

    if args.dataset_type == "classification":
        class_sizes = get_class_sizes(data)
        debug("Class sizes")
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f"{args.task_names[i]} "
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

    if args.save_smiles_splits:
        save_smiles_splits(
            data_path=args.data_path,
            save_dir=args.save_dir,
            task_names=args.task_names,
            features_path=args.features_path,
            train_data=train_data,
            val_data=val_data,
            test_data=test_data,
            smiles_columns=args.smiles_columns,
        )

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    if args.atom_descriptor_scaling and args.atom_descriptors is not None:
        atom_descriptor_scaler = train_data.normalize_features(
            replace_nan_token=0, scale_atom_descriptors=True)
        val_data.normalize_features(atom_descriptor_scaler,
                                    scale_atom_descriptors=True)
        test_data.normalize_features(atom_descriptor_scaler,
                                     scale_atom_descriptors=True)
    else:
        atom_descriptor_scaler = None

    if args.bond_feature_scaling and args.bond_features_size > 0:
        bond_feature_scaler = train_data.normalize_features(
            replace_nan_token=0, scale_bond_features=True)
        val_data.normalize_features(bond_feature_scaler,
                                    scale_bond_features=True)
        test_data.normalize_features(bond_feature_scaler,
                                     scale_bond_features=True)
    else:
        bond_feature_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f"Total size = {len(data):,} | "
        f"train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}"
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == "regression":
        debug("Fitting scaler")
        scaler = train_data.normalize_targets()
    else:
        scaler = None

    # Get loss function
    loss_func = get_loss_func(args)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == "multiclass":
        sum_test_preds = np.zeros(
            (len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        set_cache_graph(True)
        num_workers = 0
    else:
        set_cache_graph(False)
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(
        dataset=train_data,
        batch_size=args.batch_size,
        num_workers=num_workers,
        class_balance=args.class_balance,
        shuffle=True,
        seed=args.seed,
    )
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers)

    if args.class_balance:
        debug(
            f"With class_balance, effective train size = {train_data_loader.iter_size:,}"
        )

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f"model_{model_idx}")
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f"Loading model {model_idx} from {args.checkpoint_paths[model_idx]}"
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    logger=logger)
        else:
            debug(f"Building model {model_idx}")
            model = MoleculeModel(args)

        debug(model)
        debug(f"Number of parameters = {param_count(model):,}")
        if args.cuda:
            debug("Moving model to cuda")
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(
            os.path.join(save_dir, MODEL_FILE_NAME),
            model,
            scaler,
            features_scaler,
            atom_descriptor_scaler,
            bond_feature_scaler,
            args,
        )

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float("inf") if args.minimize_score else -float("inf")
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f"Epoch {epoch}")

            n_iter = train(
                model=model,
                data_loader=train_data_loader,
                loss_func=loss_func,
                optimizer=optimizer,
                scheduler=scheduler,
                args=args,
                n_iter=n_iter,
                logger=logger,
                writer=writer,
            )
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(
                model=model,
                data_loader=val_data_loader,
                num_tasks=args.num_tasks,
                metrics=args.metrics,
                dataset_type=args.dataset_type,
                scaler=scaler,
                logger=logger,
            )

            for metric, scores in val_scores.items():
                # Average validation score
                avg_val_score = np.nanmean(scores)
                debug(f"Validation {metric} = {avg_val_score:.6f}")
                writer.add_scalar(f"validation_{metric}", avg_val_score,
                                  n_iter)

                if args.show_individual_scores:
                    # Individual validation scores
                    for task_name, val_score in zip(args.task_names, scores):
                        debug(
                            f"Validation {task_name} {metric} = {val_score:.6f}"
                        )
                        writer.add_scalar(f"validation_{task_name}_{metric}",
                                          val_score, n_iter)

            # Save model checkpoint if improved validation score
            avg_val_score = np.nanmean(val_scores[args.metric])
            if (args.minimize_score and avg_val_score < best_score
                    or not args.minimize_score and avg_val_score > best_score):
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(
                    os.path.join(save_dir, MODEL_FILE_NAME),
                    model,
                    scaler,
                    features_scaler,
                    atom_descriptor_scaler,
                    bond_feature_scaler,
                    args,
                )

