Esempio n. 1
0
def fc_visual(fcfile_pickle):

    with open(fcfile_pickle, 'rb') as handle:
        fc = pickle.load(handle)

    imcohs = fc['imcohs']
    pvals = fc['pvals']
    chnAreas = fc['chnAreas']

    # multiple comparison correction, get weights
    reject, pval_corr = fdr_correction(pvals, alpha=0.05, method='indep')
    [rows, cols] = np.where(reject == True)
    weight = np.zeros(imcohs.shape)
    if len(rows) > 0:
        weight[rows, cols] = imcohs[rows, cols]

    for co in ['normal', 'mild', 'moderate']:
        if co in fcfile_pickle:
            cond = co

    save_prefix = 'all'
    folder, filename = os.path.split(fcfile_pickle)[0], os.path.split(
        fcfile_pickle)[1]
    saveFCGraph = os.path.join(
        folder,
        'visual_' + filename[:-len('.pickle')] + '_' + save_prefix + '.png')
    texts = dict()
    texts[cond] = [-80, 40, 15]
    texts[animal] = [80, 20, 20]
    weight_visual_save(weight,
                       chnInf=assign_coord2chnArea(
                           area_coord_file=area_coord_file, chnAreas=chnAreas),
                       savefile=saveFCGraph,
                       texts=texts,
                       threds_edge=None)
Esempio n. 2
0
def fc_visual_subAreas(fcfile_pickle,
                       subareas=['M1', 'STN', 'GP'],
                       subtitle='M1DBS'):

    with open(fcfile_pickle, 'rb') as handle:
        fc = pickle.load(handle)

    imcohs = fc['imcohs']
    pvals = fc['pvals']
    chnAreas = fc['chnAreas']

    idxs_remain = []
    chnAreas_new = []
    for ci, carea in enumerate(chnAreas):
        for sarea in subareas:
            if sarea.lower() in carea.lower():
                idxs_remain.append(ci)
                chnAreas_new.append(carea)

    idxs_remain = np.array(idxs_remain)

    tmp = imcohs[idxs_remain, :]
    tmp = tmp[:, idxs_remain]
    imcohs = tmp
    tmp = pvals[idxs_remain, :]
    tmp = tmp[:, idxs_remain]
    pvals = tmp

    chnAreas = chnAreas_new

    # multiple comparison correction, get weights
    reject, pval_corr = fdr_correction(pvals, alpha=0.05, method='indep')
    [rows, cols] = np.where(reject == True)
    weight = np.zeros(imcohs.shape)
    if len(rows) > 0:
        weight[rows, cols] = imcohs[rows, cols]

    for co in ['normal', 'mild', 'moderate']:
        if co in fcfile_pickle:
            cond = co

    folder, filename = os.path.split(fcfile_pickle)[0], os.path.split(
        fcfile_pickle)[1]
    saveFCGraph = os.path.join(
        folder,
        'visual_' + filename[:-len('.pickle')] + '_' + subtitle + '.png')
    texts = dict()
    texts[cond] = [-80, 40, 15]
    texts[animal] = [80, 20, 20]
    weight_visual_save(weight,
                       chnInf=assign_coord2chnArea(
                           area_coord_file=area_coord_file, chnAreas=chnAreas),
                       savefile=saveFCGraph,
                       texts=texts,
                       threds_edge=None)
Esempio n. 3
0
def dailyfc_visual(files):

    for onefile in files:
        lfpdata, chnAreas, fs = lfp_extract([onefile])

        if lfpdata.shape[2] < 80:
            continue

        print(onefile)
        ciCOHs = calc_ciCOHs_rest(lfpdata)

        # permutation test: use the lfp data whose ciCOHs are the largest to get  distribution
        [i, j] = np.unravel_index(np.argmax(ciCOHs), shape=ciCOHs.shape)
        lfp1, lfp2 = lfpdata[i, :, :], lfpdata[j, :, :]
        _, mu, std = pval_permciCOH_rest(lfp1,
                                         lfp2,
                                         ciCOHs[i, j],
                                         shuffleN=1000)
        pvals = norm.sf(abs(ciCOHs), loc=mu, scale=std) * 2

        # multiple comparison correction, get weights
        reject, pval_corr = fdr_correction(pvals, alpha=0.05, method='indep')
        [rows, cols] = np.where(reject == True)
        weight = np.zeros(ciCOHs.shape)
        if len(rows) > 0:
            weight[rows, cols] = ciCOHs[rows, cols]