        # Evaluate on test set using model with best validation score
        info(
            f"Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}"
        )
        model = load_checkpoint(os.path.join(save_dir, MODEL_FILE_NAME),
                                device=args.device,
                                logger=logger)

        test_preds = predict(model=model,
                             data_loader=test_data_loader,
                             scaler=scaler)
        test_scores = evaluate_predictions(
            preds=test_preds,
            targets=test_targets,
            num_tasks=args.num_tasks,
            metrics=args.metrics,
            dataset_type=args.dataset_type,
            logger=logger,
        )

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        for metric, scores in test_scores.items():
            avg_test_score = np.nanmean(scores)
            info(f"Model {model_idx} test {metric} = {avg_test_score:.6f}")
            writer.add_scalar(f"test_{metric}", avg_test_score, 0)

            if args.show_individual_scores:
                # Individual test scores
                for task_name, test_score in zip(args.task_names, scores):
                    info(
                        f"Model {model_idx} test {task_name} {metric} = {test_score:.6f}"
                    )
                    writer.add_scalar(f"test_{task_name}_{metric}", test_score,
                                      n_iter)
        writer.close()

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(
        preds=avg_test_preds,
        targets=test_targets,
        num_tasks=args.num_tasks,
        metrics=args.metrics,
        dataset_type=args.dataset_type,
        logger=logger,
    )

    for metric, scores in ensemble_scores.items():
        # Average ensemble score
        avg_ensemble_test_score = np.nanmean(scores)
        info(f"Ensemble test {metric} = {avg_ensemble_test_score:.6f}")

        # Individual ensemble scores
        if args.show_individual_scores:
            for task_name, ensemble_score in zip(args.task_names, scores):
                info(
                    f"Ensemble test {task_name} {metric} = {ensemble_score:.6f}"
                )

    # Optionally save test preds
    if args.save_preds:
        test_preds_dataframe = pd.DataFrame(
            data={"smiles": test_data.smiles()})

        for i, task_name in enumerate(args.task_names):
            test_preds_dataframe[task_name] = [
                pred[i] for pred in avg_test_preds
            ]

        test_preds_dataframe.to_csv(os.path.join(args.save_dir,
                                                 "test_preds.csv"),
                                    index=False)

    return ensemble_scores
def train_bbp(model, train_data, val_data, num_workers, cache, loss_func,
              metric_func, scaler, features_scaler, args, save_dir):

    # data loaders for bbp
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size_bbp,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size_bbp,
                                         num_workers=num_workers,
                                         cache=cache)

    # instantiate BBP model with Bayesian linear layers (includes log noise)
    model_bbp = MoleculeModelBBP(args)

    # copy over parameters from pretrained to BBP model
    # we take the transpose because the Bayes linear layers have transpose shapes
    for (_, param_bbp), (_, param_pre) in zip(model_bbp.named_parameters(),
                                              model.named_parameters()):
        param_bbp.data = copy.deepcopy(param_pre.data.T)

    # instantiate rho for each weight
    for layer in model_bbp.children():
        if isinstance(layer, BayesLinear):
            layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
    for layer in model_bbp.encoder.encoder.children():
        if isinstance(layer, BayesLinear):
            layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)

    # move bbp model to cuda
    if args.cuda:
        print('Moving bbp model to cuda')
        model_bbp = model_bbp.to(args.device)

    # optimiser
    optimizer = torch.optim.Adam(model_bbp.parameters(), lr=args.lr_bbp)

    # scheduler
    scheduler = scheduler_const([args.lr_bbp])

    print("----------BBP training----------")

    # training loop
    best_score = float('inf') if args.minimize_score else -float('inf')
    best_epoch, n_iter = 0, 0
    for epoch in range(args.epochs_bbp):
        print(f'BBP epoch {epoch}')

        n_iter = train(model=model_bbp,
                       data_loader=train_data_loader,
                       loss_func=loss_func,
                       optimizer=optimizer,
                       scheduler=scheduler,
                       args=args,
                       n_iter=n_iter,
                       bbp_switch=2)

        val_scores = evaluate(model=model_bbp,
                              data_loader=val_data_loader,
                              args=args,
                              num_tasks=args.num_tasks,
                              metric_func=metric_func,
                              dataset_type=args.dataset_type,
                              scaler=scaler)

        # Average validation score
        avg_val_score = np.nanmean(val_scores)
        print(f'Validation {args.metric} = {avg_val_score:.6f}')
        wandb.log({"Validation MAE": avg_val_score})

        # Save model checkpoint if improved validation score
        if (args.minimize_score and avg_val_score < best_score or \
                not args.minimize_score and avg_val_score > best_score) and (epoch >= args.presave_bbp):
            best_score, best_epoch = avg_val_score, epoch
            save_checkpoint(os.path.join(save_dir, 'model_bbp.pt'), model_bbp,
                            scaler, features_scaler, args)

    # load model with best validation score
    template = MoleculeModelBBP(args)
    for layer in template.children():
        if isinstance(layer, BayesLinear):
            layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
    for layer in template.encoder.encoder.children():
        if isinstance(layer, BayesLinear):
            layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
    print(
        f'Best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
    )
    model_bbp = load_checkpoint(os.path.join(save_dir, 'model_bbp.pt'),
                                device=args.device,
                                logger=None,
                                template=template)

    return model_bbp
Esempio n. 20
0
def make_predictions(args: Namespace,
                     smiles: List[str] = None,
                     invalid_smiles_warning: str = None) -> List[List[float]]:
    """Makes predictions."""
    if args.gpu is not None:
        torch.cuda.set_device(args.gpu)

    if invalid_smiles_warning is not None:
        success_indices = []
        for i, s in enumerate(smiles):
            mol = Chem.MolFromSmiles(s)
            if mol is not None:
                success_indices.append(i)
        full_smiles = smiles
        smiles = [smiles[i] for i in success_indices]

    print('Loading training args')
    scaler, features_scaler = load_scalers(args.checkpoint_paths[0])
    train_args = load_args(args.checkpoint_paths[0])

    # Update args with training arguments
    for key, value in vars(train_args).items():
        if not hasattr(args, key):
            setattr(args, key, value)

    print('Loading data')
    if smiles is not None:
        test_data = get_data_from_smiles(smiles)
    else:
        test_data = get_data(args.test_path,
                             args,
                             use_compound_names=args.compound_names)
    test_smiles = test_data.smiles()
    if args.compound_names:
        compound_names = test_data.compound_names()
    print('Test size = {:,}'.format(len(test_data)))

    # Normalize features
    if train_args.features_scaling:
        test_data.normalize_features(features_scaler)

    # Predict with each model individually and sum predictions
    sum_preds = np.zeros((len(test_data), args.num_tasks))
    print('Predicting with an ensemble of {} models'.format(
        len(args.checkpoint_paths)))
    for checkpoint_path in tqdm(args.checkpoint_paths,
                                total=len(args.checkpoint_paths)):
        # Load model
        model = load_checkpoint(checkpoint_path, cuda=args.cuda)
        model_preds = predict(model=model,
                              data=test_data,
                              args=args,
                              scaler=scaler)
        sum_preds += np.array(model_preds)

    # Ensemble predictions
    avg_preds = sum_preds / args.ensemble_size
    avg_preds = avg_preds.tolist()

    # Save predictions
    assert len(test_data) == len(avg_preds)
    print('Saving predictions to {}'.format(args.preds_path))

    with open(args.preds_path, 'w') as f:
        if args.write_smiles:
            f.write('smiles,')
        if args.compound_names:
            f.write('compound_name,')
        f.write(','.join(args.task_names) + '\n')

        for i in range(len(avg_preds)):
            if args.write_smiles:
                f.write(test_smiles[i] + ',')
            if args.compound_names:
                f.write(compound_names[i] + ',')
            f.write(','.join(str(p) for p in avg_preds[i]) + '\n')

    if invalid_smiles_warning is not None:
        full_preds = [[invalid_smiles_warning]
                      for _ in range(len(full_smiles))]
        for i, si in enumerate(success_indices):
            full_preds[si] = avg_preds[i]
        return full_preds

    return avg_preds
Esempio n. 21
0
def make_predictions(args: Namespace,
                     smiles: List[str] = None) -> List[Optional[List[float]]]:
    """
    Makes predictions. If smiles is provided, makes predictions on smiles. Otherwise makes predictions on args.test_data.