        # visual and save
        filename = os.path.basename(onefile)
        datestr = re.search('[0-9]{8}', filename).group()
        cond = re.search('_[a-z]*_[0-9]{8}', filename).group()[1:-9]
        freqstr = 'freq' + re.search('_filtered[0-9]*_[0-9]*',
                                     filename).group()[len('_filtered'):]

        save_prefix = 'all'
        saveFCGraph = os.path.join(
            savefolder,
            freqstr + '_' + cond + '_' + save_prefix + '_' + datestr + '.png')
        texts = dict()
        texts[cond + ',' + datestr] = [-80, 50, 15]
        weight_visual_save(weight,
                           chnInf=assign_coord2chnArea(
                               area_coord_file=area_coord_file,
                               chnAreas=chnAreas),
                           savefile=saveFCGraph,
                           texts=texts,
                           threds_edge=None)

        del texts, datestr, cond, weight
Esempio n. 4
0
def subArea_dailyfc_visual(files):
    
    for onefile in files:
        lfpdata, chnAreas, fs = lfp_extract([onefile])

        if lfpdata.shape[2] < 80:
            continue


        print(onefile)
        ciCOHs = calc_ciCOHs_rest(lfpdata)




        # permutation test: use the lfp data whose ciCOHs are the largest to get  distribution
        [i, j] = np.unravel_index(np.argmax(ciCOHs), shape = ciCOHs.shape)
        lfp1, lfp2 = lfpdata[i, :, :], lfpdata[j, :, :]
        _, mu, std = pval_permciCOH_rest(lfp1, lfp2, ciCOHs[i, j], shuffleN = 1000)


        cond = re.search('_[a-z]*_[0-9]{8}', files[0]).group()[1:-9]
        datestr = re.search('[0-9]{8}', os.path.basename(onefile)).group()


        ### left thalamus and SMA/M1 ###
        save_prefix = 'leftThaCor_' 
        areas_used = ['lVA', 'lVLo/VPLo', 'lSMA', 'rSMA','M1']

        # subareas selection
        ciCOH_new, chnAreas_new = ciCOH_select(ciCOHs, chnAreas, areas_used)
        
        
        # multiple comparison correction, get weight matrix
        pvals = norm.sf(abs(ciCOH_new), loc = mu, scale = std) * 2
        reject, pval_corr = fdr_correction(pvals, alpha = 0.05, method='indep')
        [rows, cols]= np.where(reject == True)
        weight = np.zeros(ciCOH_new.shape)
        if len(rows) > 0:
            weight[rows, cols] = ciCOH_new[rows, cols]

        # visual and save
        saveFCGraph = os.path.join(savefolder, cond + '_' + save_prefix + '_' + datestr + '.png')
        texts = dict()
        texts[datestr] = [80, 50, 15]
        weight_visual_save(weight, chnInf = assign_coord2chnArea(area_coord_file, chnAreas_new), 
                            savefile = saveFCGraph, texts = None, threds_edge = None)
        del ciCOH_new, chnAreas_new, save_prefix, areas_used
        del saveFCGraph, weight
Esempio n. 5
0
def segfc_visual(onefile):

    # lfpdata: nchns * ntemp * nsegs
    lfpdata, chnAreas, fs = lfp_extract([onefile])

    nchns, _, nsegs = lfpdata.shape
    seg_ciCOHs = np.zeros(shape=(nchns, nchns, nsegs))
    for segi in range(nsegs):
        seg_ciCOHs[:, :, segi] = calc_ciCOHs_rest(
            np.expand_dims(lfpdata[:, :, segi], axis=2))

    # permutation test: use the lfp data whose ciCOHs are the largest to get  distribution
    [i, j] = np.unravel_index(np.argmax(ciCOHs), shape=ciCOHs.shape)
    lfp1, lfp2 = lfpdata[i, :, :], lfpdata[j, :, :]
    _, mu, std = pval_permciCOH_rest(lfp1, lfp2, ciCOHs[i, j], shuffleN=1000)
    pvals = norm.sf(abs(ciCOHs), loc=mu, scale=std) * 2

    # multiple comparison correction, get weights
    reject, pval_corr = fdr_correction(pvals, alpha=0.05, method='indep')
    [rows, cols] = np.where(reject == True)
    weight = np.zeros(ciCOHs.shape)
    if len(rows) > 0:
        weight[rows, cols] = ciCOHs[rows, cols]

    # visual and save
    filename = os.path.basename(onefile)
    datestr = re.search('[0-9]{8}', filename).group()
    cond = re.search('_[a-z]*_[0-9]{8}', filename).group()[1:-9]

    save_prefix = 'all'
    saveFCGraph = os.path.join(
        savefolder, cond + '_' + save_prefix + '_' + datestr + '.png')
    weight_visual_save(weight,
                       chnInf=assign_coord2chnArea(
                           area_coord_file=area_coord_file, chnAreas=chnAreas),
                       savefile=saveFCGraph,
                       texts=None,
                       threds_edge=None)