    :param args: Arguments.
    :param smiles: Smiles to make predictions on.
    :return: A list of lists of target predictions.
    """
    if args.gpu is not None:
        torch.cuda.set_device(args.gpu)

    print('Loading training args')
    scaler, features_scaler = load_scalers(args.checkpoint_paths[0])
    train_args = load_args(args.checkpoint_paths[0])

    # Update args with training arguments
    for key, value in vars(train_args).items():
        if not hasattr(args, key):
            setattr(args, key, value)

    print('Loading data')
    if smiles is not None:
        test_data = get_data_from_smiles(smiles=smiles,
                                         skip_invalid_smiles=False,
                                         args=args)
    else:
        test_data = get_data(path=args.test_path,
                             args=args,
                             use_compound_names=args.use_compound_names,
                             skip_invalid_smiles=False)

    print('Validating SMILES')
    valid_indices = [
        i for i in range(len(test_data)) if test_data[i].mol is not None
    ]
    full_data = test_data
    test_data = MoleculeDataset([test_data[i] for i in valid_indices])

    # Edge case if empty list of smiles is provided
    if len(test_data) == 0:
        return [None] * len(full_data)

    if args.use_compound_names:
        compound_names = test_data.compound_names()
    print(f'Test size = {len(test_data):,}')

    # Normalize features
    if train_args.features_scaling:
        test_data.normalize_features(features_scaler)

    # Predict with each model individually and sum predictions
    if args.dataset_type == 'multiclass':
        sum_preds = np.zeros(
            (len(test_data), args.num_tasks, args.multiclass_num_classes))
        sum_ale_uncs = np.zeros(
            (len(test_data), args.num_tasks, args.multiclass_num_classes))
        sum_epi_uncs = np.zeros(
            (len(test_data), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_preds = np.zeros((len(test_data), args.num_tasks))
        sum_ale_uncs = np.zeros((len(test_data), args.num_tasks))
        sum_epi_uncs = np.zeros((len(test_data), args.num_tasks))

    # Partial results for variance robust calculation.
    all_preds = np.zeros(
        (len(test_data), args.num_tasks, len(args.checkpoint_paths)))

    print(
        f'Predicting with an ensemble of {len(args.checkpoint_paths)} models')
    for index, checkpoint_path in enumerate(
            tqdm(args.checkpoint_paths, total=len(args.checkpoint_paths))):
        # Load model
        model = load_checkpoint(checkpoint_path, cuda=args.cuda)
        model_preds, ale_uncs, epi_uncs = predict(
            model=model,
            data=test_data,
            batch_size=args.batch_size,
            scaler=scaler,
            sampling_size=args.sampling_size)
        sum_preds += np.array(model_preds)
        if ale_uncs is not None:
            sum_ale_uncs += np.array(ale_uncs)
        if epi_uncs is not None:
            sum_epi_uncs += np.array(epi_uncs)
        if args.estimate_variance:
            all_preds[:, :, index] = model_preds

    # Ensemble predictions

    if args.estimate_variance:
        # Use ensemble variance to estimate uncertainty. This overwrites existing uncertainty estimates.
        # preds <- mean(preds), ale_uncs <- mean(ale_uncs), epi_uncs <- var(preds)
        avg_preds = sum_preds / len(args.checkpoint_paths)
        avg_preds = avg_preds.tolist()

        avg_ale_uncs = sum_ale_uncs / len(args.checkpoint_paths)
        avg_ale_uncs = avg_ale_uncs.tolist()

        avg_epi_uncs = np.var(all_preds, axis=2)
        avg_epi_uncs = avg_epi_uncs.tolist()

    else:
        # Use another method to estimate uncertainty.
        # preds <- mean(preds), ale_uncs <- mean(ale_uncs), epi_uncs <- mean(epi_uncs)
        avg_preds = sum_preds / len(args.checkpoint_paths)
        avg_preds = avg_preds.tolist()

        avg_ale_uncs = sum_ale_uncs / len(args.checkpoint_paths)
        avg_ale_uncs = avg_ale_uncs.tolist()

        avg_epi_uncs = sum_epi_uncs / len(args.checkpoint_paths)
        avg_epi_uncs = avg_epi_uncs.tolist()

    # Save predictions
    assert len(test_data) == len(avg_preds)
    assert len(test_data) == len(avg_ale_uncs)
    assert len(test_data) == len(avg_epi_uncs)

    print(f'Saving predictions to {args.preds_path}')

    # Put Nones for invalid smiles
    full_preds = [None] * len(full_data)
    full_ale_uncs = [None] * len(full_data)
    full_epi_uncs = [None] * len(full_data)

    for i, si in enumerate(valid_indices):
        full_preds[si] = avg_preds[i]
        full_ale_uncs[si] = avg_ale_uncs[i]
        full_epi_uncs[si] = avg_epi_uncs[i]

    avg_preds = full_preds
    avg_ale_uncs = full_ale_uncs
    avg_epi_uncs = full_epi_uncs

    test_smiles = full_data.smiles()

    # Write predictions
    with open(args.preds_path, 'w') as f:
        writer = csv.writer(f)

        header = []

        if args.use_compound_names:
            header.append('compound_names')

        header.append('smiles')

        if args.dataset_type == 'multiclass':
            for name in args.task_names:
                for i in range(args.multiclass_num_classes):
                    header.append(name + '_class' + str(i))
        else:
            header.extend(args.task_names)

            header.extend([tn + "_ale_unc" for tn in args.task_names])

            header.extend([tn + "_epi_unc" for tn in args.task_names])

        writer.writerow(header)

        for i in range(len(avg_preds)):
            row = []

            if args.use_compound_names:
                row.append(compound_names[i])

            row.append(test_smiles[i])

            if avg_preds[i] is not None:
                if args.dataset_type == 'multiclass':
                    for task_probs in avg_preds[i]:
                        row.extend(task_probs)
                else:
                    row.extend(avg_preds[i])
                    row.extend(avg_ale_uncs[i])
                    row.extend(avg_epi_uncs[i])
            else:
                if args.dataset_type == 'multiclass':
                    row.extend([''] * args.num_tasks *
                               args.multiclass_num_classes)
                else:
                    # Both the prediction, the aleatoric uncertainty and the epistemic uncertainty are None
                    row.extend([''] * 3 * args.num_tasks)

            writer.writerow(row)

    return avg_preds
Esempio n. 22
0
def molecule_fingerprint(
        args: PredictArgs,
        smiles: List[List[str]] = None) -> List[List[Optional[float]]]:
    """
    Loads data and a trained model and uses the model to encode fingerprint vectors for the data.

    :param args: A :class:`~chemprop.args.PredictArgs` object containing arguments for
                 loading data and a model and making predictions.
    :param smiles: List of list of SMILES to make predictions on.
    :return: A list of fingerprint vectors (list of floats)
    """

    print('Loading training args')
    train_args = load_args(args.checkpoint_paths[0])

    # Update args with training arguments
    update_prediction_args(predict_args=args,
                           train_args=train_args,
                           validate_feature_sources=False)
    args: Union[PredictArgs, TrainArgs]

    print('Loading data')
    if smiles is not None:
        full_data = get_data_from_smiles(
            smiles=smiles,
            skip_invalid_smiles=False,
            features_generator=args.features_generator)
    else:
        full_data = get_data(path=args.test_path,
                             smiles_columns=args.smiles_columns,
                             target_columns=[],
                             ignore_columns=[],
                             skip_invalid_smiles=False,
                             args=args,
                             store_row=True)

    print('Validating SMILES')
    full_to_valid_indices = {}
    valid_index = 0
    for full_index in range(len(full_data)):
        if all(mol is not None for mol in full_data[full_index].mol):
            full_to_valid_indices[full_index] = valid_index
            valid_index += 1

    test_data = MoleculeDataset(
        [full_data[i] for i in sorted(full_to_valid_indices.keys())])

    # Edge case if empty list of smiles is provided
    if len(test_data) == 0:
        return [None] * len(full_data)

    print(f'Test size = {len(test_data):,}')

    # Create data loader
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=args.num_workers)

    # Load model
    print(f'Encoding smiles into a fingerprint vector from a single model')
    if len(args.checkpoint_paths) != 1:
        raise ValueError(
            "Fingerprint generation only supports one model, cannot use an ensemble"
        )

    model = load_checkpoint(args.checkpoint_paths[0], device=args.device)
    scaler, features_scaler, atom_descriptor_scaler, bond_feature_scaler = load_scalers(
        args.checkpoint_paths[0])

    # Normalize features
    if args.features_scaling or train_args.atom_descriptor_scaling or train_args.bond_feature_scaling:
        test_data.reset_features_and_targets()
        if args.features_scaling:
            test_data.normalize_features(features_scaler)
        if train_args.atom_descriptor_scaling and args.atom_descriptors is not None:
            test_data.normalize_features(atom_descriptor_scaler,
                                         scale_atom_descriptors=True)
        if train_args.bond_feature_scaling and args.bond_features_size > 0:
            test_data.normalize_features(bond_feature_scaler,
                                         scale_bond_features=True)

    # Make fingerprints
    model_preds = model_fingerprint(model=model, data_loader=test_data_loader)

    # Save predictions
    print(f'Saving predictions to {args.preds_path}')
    assert len(test_data) == len(model_preds)
    makedirs(args.preds_path, isfile=True)

    # Copy predictions over to full_data
    total_hidden_size = args.hidden_size * args.number_of_molecules
    for full_index, datapoint in enumerate(full_data):
        valid_index = full_to_valid_indices.get(full_index, None)
        preds = model_preds[valid_index] if valid_index is not None else [
            'Invalid SMILES'
        ] * total_hidden_size

        fingerprint_columns = [f'fp_{i}' for i in range(total_hidden_size)]
        for i in range(len(fingerprint_columns)):
            datapoint.row[fingerprint_columns[i]] = preds[i]

    # Write predictions
    with open(args.preds_path, 'w') as f:
        writer = csv.DictWriter(f,
                                fieldnames=args.smiles_columns +
                                fingerprint_columns,
                                extrasaction='ignore')
        writer.writeheader()
        for datapoint in full_data:
            writer.writerow(datapoint.row)

    return model_preds
Esempio n. 23
0
def make_predictions(args: Namespace,
                     smiles: List[str] = None) -> List[Optional[List[float]]]:
    """
    Makes predictions. If smiles is provided, makes predictions on smiles. Otherwise makes predictions on args.test_data.

    :param args: Arguments.
    :param smiles: Smiles to make predictions on.
    :return: A list of lists of target predictions.
    """
    if args.gpu is not None:
        torch.cuda.set_device(args.gpu)

    print('Loading training args')
    scaler, features_scaler = load_scalers(args.checkpoint_paths[0])
    train_args = load_args(args.checkpoint_paths[0])

    # Update args with training arguments
    for key, value in vars(train_args).items():
        if not hasattr(args, key):
            setattr(args, key, value)

    print('Loading data')
    if smiles is not None:
        test_data = get_data_from_smiles(smiles=smiles,
                                         skip_invalid_smiles=False)
    else:
        test_data = get_data(path=args.test_path,
                             args=args,
                             use_compound_names=args.use_compound_names,
                             skip_invalid_smiles=False)

    print('Validating SMILES')
    valid_indices = [
        i for i in range(len(test_data)) if test_data[i].mol is not None
    ]
    full_data = test_data
    test_data = MoleculeDataset([test_data[i] for i in valid_indices])

    # Edge case if empty list of smiles is provided
    if len(test_data) == 0:
        return [None] * len(full_data)

    if args.use_compound_names:
        compound_names = test_data.compound_names()
    print(f'Test size = {len(test_data):,}')

    # Normalize features
    if train_args.features_scaling:
        test_data.normalize_features(features_scaler)

    # Predict with each model individually and sum predictions
    if args.dataset_type == 'multiclass':
        sum_preds = np.zeros(
            (len(test_data), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_preds = np.zeros((len(test_data), args.num_tasks))
    print(
        f'Predicting with an ensemble of {len(args.checkpoint_paths)} models')
    for checkpoint_path in tqdm(args.checkpoint_paths,
                                total=len(args.checkpoint_paths)):
        # Load model
        model = load_checkpoint(checkpoint_path, cuda=args.cuda)
        model_preds = predict(model=model,
                              data=test_data,
                              batch_size=args.batch_size,
                              scaler=scaler)
        sum_preds += np.array(model_preds)

    # Ensemble predictions
    avg_preds = sum_preds / len(args.checkpoint_paths)
    avg_preds = avg_preds.tolist()
    return avg_preds, test_data.smiles()
Esempio n. 24
0
def make_predictions(args: Namespace,
                     smiles: List[str] = None) -> List[Optional[List[float]]]:
    """
    Makes predictions. If smiles is provided, makes predictions on smiles. Otherwise makes predictions on args.test_data.

    :param args: Arguments.
    :param smiles: Smiles to make predictions on.
    :return: A list of lists of target predictions.
    """
    if args.gpu is not None:
        torch.cuda.set_device(args.gpu)

    print('Loading training args')
    scaler, features_scaler = load_scalers(args.checkpoint_paths[0])
    train_args = load_args(args.checkpoint_paths[0])
    data = smiles
    # Update args with training arguments
    for key, value in vars(train_args).items():
        if not hasattr(args, key):
            setattr(args, key, value)

    print('Loading data')
    # if smiles is not None:
    #     test_data = get_data_from_smiles_fast(smiles=smiles, skip_invalid_smiles=False)
    # else:
    #     test_data = get_data(path=args.test_path, args=args, use_compound_names=args.use_compound_names, skip_invalid_smiles=False)
    with open(args.test_path, 'r') as f:
        smiles = list(map(lambda x: x.split(',')[0].strip(),
                          f.readlines()[1:]))
    assert (smiles is not None)

    print('Validating SMILES')
    #
    # valid_indices = [i for i in range(len(test_data)) if test_data[i].mol is not None]
    # full_data = test_data
    # test_data = MoleculeDataset([test_data[i] for i in valid_indices])
    #
    # # Edge case if empty list of smiles is provided
    # if len(test_data) == 0:
    #     return [None] * len(full_data)
    #
    # if args.use_compound_names:
    #     compound_names = test_data.compound_names()
    # print(f'Test size = {len(test_data):,}')
    #
    # # Normalize features
    # if train_args.features_scaling:
    #     test_data.normalize_features(features_scaler)

    # Predict with each model individually and sum predictions
    # if args.dataset_type == 'multiclass':
    #     sum_preds = np.zeros((len(smiles), args.num_tasks, args.multiclass_num_classes))
    # else:
    # sum_preds = np.zeros((len(smiles), args.num_tasks))
    print(
        f'Predicting with an ensemble of {len(args.checkpoint_paths)} models')
    for checkpoint_path in tqdm(args.checkpoint_paths,
                                total=len(args.checkpoint_paths)):
        # Load model
        model = load_checkpoint(checkpoint_path, cuda=args.cuda)
        avg_preds = predict(model=model,
                            data=smiles,
                            batch_size=args.batch_size,
                            scaler=scaler,
                            args=args)
        # avg_preds += np.array(model_preds)

    # Ensemble predictions
    # avg_preds = sum_preds / len(args.checkpoint_paths)
    # avg_preds = avg_preds.tolist()

    # Save predictions
    print(len(smiles), len(avg_preds))
    assert len(smiles) == len(avg_preds)
    print(f'Saving predictions to {args.preds_path}')

    # Put Nones for invalid smiles
    full_preds = avg_preds
    # for i, si in enumerate(valid_indices):
    #     full_preds[si] = avg_preds[i]
    avg_preds = full_preds
    test_smiles = smiles

    # Write predictions
    with open(args.preds_path, 'w') as f:
        writer = csv.writer(f)

        header = []

        if args.use_compound_names:
            header.append('compound_names')

        header.append('smiles')

        if args.dataset_type == 'multiclass':
            for name in args.task_names:
                for i in range(args.multiclass_num_classes):
                    header.append(name + '_class' + str(i))
        else:
            header.extend(args.task_names)
        writer.writerow(header)

        for i in range(len(avg_preds)):
            row = []

            # if args.use_compound_names:
            # row.append(compound_names[i])

            row.append(test_smiles[i])

            if avg_preds[i] is not None:
                if args.dataset_type == 'multiclass':
                    for task_probs in avg_preds[i]:
                        row.extend(task_probs)
                else:
                    row.extend(avg_preds[i])
            else:
                if args.dataset_type == 'multiclass':
                    row.extend([''] * args.num_tasks *
                               args.multiclass_num_classes)
                else:
                    row.extend([''] * args.num_tasks)

            writer.writerow(row)

    return avg_preds